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The resolving power of seismic amplitude data: An
anisotropic inversion/migration approach

Maarten V. de Hoop*, Carl Spencer, and Robert Burridge **

ABSTRACT

A description of the theory and numerical implemen-
tation of a 3-D linearized asymptotic anisotropic inver-
sion method based on the generalized Radon transform
is given. We discuss implementation aspects, including
(1) the use of various coordinate systems, (2) regulariza-
tion by both spectral and Bayesian statistical techniques,
and (3) the effects of limited acquisition apertures on
inversion. We give applications of the theory in which
well-resolved parameter combinations are determined
for particular experimental geometries and illustrate the
interdependence of parameter and spatial resolutions.
Procedures for evaluating uncertainties in the parame-
ter estimates that result from the inversion are derived
and demonstrated.

INTRODUCTION

The purpose of this paper is to investigate the use of the
generalized Radon transform (GRT) for seismic inverse prob-
lems involving anisotropic earth models. An understanding of
anisotropy is important for hydrocarbon exploration because
shales, which make up 75% of the sedimentary cover of the
hydrocarbon reserves, are almost invariably anisotropic. The
effects of anisotropy on the kinematics of P-wave propagation
and hence their effects on conventional seismic processing are
summarized in Lamer and Tsvankin (1995). Ball (1995) pre-
sented a real data example from a carbonate reservoir in the
former Zaire showing the effects of anisotropy on migration.

Anisotropy can also have a dramatic effect on the ampli-
tude versus angle (AVA) response of a geological interface.
As an example, in cases where shales and sands have simi-
lar acoustic impedances, the introduction of anisotropy in the
shale may bring about a change in sign of the reflection coef-
ficient not present in the isotropic case. Similarly, it is possible

to encounter situations where amplitude anomalies that oth-
erwise might be attributed to the presence of gas in isotropic
media might also be caused by the presence of anisotropy in
the absence of gas. Our intention in this paper is to demon-
strate a framework capable of answering the fundamental
questions: What information about anisotropy do seismic am-
plitudes reveal, and how do we use this information to image
rock properties?

Over the past decade, substantial progress has been made
towards solving the problem of inverting seismic data to yield
models of the physical properties of the earth. Several differ-
ent techniques have been suggested by various scientists based
on what, at first sight, seem like very different approximations
of the inverse problem, but which turn out in practice to bear
many similarities. The different techniques can be classified ac-
cording to (1) the method of carrying out the forward modeling
(for example, full-waveform, Kirchhoff, ray-Born, etc.), (2) the
method of inverting the forward relation (for example, nonlin-
ear local optimization possibly preceded by preconditioning,
or the direct GRT), (3) the parameterization of the subsurface
(scalar, isotropic elastic, anisotropic elastic, and poro-elastic
represent increasingly sophisticated medium descriptions).
Also, the choice of a forward modeling approach usually im-
plies a particular discretization of the scattering domain, i.e.,
the subsurface. It is the second classification (2) that is most
fundamental to a discussion of practical inversion methods.

Perhaps the most obvious way of solving the seismic inverse
problem is to search parameter space by techniques such as
the conjugate gradient minimization of some measure of the
misfit between observed and simulated seismograms. Such an
approach was developed for the acoustic case by Bamberger
et al. (1982) and was subsequently modified and extended by
numerous authors (Tarantola, 1984, 1986; Gauthier et al., 1986;
Ikelle et al., 1986; Beydoun and Mendez, 1989; Mora, 1989;
Singh et al., 1989; Snieder et al., 1989; Cao et al., 1990; Eaton
and Stewart, 1994; Dcbski and Tarantola, 1995). Two essen-
tial features of all these search methods are the use of iter-
ative solutions to the (nonlinear) optimization problem and
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regularization by inclusion of a priori information. Cheng and
Cohen's (1984) and Tarantola's (1984) observation that inver-
sion can be expressed in terms of more conventional seismic
processing methods is a recurring motif in the literature that ap-
plies to almost all common approaches to the inverse problem
(Bleistein and Cohen, 1979; Clayton and Stolt, 1981; Mora,
1989; Claerbout, 1992).

A second suite of inverse methods originated in the field of
ultrasonics (Norton and Linzer, 1981) and is based on approxi-
mations to the forward and inverse formulations that permit di-
rect, closed-form expressions for the inverse problem solution
(Clayton and Stolt, 1981; Devaney, 1984; Beylkin, 1985; Miller
et al., 1987; Bleistein, 1987; de Hoop et al., 1994; Burridge et al.,
1998). The majority of these methods use the Born approxi-
mation to model scattering at the target together with asymp-
totic approximations such as WKBJ or asymptotic ray theory
for propagation to and from the scatterer. Solutions are then
obtained by mappings, such as the GRT, which require fur-
ther high-frequency approximations. Since the starting point
for both the direct and search-based inversion techniques is
a weak formulation of the inverse problem, the mechanics
of both methods can turn out to be similar (Esmersoy and
Oristaglio, 1988; Jin et al., 1992). It is also possible to use oper-
ators obtained using direct linearized methods asymptotically
as preconditioners for search-based nonlinear optimization (de
Hoop and de Hoop, 1997).

In this paper, we will be exclusively concerned with the
multiparameter elastic inverse problem. Several approaches to
multiparameter inversion have been proposed in the isotropic
case. Berkhout and Wapenaar (1990) suggested that wave-
field decomposition be applied at an early stage in process-
ing the data so that P and S pseudoscalar wavefields or po-
tentials can be inverted separately. Bleistein (1987) modified
the generalized Radon transform method of Beylkin (1985)
and Miller et al. (1987) to the three-parameter elastic case by
formulating the problem as Kirchhoff scattering from inter-
faces rather than Born scattering from volumes. The inversion
process involved two parallel integrations (weighted diffrac-
tion stacks) that allow both reflection coefficient as a function
of angle and the angle of specular reflection to be recovered
at each image point. Beylkin and Burridge (1990) proposed
a multiparameter scheme based on the Born approximation
instead. A GRT inversion was designed to construct an inter-
mediate vector quantity from which elastic parameters could
be recovered. This method avoided the need for dividing two
image sections to provide angle information, as required by
the method of Bleistein (1987). Among the optimization ap-
proaches, Tarantola (1986), Beydoun and Mendez (1989), and
Jin et al. (1992) have considered the isotropic multiparam-
eter problem. Parameter estimates are obtained by a back-
propagation of the residual wavefield followed by convolution
with an approximate inverse Hessian arising from the local
linearization of the forward contrast-source formulation.

The introduction of anisotropy into elastic seismic inversion
increases the number of possible parameters needed to specify
the physical properties of a point within the earth to 22. This
is far more than can be recovered in practice and, therefore,
attention must be given to reducing the size of the problem.
One possible approach is to understand the scattering process
well enough beforehand to be able to provide a limited num-
ber of combinations of parameters that describe the process

effectively. Banik (1987) and Tsvankin and Thomsen (1995)
have done so for the case of weak scattering in VTI (trans-
versely isotropic with vertical axis of symmetry) media and
find that near-normal incidence P-wave scattering behavior is
controlled by vertical impedance contrast and the parameter S
(Thomsen, 1986). This analysis has been extended to the case
of orthorhombic media with a symmetry plane aligned with
a planar scattering interface (Roger, 1996). In more general
cases and with arbitrary recording geometries, it may be less
obvious which parameter combinations to use. The alternative
approach, and the one adopted in this paper, is to use linear in-
verse theory to evaluate the "best resolved" parameter. We use
the phrase "best resolved parameter" to refer to the combina-
tion of elastic moduli at an image point that is least dependent
on other combinations of moduli at the same image point. In
multiparameter inverse problems, the resolving power of an ex-
periment is made up of two parts. Spatial resolution quantifies
the blurring of the image in space, whereas the parameter res-
olution quantifies the linear interdependence of elastic moduli
and density. Both effects are described by a resolution operator
that will be discussed in this paper. A second feature of using
linear inverse theory is that it is possible to calculate estimates
of parameter uncertainty by mapping noise in the data, which
may be described as a data covariance matrix, into errors in
estimates of moduli.

Both the GRT and optimization approaches to the inversion
of seismic data for anisotropic parameters have been attempted
(de Hoop et al., 1994; Eaton and Stewart,1994; Burridge et al.,
1998). All these authors used a Born formulation for the for-
ward problem and all account for ill-posedness in the parame-
ter part of the problem by solving a reduced linear system via a
singular value decomposition. A significant difference between
the isotropic and anisotropic inversion cases is that most di-
rect isotropic multiparameter inverse methods yield algorithms
that can be described as migration followed by inversion (i.e.,
energy is positioned before an amplitude versus scattering an-
gle or offset relationship is inverted). Such an ordering is not
appropriate for the anisotropic case because the scattering re-
sponse of an elastic modulus such as C33 no longer depends on
scattering angle alone. It is a function of both scattering angle
and interface normal direction (or more correctly the gradient
in total traveltime). Burridge et al. (1998) discuss this prob-
lem in detail and formulate extensions to the GRT algorithm
of Miller et al. (1987) for anisotropic media. The algorithm,
which will be discussed further in the following sections, can
be separated into an AVA inversion for each migration dip,
followed by migration, the integration over dips—hence the
title of this paper.

In the remainder of this paper, we develop the anisotropic
GRT inversion theory, paying special attention to the calcula-
tion of the various Jacobians involved, and address the issues
of regularization and acquisition aperture compensation. We
then provide several synthetic examples illustrating the essen-
tial features of the method and draw general conclusions.

SOURCE -RECEIVER RAY GEOMETRY

Our intention in the following sections is to present a mathe-
matical description of our inversion procedure, emphasizing as-
pects such as recording geometries, ill-posedness, and aperture
limitation that arise in practical applications. The development
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here is for the 3-D case, and we will make use of asymptotic
theories applicable to high-frequency wave propagation and
inversion for the most singular constituents of the medium.
More complete descriptions of the ray-theory Green's function
calculations can be found in Kendall et al. (1992) and of the
inversion method in de Hoop et al. (1994) and Burridge et al.
(1998). In Tables 1 and 2, a glossary of symbols is provided.

We begin by giving ray-theoretical expressions for the propa-
gation of phase and amplitude in anisotropic media with elastic
moduli cijke (Voigt notation: C11, I, J = 1, ... , 6) and density p
(Shearer and Chapman, 1989; Kendall et al., 1992). Let r be
the arrival time and the associated polarization vector. We
use x to denote a point in R3 , subscripts denote components of
vectors and tensors, and 8 j denotes partial differentiation with
respect to the jth component of x. The polarization vectors are
assumed to be normalized so that = 1. Define the slowness
vector -y by

^y(x) = V r(x, x')	 (1)

along the ray originating at x'. Then -y and satisfy the "eigen-
value" equation

(Pik — CijkfYYYj )^k = 0 (at all x).	 (2)

Equation (2) constrains -y to lie on the sextic surface, A(x),
given by

det(p8ik — Cijkt)//YJ) = 0.	 (3)

By virtue of equation (1), equation (3) may be interpreted as
a nonlinear partial differential equation, the eikonal equation,
for r. The surface A(x) consists of three sheets, each of which

Table 1. Glossary of symbols: ray geometry.

In or near
Symbol	 equation number	 Meaning

s (11) Source position
x, y (11), (26) Scattering point,

image point
r (11) Receiver position
r (1) One-way traveltime
A (5) Scalar amplitude
y (1) Local slowness vector
V (7) Local phase velocity
a (8) Local phase direction
A (3) Local slowness surface
v (6) Local group velocity
X (9) Angle between group

and phase velocities
E (16) Wave front surface
.M (10) Amplitude Jacobian

(2) Local polarization vector
7l (4) Hamiltonian
or (10) KMAH index
H (10) Hilbert transform
T (15) Two-way traveltime
r (16) Gradient of two-way time
O (35) Migration wave vector
V (19) Migration dip, isochron

normal
9 (20) Scattering angle

(20) Azimuth

is a closed surface surrounding the origin. An individual sheet
is described by equation (2), leading to

?(x, -y) = 2(p — 4iCijkfYEYJ k) _ 0 ,	 (4)

where -y varies continuously and is the eigenvector belonging
to ry. The three sheets are commonly thought of as correspond-
ing to one quasi-compressional and two quasi-shear waves. H
denotes a Hamiltonian that generates the ray-tracing equations
(Kendall et al., 1992).

The scalar amplitudes A must satisfy the transport equation

aj(CijkC i^k(A) Z aet) = 0	(5)

for each mode of propagation.
For each mode the characteristic or group velocity v is nor-

mal to A(x) at y and satisfies

V . y = 1;	 v=	 (6)
y . Vryx rc-o

The normal or phase speed is given by

l71	 (7)

Table 2. Glossary of symbols: GRT.

In or near
Symbol equation number Meaning

aS (17) Surface of source locations
aR (17) Surface of receiver locations
{, } (45) Normals to {0S, aR}
Ns (58) Number of sources
N,. (58) Number of receivers
N (58) Number of measurements
N (17) Quasi midpoint
SZ (17) Quasi half offset
u (22) Scattered displacement filed
o (50) Data covariance
D (17) Scattering domain, support

of medium perturbation
c(i > (22) Perturbation in density

and stiffness
QC (50) Medium covariance
P (52) Medium parameter projection
b (l) (52) Perturbation in generic

medium parameters
w (22) Contrast-source radiation

patterns
Z (23) Weight in the forward GRT
A, Aa (25), (30) Normal matrix of

radiation patterns
7, ,7Q (27) Weight in the GRT inversion
h, ha (28), (33) Obliquity
E„ (56) Support in dip
EB (25) Support in scattering

angle for fixed dip
E,1, (25) Support in azimuth for fixed

dip and scattering angle
Ea (51) Support in phase directions

for fixed dip
C (57) Aperture normalization factor
lc (56) Resolution kernel
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The unit phase direction follows as

a = Vy.	 (8)

From equation (6), it then follows that

V = Ivlcos X,	 (9)

where X is the angle between v and y.
Ray-theoretical displacement amplitudes, satisfying the

transport equation and originating from a point force source
(a vibrator) at x', can be written in terms of a Jacobian M
describing the geometrical spreading along a ray:

A= 
4ir [p(x)p(x')M J 1 /2

Iv(x')IV(x) ax
^ ax

with	 M= 	 aql aqz x .	 (10)ay a^ y
aqt	 aqz X^

Here, (ql , q2) parametrize the rays originating from the source
and can be chosen to lie on the unit sphere (S 2 ), centered at x'.
In the presence of caustics, in the Green's tensor, the scalar am-
plitude will carry a phase shift r/2 to the power of the KMAH
index a (x; x'; y(x')) inducing the contribution from a Hilbert
transform H. Away from any intrinsic caustic associated with
the anisotropy of the medium, the index characterizes the local
curvature of the slowness surface sheet, where the index is 0 if
the surface is convex, 1 if the surface is saddle shaped, and 2 if
the surface is concave.

Source and receiver rays

To describe rays from a point in the subsurface to sources
and receivers, we introduce a notation in which I refers to any
quantity f associated with the source, and i refers to the same
quantity associated with the receiver. Thus, the geometrical
amplitudes to a source at s and a receiver at r will be written as

A(x) = A(x, s), 	 A(x) = A(r, x).	 (11)

According to equation (1), the slowness vectors at x are given
by

	y(x) = V r(x, s) , 	-(x) = V r(r, x),	 (12)

the associated phase directions are given by

(13)
171	 11

and the directional phase speeds [cf. equation (7)] are given by

v	171 	 I71	
(14)

We also define the two-way traveltime T and its gradient,

From equation (12), we see that

I'(r, x, s) = y(x) + y(x). (16)

The ray-geometrical quantities are illustrated in Figure 1:
{x I T (r, x, s) = t} is an isochron, E(r, t) = {x I r(r, x) = t} is
a wavefront, where t is time, whereas N and M denote the
modes propagation (N for the ray from source to scattering
point and M for the ray from scattering point to receiver).

Acquisition surface parametrization

The GRT inversion formulas derived below involve inte-
gration over double spheres surrounding the image point. In
practice, however, integration is carried out over surfaces asso-
ciated with the acquisition geometry. Hence, Jacobians for the
transformation of coordinates between the two domains must
be calculated. We shall show in a subsequent section how these
Jacobians involve ray-geometrical quantities.

Scattering data are generated for source and receiver loca-
tions, s and r, lying on surfaces (open patches) aS and 8R,
ideally surrounding a domain D c R 3 . To parametrize the do-
main as x aR, we employ the vectors (N, Il), N E R2 , St E lll;2 .
Then, with S2 denoting the unit sphere in 3-D,

s = s(N, SZ) E aS _ S2 , r = r(N, SZ) E aR ^ S2 .
(17)

[In fact (N, 1) define a chart of aS x 8R; we need at least two
charts, for both sources and receivers, to cover the full spheres.]
The parameter vector 1 is referred to as the index of the data.
A subset of data with common index is a gather. As we will
show, however, we will not have to sort data into gathers.

T (r, x, s) - rr (x, s) + r (r, x),
(15)	 FIG. 1. The source-receiver ray geometry. Here, N, M refer to

r(r, x, s) - V T (r, x, s).	 the modes (qP or qS) of propagation.
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856	 de Hoop et al.

As an example, let s and r lie in a plane. Then indexing in	 mation, can be written in the form of a GRT:
half-offset with SZ = (1/2)(r - s) fixed (common) yields	 f

s—N—R	 r=N+St,	 (18)	 u(t,r, ․)^ — J S"(t—T(r,x, s))
—	 =	 D

where N = (1/2)(s + r) denotes the midpoint. On the other
hand, common receiver gathers induce s = N, r = St, whereas
common source gathers correspond to s = 1, r = N. In the ideal
situation, two charts (N) define a domain 8N _ S 2 (through
stereographic projection) for any Sl fixed (common). All these
indexings are independent of the elastic properties of the sub-
surface.

However, for the purpose of GRT inversion, the natural in-
dexing will be image-point dependent. We will discuss the in-
dexing in scattering-angle/azimuth. Let v denote the migration
dip at image point x E D, i.e.,

v(r, x, s) = Irl - 1 r;	 (19)

the scattering angle 0 and azimuth f are then defined through

cos 8 = a • a,	 ' = third Euler angle around v
(20)

Note that v E S2 and (0, i) E S2 . Then v replaces the role of
N and (0, r) replaces the role of Cl. Our key constraint is that
N must map v uniquely on the sphere S 2 for any fixed Cl.

The various transformations on S 2 x SZ are summarized in
Table 3.

GENERALIZED RADON TRANSFORMATIONS

In the remainder of the paper, we exclude the occurrence
of rays originating in the scattering domain, traveling in the
background medium, and grazing at 8R or 0S. Also, we assume
that 8S and 8R cannot be connected by a single ray traveling
through the scattering domain (then the migration dip would
not be defined). In principle, multipathing in the background
can be accounted for, in which case the integrations over dip
and scattering angles are inseparable (D.-J. Smit, personal com-
munication, 1996).

First, we will write the direct scattering problem in the form
of a GRT. Second, for y in the neighborhood of x, using
Beylkin's (1985) analysis of this transform,

fS2

 [I + O(IX _ Yl)]8 ,, (V
 .  (y_x)+O(Ix—y12))dv

= —87r 28(y — x) + smoother terms, 	 (21)

where O(Ix - yj) and O(Ix - yl 2) as Ix - yl --^ 0 may depend
on v, we will derive the GRT inversion.

The forward transform

The scattered field u due to a contrast in medium parameters
c(l) with bounded support D c 1W 3 , in the ray-Born approxi-

x (w(r, x, s))T c(l) (x)Z(r, x, s) dx, (22)

where

	Z(r, x, s) = p(x)A(x)A(x).	 (23)

Here, p is the density of the background medium, A is the
(point-source) amplitude along the ray connected to the source
location, A is the (point-source) amplitude along the ray con-
nected to the receiver location, T (r, x, s) is the traveltime in
the background medium along the ray connecting the source
with the receiver via the scattering point x, and w represents
the radiation patterns of point contrast sources at the scattering
point in accordance with the stiffness-density parametrization
c. The radiation patterns are symmetrized dyadic products of
the four polarization and slowness vectors at the scattering
point, associated with the rays to the source and to the re-
ceiver [Burridge et al., 1998, equation (3.30)]. In our notation,
we have suppressed the occurrence of the Hilbert transforms.
We have arranged the tensors w and c in arrays. The integral
in equation (22) is taken over isochrons. We freely identify

T (x, N, Cl) = T (r, x, s), 	 w(x, N, Cl) = w(r, x, s),

or

T (x, a, a) = T (r, x, s), 	 w(x, a, a) = w(r, x, s),

through the respective coordinate transformations of Table 3.

The inverse transform over phase directions at the image point

The structure of the dual GRT transform (Beylkin, 1985),
associated with equation (22), follows as

(CM )(x , S) = 12 f 7(r , x, s)[A,(v(r, x, s))^ -1
8n aN

	x wu(T (r, x, s), r, s)
 a(a ' a)

 dN,	 (24)
8 (N, St) x

where v is the unit vector in the direction of VT [equa-
tion (19)], a is the normalized slowness vector associated with
the ray connected to the receiver, a is the normalized slowness
vector associated with the ray connected to the source, and

A(v)=f
  	 fE* (V,O) (Wwr)

 0(a,a) d/ d8 (25)
EB(P) 	 8(v, 0, ^)

unravels the radiation patterns at the image point (E denotes
support). The hypersurface

{(St, t) E aC x R> o I t = T(r(N, Cl), x, s(N, Cl))}

Table 3. Coordinate transformations in the GRT.

(a, a).r — (v , (9, ' i))x	 (v, (0, i))x - (s, r)
(a, a)x - (s, r)	 (s, r) -^ (N, Si)

is the so-called diffraction surface, and equation (24) describes
nothing other than the diffraction stack with weights ,7, which
are determined below.
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The inverse GRT (i.e. J) follows from composing the for-
ward with the dual transforms. We then obtain the condition,
at stationarity,

  

fN S"(T(r,ys) —T(r, x,s)),7(r,y,s)Z(r,x,s)

x a(v,0,V/)
 dN dn=S(y—x)dBdVa(N ' S2) y

+ smoother terms. 	 (26)

Using the homogeneity of S" and the plane-wave expansion of
the Dirac distribution equation (21), we find that

	,7(r, x, s) =
 h(x, v(r, x, s))

	(27)
Z(r, x, s)

with

h = 11' 1 3 .	 (28)

In the presence of caustics, the data u in equation (24) need be
replaced by u + i Hu and the real part of the integral has to be
taken (details can be found in de Hoop and Brandsberg-Dahl,
1998). Note that h acts as a natural taper on the measurements
for large scattering angles. The AVA inversion amounts now to
integrating (c( 1))(x, St) over St to yield the elastic parameters,
but note that the inverse [A . (v)] -1 is essentially nested in the
integration over N or v (the migration).

Carrying out the AVA inversion simultaneously with the mi-
gration allows the integration in equation (24) followed by the
integration in equation (25) both to be directly carried out over
(a, a) with volume form da d&; note that s and r then follow
from the intersection of the rays with aS and aR, respectively.

The inverse transform over acquisition parameters
at the surface

It is possible to reformulate the inverse problem using the
coordinates naturally arising in the acquisition geometry, which
is the conventional approach to GRT inversion. We will distin-
guish this representation of the GRT from the previous one by
using super- and subscripts a. Then, the structure of the dual
GRT transform follows as

i f
(c(ti )(x, &1) ^	 J .J,(r, x, s)[AX(v(r, x, s))]

-t

g^ aN

	x wu(T (r, x, s), r, s) dN,	 (29)

with (v at x maps onto N)

Aa(v) =
	f EQ(N)

(wwT )Id0	 (30)

using plane-wave expansion equation (21) as before, we find
that

3(r x, s) = ha(x, v(r, x, s))	 (32)
Z(r, x, s)

where now

ha = IFI 
(a( )ft	

(33)

If we allow (N, SI) to be x dependent, we can set N = v and
f2 = (0, ,i). Then, equation (33) reduces to equation (28). This
corresponds precisely to indexing the measurements in com-
mon scattering-angle/azimuth gathers (which varies with image
point).

The integration over v or N should produce the same image
(singular support of the perturbation c ( l)) for each pair (9, V) or
Q. This redundancy, comparing those images, can be used to im-
prove the background velocity model by the method of differ-
ential semblance (or coherency) optimization (Carazzone and
Symes, 1991; Symes and Kern, 1994), residual curvature anal-
ysis (Liu, 1995), or by maximizing a similarity index (Chavent
& Jacewitz, 1995). Such an improvement captures part of the
truly nonlinear aspects of the seismic inverse problem.

Fourier analysis

To link the GRT approach to inversion/migration with
Fourier "f-k"  (w = 2rr f) migration, we use the one-sided
Fourier representation of the Dirac distribution to rewrite con-
dition (26):

exp[i co(T (r, y, s) — T (r, x, s))] J(r, y, s)
87C3 faN fR>O

x Z(r, x, s) aa(N ))  CO dco dN] dSt = S(y — x) dd di
>	 y

+ smoother terms. 	 (34)

We introduce the wave vector

O = wF E R3 at x,	 (35)

since, in the high-frequency approximation, the phase in equa-
tion (34) can be approximated according to

co(T (r, y, s) — T (r, x, s))	 (y — x)	 (36)

up to leading order. We carry out the mapping

((0, i/r) at x for v fixed map onto S2). Matching the condition
	 (w, v) -^ O;

[the counterpart of equation (26)], at stationarity, 	
the inverse mapping

8nz J9N
 6"(T (r, y, s) — T(r, x, s))J (r, y, s)

x T(r, x, s) dN] d1 = S(y — x) d1 + smoother terms,
(31)

w(8) _
Ir1 2

also appears in Stolt's formulation (Stolt, 1978). Then equa-
tion (34) can be written in the form
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1
---  f,3 exp[i O • (y — x)] ,7(r, y, s)Z(r, x, s)

x w2 a((0 ' v) d0
8(e) y

= 3(y — x) + smoother terms.	 (37)

It now follows from the Fourier representation of the Dirac
distribution that

	.7(r> x, s) = Z(r, x, s) 	((w, 
ii) x

'	 (38)

Note, however, that

1 a(e)
Z 	= Idet(r ave r a,2 r)^ =h	 (39)
w 8(w, v)

yields the previous result [equation (28)]. Condition (31) re-
sults, in a likewise manner, in

1 	1 a(e)
 I(40),7(r, x, s) = Z(r

,

 x, s) co 	 L
z a(^ N)

Here,

8(e))
 _ det(r 8N1r aNZr) =h va(N) ^'

(41)

which is Beylkin's original determinant (Beylkin, 1985). For the
computation of this determinant, note that in general, regular
sampling in v will cause irregular sampling in N and vice versa.

JACOBIANS

Transformation from phase directions to
source-receiver coordinates

We have

8(ä,&) _ 0(á,â) I 0(s, r)
	(42)

0(N, 1l) y 	0(s, r) y a(N, St) .

The Jacobian, with factorization (a does not depend on r and
a does not depend on s)

8(ä,à) 	_ a(a) a(a)
	(43)

a (s, r) y 	8(s) y 8(r) y '

is directly related to dynamic ray theory. In general, the factors
can be expressed in terms of the dynamic ray amplitudes be-
cause, like the amplitudes, they follow from a variation of the
anisotropic ray tracing equations [see equation (10)]. For the
source side,

a(sE) __	 1 	(44)
a(&) y 	162r2p(s)p(y)V (s)(V(1')) 3 (A(y'))2

as long as aS in the neighborhood of s coincides with the wave
front E(y, r(s, y)) originating at y. If this is not the case, we

have to correct for the ratio of the area on aS to the area
on the wave front E (y, r (s, y)) at s onto which it is mapped by
projection along the rays. This arises from the fact that OS is not
necessarily tangent to E(y, r(s, y)) at s. It amounts to dividing
the previous Jacobian by the Jacobian

a(s£) = (a(s) • ,Q(s))'	 (45)a (s)

where s£ denotes the coordinates on E(y, r(s, y)) intersecting
aS at s, and Q(s) = normal to aS at source. Note that a(s) is
the normal to the wavefront at s. Similar expressions hold for
the receiver side.

Transformation from phase directions to dip, scattering
angle, and azimuth

Under the transformation from phase directions to dip, scat-
tering angle, and azimuth, the volume form on S Z x SZ [cf.
equation (25)] transforms according to

8(ä,â) _ 	sin0

a(v,0, )	 1 + (I II5I/IrI 2)(tan X —tan X) sin B'
(46)

where

r=VT,	 cosX=n11•a, and cosX=n 11 •&
(47)

(see Appendix A). Here, ñ 1 and ñ 11 denote the normals to the
slowness surface at the scattering point projected in the az-
imuth plane i/(r.

Transformation from dip to midpoint at fixed half-offset

With equation (41), the Jacobian associated with the map-
ping v N can be expressed in terms of

det(r 8N1 F aN2 r) = r • (aNi r A 8N2 F),	 (48)

in which

aNi,2 r = (0N12s) . v + (a^'1,2r) . D,y.	 (49)

In principle, V and Dry can be computed by perturbing the
Hamilton system for ray tracing. For a homogeneous, isotropic
medium, the evaluation of this Jacobian is reviewed in Ap-
pendix B.

REGULARIZATION

The inversion of the A matrix in general requires a regular-
ization because some of its singular values may become very
small or even vanish (Campbell and Meyer, 1979). We consider
two approaches in our analysis. The first one is based on a sin-
gular value decomposition in the inversion process and can be
interpreted in terms of Bayesian statistics; the second one is
based on a straightforward parameter reduction.

In the Bayesian approach we introduce an a priori probabil-
ity distribution of allowable models with covariance matrix a,.
The prior model estimate is denoted as cP71 OC . Also, we introduce
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a likelihood distribution in the space of measured displace-
ments (scattered field) u with covariance o- (9,  /i ), constrained
to be diagonal. Assuming Gaussian statistics, equation (25) is
modified to

A.(v) =f	
(wau 1 wT )

fE0(v)*(v,0)
(50)

a(&, &) 	1X	 ddB+Q^
a(v, 8, *)

This matrix has the interpretation of reciprocal of the a poste-
riori multiparameter covariance matrix a for dip v. Note that
a^ 1 controls the shift of singular values. The square roots of
the elements of the diagonal of A.(v) are the standard devia-
tions of the solution to the AVA—amplitude versus scattering
angles—inverse problem at dip v. Let the generalized inverse
of the matrix A . (v) be denoted as ([A . (v)] -1 ), then the inver-
sion formula equation (24) is subject to the modification

[A (v)]-twu	 ([A (v)]-' ) 1W0,U- 1 U

1 	-1(1)1	 (51)
+ E.(v) I °c Cprior >

	E,(v)I =	
fE
	d(a,a" )̂̂ df d9

EB (v) 	*(v, 0) a(V ' 0, *)

In the absence of prior information, c or = 0, and the param-
eter resolution matrix for dip v is given by

([A.(v)^ r )n.(v),

whereas the sensitivity matrix follows from the mapping of data
covariances to a posteriori co-variance matrix a1 for dip v,

(6^)(v) = f
E,(v) fE, ( V,O) 

([A.(v)] -1 )w(.)a (9, *)(w(.))T

x ([A.(v)]-t)T 
8(v
0(a'a)

B) 
dVide.

Naturally, 6„ has to be estimated directly from the data in the
common dip domain.

Parameter reduction, on the other hand, independent of sta-
tistical considerations, can be represented by a projection ma-
trix P. Let

c01(x) = PT S (1) (x)	 (52)

such that S is contained in a µ-dimensional parameter space,
µ < 22. The technique of reparametrization provides another
tool to turn the inverse problem into a well-posed one. In all
the equations, we simply have to replace c (1) by 8 (1) and w by
Pw. Note that A reduces to the µ x p matrix

A(v)=f   f	 Pw (Pw) T d(a ' a" )̂̂ dV dB.
	9(v) 	 0(v, 0, *) .

(53)
In this way, the inversion can be restricted to certain symmetries
or predefined parameter combinations.

The exact relationship between S and c may be nonlinear,
such as the parametrization given by Thomsen (1986). As long
as the medium perturbation is small or weak, the projection
becomes a Jacobian

T
c(') (x) _ [	 a(`) 	1	 [s(t)(x),[(5 (1)() . . . , , 6 (1) (x)] T

and

8(c) 	( )
P =	 54

8(Sl..... 8^) ^(o)

where 5 (e) are the parameter values associated with the
(known) background medium and S (l) are the parameter values
associated with the (unknown) perturbation. Thus the single-
scattering theory can be linked with rock physics, for example,
with the aid of quasi-static differential effective medium theo-
ries. Such a representation is particularly useful if the perturba-
tions are localized to a subwavelength scale. Then specific rock
types can be mixed with variable concentrations to yield the
medium perturbation. A formula along those lines of reasoning
is presented in Appendix C.

APERTURE NORMALIZATION

An important procedure when including amplitudes in data
inversion is correcting for limited recording apertures. Differ-
ent elastic parameters (or combinations of parameters) have
different radiation patterns, and hence the effect of truncation
will vary between parameters. Similarly, in the case of attempt-
ing to map a single parameter in space, any spatial variation
in recording geometry will result in a variation in aperture
and hence inversion results. These aperture effects will cause a
degradation of the spatial resolution operator and have to be
compensated for, at least on the operator's diagonal.

Backsubstituting the forward modeling equation (22) into
the inversion formula (24), using the Fourier representation as
in equation (37) and integrating over St, leads to the resolution
operator equation

(c(t) )(Y) _ f (c (i) )(Y, S2)dst = J Re(Y , x)c(1) (x)dx,
sp	 D

(55)
where the resolution kernel follows as

Rc(Y , x) _— Re fE ,, 
[A (v)]-1 f

EOM fE*(V,O)
C-1

x I f  exP[i 0. (Y — x)]Iel 2 dleI}	 (56)
I8

x w(Y)(w(x)) T 0(a, a) d* dB dv.
8(v, 9, Mfr) y

In the standard analysis, E„ = S 2 , E 181 = R>0 , and EB x E,,, = S2 ,
whereas C = 8n 3 . In the finite aperture analysis, we normalize
with the volume of the spectral support instead:

C=E„ f	 IOI2dIeI.	 (57)
I E l81 (9, )
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In this normalization, the diagonal Rc  (y, y) = I. Note, how-
ever, that C is a function of scattering angle and azimuth, and
hence the shape of the kernel function will be affected. In the
inversion algorithm, the normalization will be accounted for in
the density J [cf. equation (27)], namely, by replacing h with
(8,x3 /C)h.

DISCRETIZATION

Finally, we discuss the discretization equations (24) and (25).
As fundamental variables we will use the phase directions
(a, a) discretized on the double spheres S 2 x S2 according
to quasi-Monte Carlo (de Hoop and Spencer, 1996) sampling
(a, a^ ). Note that for a fixed image point x, the phase di-
rections define source and receiver positions s ; = s(ä) and
r; =r(& 1). Let i E {1, ... , Ns }, j E {1, ... , N,}, N =Ns +Nr .
The weighted diffraction stack in accordance with equa-
tion (52) then follows as

2
(b(tl)(x) '= N E.(r3 , x, s^ )[A (v(ri, x,

I,'

xPw(x,a,,ci^)u(T(r; ,x,s,),r1 ,s,). (58)

[Note that the full solid angle is 4n; thus, the average sampling
interval on the (a, a) double spheres is (4n)2/N.] On the other
hand,

A(v) ^ N(v)
 T"PW(X'6z"  a1)(Pw(x , al,

(59)
Here N(v) is the number of data points that contribute to the
integral for each v. [Note that the full solid angle is 4n; thus,
the average sampling interval on the (0, ') sphere is 4n/N(v).]

Naturally, we have to introduce v bins to make the quantity
N(v) numerically meaningful. To avoid any directional bias,
we choose the vertices of bins distributed similarly to equally
electrically charged particles on the sphere. The prime in the
summation of equation (59) indicates that only (a,, a ; ) pairs
contribute that fall in the v bin. In this respect, none of the
indexings introduced in the previous sections require any data
sorting.

The density J contains the so-called "obliquity factor" h,
encountered in any true-amplitude migration. This function is
dependent on scattering angle, azimuth, and migration dip, and
in most cases will need to be tabulated in advance. Also A can
be tabulated. Although in the worst situation, tabulation of
A could result in unmanageably large storage, in cases where
recording geometry and background are only slowly varying,
the tables become sparse enough.

EXAMPLES

In this section, we present a number of examples each
designed to illustrate one aspect of our inversion/migration
method with a view to determining the resolving power of seis-
mic amplitude data.

The accuracy of the quadrature

We illustrate the accuracy of our summations or weighted
diffraction stacks by computing A and the diagonal of the

resolution kernel for a range of apertures. We note that the
computer implementation of the theory given in the previous
sections can be built around conventional Kirchhoff-type mi-
gration software. In the first example, we reconstruct density
using a finite aperture dataset and then carry out the analytic
normalization associated with the diagonal of the resolution
kernel. Datasets with limited scattering angles (0) were drawn
from a "complete" dataset with measurements taken at 10 000
Hammersley-point distributed source-receiver pairs (de Hoop
and Spencer, 1996, who showed that Hammersley points pro-
duce accurate discretizations of the GRT). Each subset of data
preserved a full range of scattering azimuths and migration
dips, and involved at most 100 sources and 100 receivers. The
results for the A computation are shown in Figure 2 and for
the full reconstruction of density in Table 4. We note that the
estimates of density change by a factor of two as the scattering
angle aperture is increased from 22° to 180°. The final column
of Table 4 shows the results of correcting the inversions using
the maximum scattering angle. We have been able to recover
the "correct" result to within 1% at all apertures.

Table 4. Tests of limiting scattering angles to within the range
0 E [0, 9.]. A full v aperture was used with a point-density
perturbation. The correct answer is 1.6025 x 10 -10 m. The
second column shows numerical results from a limited aperture
evaluation of equation (58). The third column shows the results
of correcting column 2 with the analytic expression for aperture
equation (57).

Bmax	 (PWIW)/10-
10	 (87x3 /C)(p(1))/10

-10

g n 1.594 1.594
8 n 2.308 1.584

g 7r 2.864 1.588

A7r 2.977 1.586

s 7r 3.044 1.587

2 rz 3.282 1.589

1 7r 3.518 1.585

4.50

	

4.00	
— 2 t(1-cos-(0))/3

	3.50 	 ---- Hammersley

3.00

2.50

G 
2.00

1.50

1.00

0.50

0.00
0.00	 0.50	 1.00	 1.50	 2.00	 2.50	 3.00	 3.50

Maximum Scattering Angle

FIG. 2. The theoretical values of A for the case of a density
inversion with a homogeneous background (solid line) com-
pared with those calculated using Hammersley points (dashed
line).
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The accuracy of the linearization assumption

The accuracy of the linearized scattering assumption will be
analyzed by comparing the linearized (Born) plane-wave coef-
ficients following from equation (22) (de Hoop and Bleistein,
1997) with the true plane-wave reflection coefficients for a
planar, horizontal interface. First, we will consider the contri-
butions to the linearized reflection coefficient from individual
components of the stiffness tensor. In Figure 3, characteristic
AVA patterns in VTI media (transverse isotropy with verti-
cal axis of symmetry) due to 10% discontinuities in individual
moduli calculated using the Born approximation are presented
(the 3-direction is the vertical). The sensitivities of the differ-
ent moduli with angle are rather different: for example, the
response due to a perturbation in C 33 controlling the vertical
qP velocity shows up at small scattering angles, whereas a per-
turbation in C11 controlling the horizontal qP velocity becomes
only measurable at large angles. Also, note that the scattering
response due to a C55 perturbation is minus twice the scatter-
ing response due to a C13 perturbation. We will illustrate in
the coming examples that the linearization assumption breaks
down for large angles, and hence the determination of horizon-
tal medium velocities across horizontal interfaces, for example,
may be dubious.

Second, the linearized and full qP-qP AVA responses for
a shale/salt interface and a shale/sand interface are shown in
Figure 4. The linearizations have been normalized so as to
agree with the full reflection coefficient at normal incidence.
The elastic moduli of the media are given in Table 5. In each
case, the linearized version is an adequate approximation to
the full plane-wave coefficient out to angles of between 45°
and 60°. Observe that the Born approximation breaks down
completely near the critical angle. Although it is difficult to

Table 5. Elastic moduli of the materials used for the reflection
coefficient calculations in Figure 4. For simplicity, a density of
2300 kg m 3 was used throughout.

Stiffness (GPa) Shale Sand Salt

C 11 16.58 14.20 40.01
C33 12.96 14.20 40.01
C5 5 2.26 5.38 13.29
C 13 6.04 3.44 13.43

0.04

0.03

qy 0.02

p 0.01
U

0.00
OU -0.01

-0.02
G)
04 -0.03

-0.04

- Density

lI 

---- C l3

	-0.05 1	
1	 1	 I	 1	 u

	0.00	 0.20	 0.40	 0.60	 0.80	 1.00

Angle (rad)

FIG. 3. Amplitude versus angle responses for individual moduli
calculated using linearized plane-wave scattering theory.

generalize from only a few examples, these angles would ap-
pear to be the maximum ones that are likely to be usable in
linear GRT inversions. To go beyond them requires nonlinear
extension of the theory (de Hoop and Bleistein, 1997).

Parameter resolution and covariance

In this subsection, we consider a synthetic example that il-
lustrates the usefulness of the eigenvector decomposition in
determining properly resolved parameter combinations. This
type of analysis, in the spirit of Backus and Gilbert (1968), is
essential in answering questions about the information con-
tent of various datasets and the errors in the inversions due to
amplitude errors in the data.

The problem chosen was that of recovering discontinuities
in elastic parameters at a single horizontal interface using an
isotropic background and P-P scattered data. The data input
to the inversion constitute a common image point, single v
gather in three dimensions. The source and receiver locations
were chosen to give v vertical, as was the interface normal.

0.6

0.4

0.2 + +
+ + +

0

-0.2

-0.4

-0.6

-0.6
0	 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	 1

Angle of Incidence (red)

0.01

-0.0:

o.

O

0

IZ -0.:	 +
-0.2!

-0.31
0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1

Angle of Incidence (rad)

FIG. 4. Linearized and full plane-wave reflection coefficients
for a shale/salt (top) and a shale/sand (bottom) interface as a
function of angle of incidence. The solid lines represent the full
plane-wave reflection coefficients and the + symbols represent
linearized estimates made using the Born approximation.
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We examined properties of the A radiation pattern matrix
when all 22 parameters corresponding to elastic moduli and
density are included in the inversion. The (singular value) spec-
trum of A is shown in Figure 5a along with the diagonal ele-
ments of the covariance matrix in Figure 5b. The first point to
note in Figure 5 is that the nine largest eigenvalues range over
three orders of magnitude, following which eigenvalues drop
dramatically. Of these nine largest eigenvalues the first four are
significantly greater than the last five, which therefore are un-
likely to be recovered in practice. The eigenvector correspond-
ing to the largest eigenvalue contains a number of interesting
features (Figure 6). In what follows, we call this the primary
eigenvector. Notice first that it is nonzero only in those param-
eters that occur in symmetries up to orthorhombic, and that it
is symmetric with respect to interchange of the horizontal 1 and
2 axes. C1z) , C66) , and C22) control the in-plane modes for prop-
agation in the horizontal plane in the reconstructed medium.
The other components of the primary parameter combination
are the average of true properties in the 1 and 2 directions, and
thus induce azimuthal symmetry. C. M. Sayers (personal com-
munication, 1996) has noticed that apart from the inclusion of
density, the primary parameter combination reflects perturba-
tions to the bulk modulus of the medium. It may therefore be
helpful in distinguishing between gas-and oil-saturated media,
relevant in particular for time-lapse seismic experiments.

We remark that perturbations to C 13 and C55 occur as the
combination (Ci s — 2Css^) and that C and C44 occur in sim-
ilar proportions. The Born scattering coefficients (w) for C55

and C13 ) contain the products y3 and '3y1^3&1, respec-
tively. In an isotropic background, these have the same angu-
lar dependencies and thus produce identical AVA responses
for given dip. Even in anisotropic backgrounds, the differences
in directions between y and for qP waves are unlikely to be
large enough to allow C13 ) and C55) to be determined separately.
The differing weightings to the two moduli is affected by their
multiplicity in the elasticity tensor.

C11	 C22	 C33	 C44	 C55 C66 D
Parameter

FIG. 6. The eigenvector corresponding to the largest eigen-
value of the 22 parameter system.

FIG. 5. The spectrum of A (a) together with the diagonal elements of the covariance matrix (b) for the full 22
parameter inversion/migration. In this and subsequent figures elastic moduli are upper triangular ordered (i.e.,
C11, C12. • • • . C22, • • • , C66). Density (D) is the final parameter whenever it is used. The line in (a) indicates the
truncation level used to generate the resolution matrix in Figure 7.
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The primary eigenvector has a significant projection on the
density axis, reflecting the fact that it is impedance rather than
moduli contrasts which control the amplitude versus angle be-
havior. Figure 7 shows the resolution matrix formed by zero-
ing all eigenvalues with a magnitude of less than 0.1 times the
primary eigenvalue. The leading diagonal quantifies the reso-
lution of a parameter, and the trade-off between parameters
can be determined from the individual rows (or columns) of
this matrix, which has rank 4 only.

The diagonal elements of the covariance matrix shown in
Figure 5b may be interpreted as relating the variance of input
data to the variance in parameter estimates. Those parameters

that show poor resolution show small variance since they are
damped in the inversion. The relatively "free" parameter C33
shows a covariance of approximately 10 -2 , indicating that a
unit standard deviation in the input data maps to 10% standard
deviation in the inversion estimate.

To simplify the study of eigenvectors other than the primary,
we reduced the system to the nine moduli and density that de-
fine orthorhombic media. The spectrum of A corresponding
to this reduced system is shown in Figure 8, and the eigenvec-
tors corresponding with the six most significant eigenvalues
are presented in Figures 9 and 10. In the reduced system, there

FIG. 7. The resolution matrix for the full 22-parameter inver-
sion formed by zeroing all eigenvalues with a magnitude of less
than 0.1 times the primary eigenvalue.

a) 1o,

10`

103

102

10'

iCE
o,
'w 10°

10'

10 2

10 3

FIG. 9. The first three eigenvectors of the nine-parameter or-
thorhombic system. The eigenvalue corresponding to each
eigenvector can be seen in the top left-hand corner of each
eigenvector plot.

b)^x10 3

6	 ...'

5 ._

4	....

2
w`

3	 ....

2	 ....

1n 4 1	1
2	 4	 6	 8	 611 C12 C13 C22 C23 C33 C44 C55 C66
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Fig. 8. The spectrum of A (a) together with the diagonal elements of the covariance matrix (b) for the reduced
nine parameter system.
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are only six eigenvalues greater than 10 -3 times the maximum
eigenvalue.

The primary eigenvector in the reduced system is essen-
tially the same as in the case of the full 22 parameter system
(see Figure 6). The second eigenvector is interesting in that
it is antisymmetric with respect to interchange of the 1 and
2 axes (Figure 9). Thus, linear combinations of the primary
eigenvector, which is symmetric with respect to interchange of
the 1 and 2 axes, and the second eigenvector serve to define
a "best resolved parameter combination" and "its azimuthal
variation."

The determination of the vertical qP (C33) discontinuity be-
comes possible when the third eigenvector is included. Eigen-
vector 3 (Figure 9) is similar to the first except that the sign
of C31) is reversed. Thus, the difference of eigenvector 1 and 3
isolates C3), whereas the sum of 1 and 3 isolates the param-
eters (C18 1 - 2Cssl ) and (C23) - 2C). These, in turn, may be
separated using eigenvector 2.

Eigenvalues 4, 5, and 6 are more than a factor of 10 smaller
than eigenvector 3, but are interesting nevertheless. The eigen-
vector corresponding to the fourth largest eigenvalue is shown
in Figure 10. It is the first to show that the qP wave excites both
shear polarizations (Clz^ , C66^) that takes place in the presence
of general anisotropy. Here, we note that its affects on AVA
are due to the combination (C12) + 2C66) ). Eigenvectors 5 and
6 contain linear combinations of the two horizontal velocity
parameters Cii) and C22) and, taken together, isolate these two
velocities individually.

One may wonder how the reconstructed linear parameter
combinations relate to the nonlinear combinations appearing
in the more conventional AVA analysis. The latter analysis pro-
vides an expansion with scattering angle/azimuth, the coeffi-
cients of which are particular combinations of moduli. Those
combinations can be linearized in perturbations of stiffness,
yielding vectors that span a linear subspace of medium param-
eters. Loosely speaking, this subspace appears to be reachable
by our GRT inversion approach. Note in this respect that with

the GRT, we combine (integrate) reflection data over a range
of scattering angles/azimuths.

We have carried out similar tests using qP waves in aniso-
tropic backgrounds and different dips. In principle, an isotropic
background makes only a small difference. Its effects on the
radiation pattern matrix are confined to a lack of parallelism
of the polarization and slowness vectors plus changes to phase
angle at the image point. The effect of anisotropy on qS waves,
though, will be large since their polarizations can vary more
strongly.

Varying migration dip has two important effects. For a
given sampling of the scattering angle sphere and assuming
an isotropic background, the parameter combinations that are
determined from a gather rotate with the migration dip v. As
an example, in Figure 11 the resolution matrix is shown for a
configuration in which the dip is 45° and which is recorded with
angles of incidence of up to 45° with respect to v. Note how the
problem becomes symmetrical with respect to interchange of
the 1 and 3 axes while the 1-2 symmetries and antisymmetries
discussed above are destroyed. The rank of the system is not
changed by the rotation. A second effect of introducing migra-
tion dip is that, for a given recording geometry, the range of
scattering angles reached is dip dependent. For example, in an
isotropic background at a dip of 45° (in plane), the maximum
scattering angle associated with a recording at the surface is 90°.
Constraining the maximum recording angle at the image point
to 60° the maximum scattering angle reduces to 30°. In this
case, the rank of the system and hence resolution is seriously
degraded. In Figure 12, the spectrum of A using this restricted
aperture is shown. For all practical purposes, the rank of the
system is reduced to 1, and all that can be determined is an
impedance associated with propagation at approximately 45°.

Spatial resolution

In this subsection, we carry out more complete tests designed
to show the antialiasing benefits of GRT and quasi-Monte
Carlo sampling methods, and the improved spatial resolution
that can be obtained at the expense of degrading parameter

FIG. 10. The second 3 eigenvectors of the 9 parameter or-
thorhombic system. The eigenvalue corresponding to each
eigenvector can be seen in the top left-hand corner of each
eigenvector plot.

FIG. 11. The resolution matrix of the full 22-parameter system
using a migration dip of 45° and incident angles of up of 45°.
Compare Figure 7.
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resolution. The tests are illustrated in Figures 13-16 and will
be explained below. Comparisons of GRT inversions with
Kirchhoff migrations in the isotropic case have been given pre-
viously. Dillon (1990) presents one such comparison and points
out the antialiasing properties of the GRT operator. Similar ar-
guments apply in the anisotropic case.

We considered a 3500-m recording aperture and calculated
seismograms for a point perturbation to C33 at a depth of
1000 m, and carried out the inversion. To illustrate the an-
tialiasing effects of the GRT, we used a line, centered over the
scatterer, of 251 coincident sources and receivers having a 10-m
spacing. Images both with and without the inclusion of radia-
tion pattern in the inversion are presented in Figure 13. Note
how strongly the scattering amplitudes affect the edge effect
seen in Figure 13. (Note also that, since the data are zero off-
set, the obliquity factor is a constant and does not affect these
results.)

The spatial resolution operator contains the pseudoinverse
of A and, hence, there is a relationship between parameter
resolution and spatial resolution. The next example illustrates
this relationship, again for the case of a point perturbation
to C3 3 . Synthetic data were generated for 2000 Hammersley
distributed source-receiver pairs within horizontal distances
of 1000 m from a scatterer at 1000 m depth. Figure 14 shows
a comparison of the effects of different eigenvalue truncation
levels on the image. The higher truncation level (Figure 14b)
improves the migration impulse response, although it has the
effect of degrading parameter resolution.

In the next examples, we have carried out full multipa-
rameter inversions of two different synthetic datasets. The
first dataset is the scattered field due to two point perturba-

tions: C33 at a depth of 900 m and C11 at a depth of 1000 m
(common horizontal coordinate of 1250 m). Results of the
inversion of this dataset are shown in Figure 15a (C33) and
Figure 15b (C11). Our algorithm provides automatically such
a multiple set of images. In the second dataset, the point
perturbation to C 1 1 was replaced by a point perturbation to
CT = [C11 + C33 + 2(C13 + 2C55 )]/4, an approximation to the
45° qP-wave slowness. The result of inverting the second
dataset for Cl is given in Figure 15c. In Figure 15, the gray
scale covers the same range of absolute amplitudes and a full
scattering aperture was synthesized. Note that the separation
of parameters from both datasets is satisfactory. The imperfec-
tions in the C 33 image (Figure 15a) are caused by using quasi—
Monte Carlo source-receiver locations optimized for the in-
version at a depth of 1000 m, rather than the actual depth of
900 m. As a final demonstration of improved spatial resolution,
a 3-D inversion was carried out for the model seen in Figure 16.
Hammersley-distributed sources and receivers were used and
a single parameter, density, was perturbed. Elastic qP-wave
data were generated over the structure using a Kirchhoff inte-
gration technique. The improvements obtained using the full
GRT algorithm illustrate that elastic data should be treated
as such. Note particularly how the uniform density contrast
at the "dome" is properly determined using a GRT inversion
(Figure 16A) but deteriorates when the AVA factors are ig-
nored (Figure 16B).

CONCLUSIONS

In this paper, we have presented a method for carrying
out inversion/migration in anisotropic media using the gen-
eralized Radon transform (GRT). Practical aspects, such as

FIG. 12. The eigenvalue spectrum of the 22-parameter system obtained using a dip of 45°. Propagation angles of
up to 60° from the vertical were used corresponding to a maximum scattering angle of 30°. Compare Figure 5.
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transformation of variables, regularization, finite aperture nor-
malization, and resolution have been addressed and a treat-
ment proposed. The main conclusions drawn from the synthetic
examples are the following.

Better seismic images can be produced when data ampli-
tudes are honored—even if the interpretation of amplitudes in
the image is not of primary concern. Our GRT accomplishes
this. The angular radiation patterns of the contrast sources in-
fluence the spatial resolution of the image, and should not be
ignored. Rephrasing this statement, it is widely accepted that a
proper amplitude versus scattering Angles (AVA) analysis re-
quires migration; on the other hand, the resolution of an image
will be enhanced by proper AVA compensation. Spatial and
parameter resolution are essentially coupled to one another.

We have shown how optimal parameter combinations that
produce the best possible seismic image may be obtained. Such
an image may show structure that would otherwise remain
hidden.

We have shown how varying the eigenvalue truncation cut-
off level controls the trade-off between both spatial and param-

eter resolutions and uncertainty. In practice, decisions about an
appropriate cut-off level will require a careful analysis of the
spectrum and trade-off. We anticipate that in many problems
there will be clear "knees" in trade-off curves that will guide
this choice. We note that once the truncation level is chosen,
estimates of error and spatial resolution at each image point
are available.

Proper numerical methods are required for the correct eval-
uation of all the integrals in the calculation of the GRT, its
inverse, and its resolution properties. Quasi-Monte Carlo sam-
pling of the rays originating from the image point can be shown
to optimize numerical accuracy for a given number of source-
receiver combinations (de Hoop and Spencer, 1996). In addi-
tion, quasi-Monte Carlo sampling has the benefit of suppress-
ing coherent noise commonly present in measurements, and
has enabled us to carry out our calculations with a minimum
of computational effort. However, the results of this paper do
not rely on quasi-Monte Carlo sampling.

In our examples, we focussed on qP-wave scattering.
Throughout the paper, the methods we developed included
any combination of modes of propagation. In particular, the
analysis applies to the case of singly mode-converted phases

FIG. 13. GRT inversion/migration of a dataset from a C3] point
perturbation, with scattering amplitude and obliquity correc-
tions (a) and without scattering amplitude and obliquity cor-
rections (b).

FIG. 14. C3) reconstruction as in the previous figure, using
eigenvalue truncation levels of 10 - (a) and 10-1 (b).
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FIG. 15. Multiparameter inve^r^sions yielding C33 1 (A), Cil) (B,
first dataset) and C. (C, second dataset).

such as qP-qSV waves, which are now increasingly successfully
observed in an ocean-bottom acquisition environment.

Naturally, there are limits to the use of linearized inverse
theories in analyzing resolution. Wide-angle seismic acquisi-
tion provides a new way of recovering more information on
the rock properties in the subsurface, but requires a nonlinear
analysis in the vicinity of reflecting interfaces. An analysis of
this kind, based on conormal distributions, has been carried
out (de Hoop and Bleistein, 1997).

We have excluded the occurrence of instantaneous and
macroscopic caustics in the analysis contained in this paper,
an issue that has been resolved in the context of GRTs (de
Hoop and Brandsberg-Dahl, 1998).

Finally, we remark that an accurate background medium is
essential for the GRT inversion and resolution analysis. There-
fore, migration velocity analysis methods will need to be de-
veloped which correctly predict traveltimes and amplitudes in
realistic anisotropic media.
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FIG. 16. A line of 3-D inversions of elastic data for density
(French model) including (A) and excluding (B) radiation pat-
tern corrections.
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where [cf. equation (19)]

A= i ;,	 µ=	 .	 (A-2)

Further, we introduce the unit vector

_	 (aAa)AV=
sin 9

(a•v)a-(a•v)a
sin 9

(A-6)
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APPENDIX A

O(ix, &)/8(v, 0, ,0) IN GENERAL MEDIA

We have	 In view of equation (A-3), we have the constraint

11=  A(a, à)ä + µ(a, a)a,	 (A-1)
	

A2 +µ2 +2A,µcos9 = 1.	 (A-5)

Note that

a E S2 ,	 a E S2 , and v E S 2 .	 (A-3)

We introduce the angle 0 between the unite phase directions
as

cos 9 = a • a,	 9 E [0, Jr).	 (A-4)

[Note that (a • v) = A + it cos 9 while (a • v) = A cos 0 + µ.] The
vectors a, «, v, and C lie in the same plane; also C 1 v. Note
that for v fixed, C E S 1 . We shall analyse the transformation
(a, a) -^ (v, 9, i/i), where Ali denotes the angular displacement
(azimuth) of C, and evaluate the associated Jacobian.

First, let a and a vary in their own plane [(1, 3) coordinates,
i.e., the plane they initially span] keeping >11r fixed. The associ-
ated infinitesimal angular displacements of the relevant vectors
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Anisotropic Inversion/Migration 	 869

will be denoted by the superscript". Then, in terms of angles
u, v in a fixed reference frame, we write

	( sin u\	 cos u
a=	 0	 ,	 aua=	 0

	cos u)	
(

—sin u
)

(A-7)

( sin v	 cos v
a=	 0	 ,	 a„a=	 0

	cos v)	 —sin v

while A=X(u, v) and µ=µ(u, v). Note that

v—u=6.	 (A-8)

In general, from equations (A-1) and (A-7), it follows that for
in-plane variations,

dv = (a„k du + aV A dv)& + a.a„a du

+ (au µ du + a„µ dv)a + µa„a dv. (A-9)

We introduce the unit vector [cf. equation (A-5)]

v' = A(u, v)aua + µ(u, v)a„a. 	 (A-10)

Note that

au & L a,	 aya.l a,	 v' _L v,	 (A-11)

while a, 8„ a, a, a„&, v, and v' all lie in the same plane.
Since v • dv = 0, the angular displacement dv 11 of v is given

by

dv" = v' • dv = [x 2 + A(au µ)(au a • a)

+ µ(au a,)(a • a„a) + Aµ(ä • a„&)] du

+ [A (aua . a , &) + A(av[ ,,)(aua . a)

	+ µ(avA)(a . ava) + t2 ] dv.	 (A-12)

On the other hand, using equation (A-8),

dO = dv — du.	 (A-13)

In our notation, the angular displacement of the phase direc-
tions are d& = du and da&& = dv. Combining equations (A-12)
and (A-13), using equation (A-7) leads to the Jacobian

Using equation (A-5), this results in

((a a) = 1 + Aµ [(au + av ) log (! )] sin 0. (A-15)u	 u )

Secondly, consider the case where a and a are varied per-
pendicular to the plane they initially span. The associated in-
finitesimal angular displacements of the relevant vectors will
be denoted by the superscript'. The out-of-plane variations,
keeping 0 fixed, imply

d^,	 dv — 1 .	 (A-16)

0

To evaluate the out-of-plane Jacobian, it will be convenient to
introduce angles 6, e according to

cos B = a • v,	 cos B = a • v.	 (A-17)

Note that

0+0=0.	 (A-18)

Then [cf. equation (A-6)],

cos 0a — cos 9a
(A-19)sin 0

The sine rule applied to the triangle made up of the three
vectors Ala, µ&, and v gives

sing	 sin B
	_  n = sin 8.	 (A-20)

ii

Substituting equation (A-20) into equation (A-1) yields

	v=
 sin 9a + sin B& 	(A-21)

•

sin 9
The angular displacement of v, using constraint (A-16), is then
given by

	dv' =
 sin 8 da -L + sin Oda'

	(A-22)
sin 0

On the other hand, from equation (A-19) directly follows that

	d  1 _ cos 0 day- — cos B dal
	(A-23 ) 0	 (	 )

Note that dCl = di/i. Combining equations (A-22) and (A-23)
yieldsa(v1 , _ 1 )  — 1 I sing	 sing _ 1

a (al , & -L ) — sin g — cos 0 cos 0 ^ sin 0 . (A-24)

a(vi, 9) 	A 2 + (A8µ — (au k.)µ) sin 0 + Aµ cos 0 µ2 + (1v3„N, — (a„A)µ) sin 0 + XA cos 0
0(u, v)	 —1	 1

= A2 + t2 + 2,lµ cos 0 + [A(0 µ + 8) — (a,A + a„A)µ] sin 6.	 (A-14)
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de Hoop et al.

Putting equations (A-15) and (A-24) together, we get

a(v, 9, lLr)	 8(v11,9) 8(v', -'- )

3(a, a)	 a(all, all) a(a1 , al )

1+X/µ
[

(au +a,)lo
\\\ JJJ

gl	 I J sin9_ 	(A-25)
sin 9

Thus,

8(a, a) -	 sin 0

a(v, 0, *) _ 
1 + Xµ 

[

(au + a„) log ( ) ] sin g
(A-26)

In this final expression, we can substitute [cf. equation (A-2)]

= V (a(u))
	(A-27)

X	 1?'1	 V(a(v))'

where V denotes the phase velocity as before, and so

(au + 8) log( ) = — au logl`YI + aU loglryl. (A -28)

Here,

au log lyI = airy  I = tan k with cos X = h 1l .a,

(A-29)

a„ to 	aj YI = tan	 with cos = n a.

(A-30)

Note that n il , h are determined by fir; we have X = X (i) and
X =X(lG).

APPENDIX B
a(v)/a(N) IN AN ISOTROPIC MEDIUM

	

In the main text of this paper, Beylkin's determinant was 	 In a likewise manner, we find that
expressed as [cf. equation (48)] 	— (	 )a]

B-8
det(F aN1 r aN2 r) = I' • (aN1 F A aN2 I`).	 (B-1)	 aTJ'Y = —	 IRic

Substituting equation (16) (r = y + y) into equation (B-1)	 Now, we consider the planar acquisition geometry [cf. equa-
yields a separation into source and receiver ray geometry, 	 tion (18)],

det(F aN1 r aN2 r) = (=y +'y) • (aNl ry A aN2 'y
+ aNl y A aN2 y + aN1 ' A aN2 y + 8N1 y A aN2 -y)

(B-2)

Let the background medium be homogeneous. Then, the rays
connecting the source at s and the receiver at r with the image
pointy coincide with the vectors

	R=y—s,	 R=y—r,	 (B-3)

respectively. In an isotropic medium, the phase and group di-
rections coincide, hence [cf. equation (13)]

R	 R-	=
RI ,
	 a = -- .	 (B-4)

Also, in equation (14),

	V 	 = V = c	 (B-5)

s3 = 0;	 S1,2 = Ni,2 — Qi,2, 	 0N12 =	 (B
r3 = 0;	 r1,2 = N1,2 + Qi,2,	 0N1 2 r = i1,2•

Then, with equations (B-7) and (B-8), we get

[i1,2 - (a ' i1,2)a]aNi 2 ^1 = —	 IRIc
(B-b)

aNl 2^ = - [i
1,2 - (a ' ii,2)a]

Ike
Observe that

li1,2 — (a • i1,2)al = [1 — (a • i1,2)2] t/2 ,

1 11,2 - (a . Z1,2)al = [1 - (a 11,2)2]1/2,

while

is angle independent.
In order to evaluate aNl y, we carry out some side calcula-

tions [see also equation (49)]. Let {il , i2 , i3 } denote the three	 and
base vectors of a Cartesian reference frame. We have

[il - (a ' il)a] A [i2 - (a ' i2)a] = (a '

21E3 1 IRI = a, IR1 2 = as; [(y—s) . (y—s)] = —2(y—s)

hence,

ash IRI = — a • i3 .	 (B -6)

Using this result in differentiating ry = ca [cf. equation (8)],
we obtain

as ,y = — [ii — (a li )a] .	 (B-7)
IRIc

[ii - (a ' i1)a] A [i2 - (a ' i2)a] = (a ' i3)a.

We will substitute expressions (B-10) into equation (B-2).
Equation (B-2) splits into eight contributions. To show the
structure of each contribution, consider the one,

1 1 1
7 (aN A aN2 _')	

-3 IRI IR
x a • [it — (a • it)a] A [i2 — (a • i2)a], (B-11)

D
ow

nl
oa

de
d 

12
/1

8/
20

 to
 1

28
.4

2.
23

7.
18

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
s:

//l
ib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/1
.1

44
45

95



Anisotropic Inversion/Migration 	 871

with	 det(a it - (a it)& i2 - (a i2)a)

a • [it - (a . it)a] A [i2 - (a • i2)a] 	 _ (a • a) det(a it - la . it)a) i2 - (a - i2)a)
= det(a it - (a • it)a i2 - (a • i2)a).	 _ (a • a)(a • i3).	 (B-19)

We have

det(a it - (a il)a i2 - (a • i2)ä)

= det(& it i2) = (a i3),	 (B-12)

det(a it - (a • il)a i2 - (a • i2)ä)

_ (a•a)det(a it-(a•ii)a i2-(a•i2)a)

_ (a • a)(a • i3),	 (B-13)

det(a it - (a il)a i2 - (a • i2)a)

= det(a it i2 - (a • i2)a) _ (CY i2)(a • i2)(a • i3)

+ [1 - (a i2)2](a • i3),	 (B-14)

det(a it - (a • it)a i2 - (a • i2)a)

= det(a it - (a . it)a i2) _ [1 - (a • il)2](& • i3)

+ (a • il)(a • it)(& • i3), 	 (B-15)

det(& it - (& il)& i2 - (a • i2)a)

= det(a it - (a • it)a i2) _ (a • it)(& • il)(a • i3)

+ [1 - (a i1)2](ä • i3),	 (B-16)

det(a it - (a • it)& i2 - (a - i2)a)

= det(a it i2 - (a • i2)a) = [1 - (a • i2) 2](a • 13)

+ (a • i2)(a • i2)(a i3),	 (B-17)

det(& it - (a • it)a i2 - (& • 12)a)

= det(& it i2) = (a • i3),	 (B-18)

We have

equation (B-12) + equation (B-13)

_ [1 + (a - a)](a . 13),	 (B-20)

equation (B-14) + equation (B-16)

= (a • i3) + (a • a)(a • i3), 	 (B-21)

equation (B-15) + equation (B-17)

= (a . i3 ) + (a • a)(a . i3),	 (B-22)

equation (B-18) + equation (B-19)

_ [1 + (a • a)](a • 13).	 (B-23)

In view of the planar acquisition geometry, we have

(a • i3) = I1IIRI-1 (a • i3).	 (B -24)

Hence, adding all the terms from equations (B-20)—(B-23) to-
gether in accordance with equation (B-2) and with the proper
weighting with powers of IRS and J1 I, we finally arrive at

det (r aN tr aN2 r)

(IR	 +I + IRI)(IR1 2 	IRI 2 ) [1 + (a • a)](a • i3)
-	 IR121k13 C3

(B-25)

On the other hand,

Irl3 = (2 [1 + (a . a)])3!2 	(B -26)

so that

a(v) __ (IRI + IRI)(IR1 2 + IRI 2 )	 I(a i3)1a(N) 	IRI21k13	 23/2[1 
+ (a .a)]1/2

(B-27)

APPENDIX C
a(c)/a(Su ..., S,^) FOR DEM

In this appendix, we derive a possible microstructure-driven
reparameterization of the medium perturbation. This param-
eterization follows differential effective medium (DEM) the-
ory combined with the self-consistent approximation. For a
detailed discussion on this subject, see Hornby et al., (1994).
The idea is that the medium may be perturbed by adding or
subtracting some generic rock-type material.

Basic volume averaging

Let a medium be composed of N constituents which occupy
volumes V,, respectively. Constituents can be generic sands
and shales, for example. In the analysis, we consider a small

(compared to the wave length) sample volume V of compos-
ite material. Let the constituent volume fractions be given by
cn - Vn / V •

Volume averages of the strain e, and the stress 0pq are in-
troduced through

	(ei1) 
= f 	(x) dx, e =	 ei^ (x) dx,

	V ^V	 V. ./Vn
(C-1)

(aP9) =	 ciP4(x) dx+ upq =	 f Qp9 (x) dx.
	fV 	 Vnn
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872	 de Hoop et al.

Let Sij pq denote a compliance tensor. We impose two constitu-	 tive medium (c° pq 	Cj pq ), implies the system of equations
tive laws, a macroscopic one,

N

(ei j) = sijpq (C'Pq ),	 (C-2)`i n VC !rs — Ctrs) S skt = 0,	 (C-10)
n=1

which yields the effective medium, and one for the constituent
media,

e = s7jpq Qpq ,	 (C-3)

valid in each inclusion. Let D ijpq denote the elastic unit tensor.
Then,

S jpg CPqkt _ ijkt	 (C-4)

describes the relation between the compliance and stiffness
tensors.

Now, since
N	 N

(eij) _ 	 eij('x)dx _

n=0fVn	 n=0
	1 N 	N	 (C-5)

(crPq) = V ^f aP4(x) dx = cbna;q'
	to n	 n=0

we can analyse the change of compliance tensor, S jpq — S j pq ,
under adding inclusions of media of type n =1.....N to a host
of type n = 0. Using both constitutive laws, we get

N

C°sij (i Pq — Sijpq) (apq ) _	 On (Crsi j — Cr i j ) e . (C-6)

n=1

To arrive at an expression for the constitutive parameters alone,
the average strain en in each inclusion is related to the suppos-
edly uniform applied stress (apq ) on the outer boundary of our
sample with volume V, namely,

e j S "Pq (apq) , 	(C-7)

The latter compliance tensor is unknown and may be com-
plicated to compute (in the actual composite medium). Sub-
stituting equation (C-7) into equation (C-6) eliminates (apq )
and amounts to the explicit relationship between constitutive
tensors:

N

	S JP4 — S P9 — —S rs	 ^n (Crskt — Cs kt)'SkEpq • (C-g)
n=1

In terms of stiffnesses, the relation between the host and effec-
tive medium tensors,

N

	jpq — Ci Pq =	 ^n (c5 — Ci?jrs)SrskCCktpq,	 (C-9)
n=1

is not explicit.

Differential effective medium (DEM)

We discuss two implications of equations (C-8) and (C-9).
First, removing the preference for the host medium, namely,
replacing constituent n = 0 by the (yet to be determined) effec-

from which Sin  can be solved in terms of c,*ors .
Second, it leads to the introduction of DEM theory. Let us

consider the case N =1. The change AV, in Vl will be assumed
to be small. In general, we have

A0 1 AV, OV
of _ V1 — v'

however, to preserve the amounts of other constituents we set
OV = AV,. Hence,

O 	OV 1 _ 1

^i	 Vi ^i

or

(C-11)
•V 1—&

Substituting equation (C-11) into equations (C-8) and (C-9),
and identifying

S0 = S JPq(4 1), 	C?jpq = C JPq (4'1),

(C-12)

S jpq = S jpq `4i1 + A& ), 	C JPq = c jpq `01 + 001),

while

Spq = S jpq (& + 001),	 (C-13)

we obtain

Sijpq(çb1 + Olpl
) — s '. ('i)	 1

Olpl _ _ i - 1 Sijrs(^1 )

X (Crskt — Crskf(O1))Sktpq(o1 + Olp1) 	 (C-14)

and

Cjpq (451 + 4i ) — CJPq (41) __ 1 (
A01 	1-01 \Cijrs

—Cjrs(cb1))Srskt(01 + A01)Cktpq(01 + 0&). (C-15)

The DEM approximation amounts to neglecting 041 in the
right-hand sides of equations (C-14) and (C-15). In the con-
text of GRT inversion/migration, the tensors s,,pq (^1) and
cjpq (rbl ) correspond with the anisotropic background velocity
model.

Self consistent approximation

The question remains how to interpret the tensor S," pq • In
the self consistent approximation, the tensor S^pq , dependent
on the actual composition of medium constituents everywhere
in the sample, is replaced by a tensor S q that follows from
the constitutive relation between strain and applied stress in a
configuration consisting of a single inclusion of constituent n
embedded in a homogeneous host with the properties of the
final (and yet to be determined) effective medium. The shape
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Anisotropic Inversion/Migration

of the inclusion will enter the parameterization of the effective
medium, for example, the aspect ratios for ellipsoids. For a 	

/

\aompq)(4 ) —
given shape, S pq can be precomputed.

The consequences for the equations derived in the first part
of this appendix are a matter of substitution. We obtain 	 and

873

1 — ^ SJrs(0)(erskP —Crskl( ) Skfpq(0)
m

(C-17)

NN
,/, n,*
	 =	

n	 n,*
^ejrs	 1'nSrskP — n,=1 0 rs srskP 

n=1	 n=1

while (0 = (01, ... , ON))

(acmC jpq) (4) = 1 — (a (C Jrs — C ^rs(0))SrskP(0)CkZpq(0)•
(C-16)	 m

(C-18)

The right-hand side of the latter equation yields the Jacobian
for reparametrization. Identify 0 with 6 and N with µ.
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