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HELMHOLTZ EQUATION USING CONTOUR INTEGRATION AND

POLYNOMIAL PRECONDITIONING∗
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Abstract. We propose an iterative solution method for the three-dimensional high-frequency
Helmholtz equation that exploits a contour integral formulation of spectral projectors. In this frame-
work, the solution in certain invariant subspaces is approximated by solving complex-shifted linear
systems, resulting in faster GMRES iterations due to the restricted spectrum. The shifted systems
are solved by exploiting a polynomial fixed-point iteration, which is a robust scheme even if the mag-
nitude of the shift is small. Numerical tests in three dimensions indicate that O(n1/3) matrix-vector
products are needed to solve a high-frequency problem with a matrix size n with high accuracy. The
method has a small storage requirement, can be applied to both dense and sparse linear systems,
and is highly parallelizable.
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1. Introduction.

1.1. Problem of interest. Helmholtz-type equations are second-order partial
differential equations that model time-harmonic waves in materials with linear con-
stitutive relations. For the scalar case, the Helmholtz operator can be written as

−∆− ω2/c2(x),(1.1)

where ω is the angular frequency, and c(x) is the wavespeed. After one of several types
of discretizations is applied, we end up with an n × n linear system of the following
form to solve:

Au = f.(1.2)

The main subject of this paper is the fast iterative solution of (1.2). The linear
system (1.2) is challenging to solve because the coefficient matrix A is typically highly
indefinite and non-Hermitian.
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MATRIX-FREE HELMHOLTZ SOLUTION 59

1.2. Existing work. Iterative methods can show fast convergence for non-
Hermitian linear systems, when the spectrum of the coefficient matrix lies in some
confined region in the complex plane that excludes the origin. Chebyshev iteration
[44, 25, 26, 21] is among the first type of modern iterative methods developed for the
non-Hermitian case. It is suitable for well-conditioned cases where the spectrum is
enclosed in an ellipse some distance away from the origin. Later, alternatives using
least-squares polynomials [33] were designed by minimizing some weighted L2 norm
of the residual on a polygon that encloses the spectrum. At the same time Krylov
subspace methods, such as GMRES [37], were found appealing as they did not require
any prior spectral information. These methods converge well if the numerical range is
not close to the origin [12, 6]. For (modified) Hermitian and skew-Hermitian splitting
methods [4, 3], the spectrum is assumed to be in one of the four quadrants. However,
the performance of these methods in solving (1.2) is usually unacceptably poor due
to the unfavorable spectrum of the discretized Helmholtz operators.

In order to obtain iterative schemes that converge fast when solving (1.2), sev-
eral efficient preconditioners such as the optimized Schwarz method [7, 18, 17], PML
sweeping preconditioners [13, 41, 47], and shifted Laplacian preconditioners [5, 14, 22]
have recently been proposed. These preconditioners are much more expensive to con-
struct than those for solving standard elliptic PDEs. We highlight specifically the
idea of shifted Laplacian preconditioners [14] which relies on the fact it is easier to
solve linear systems with the shifted matrix A−zI, for some complex number z, than
with the original matrix A. The idea of complex shifts is generalized in [46] based on
contour integration formulations that are formerly used in eigenvalue computations
[43, 45]. The method draws a circular contour in the complex plane to decompose the
spectrum of A−1, and the decomposed subproblems are then solved separately.

The application of shifted Laplacian–type preconditioners A−zI is usually based
on extending standard elliptic solvers to complex matrices. Two popular choices are
incomplete LU (ILU) [32, 30] and multigrid methods [27]. One major issue associated
with these preconditioners is that their performance deteriorates dramatically as the
angular frequency ω increases. This is because on the one hand, a small magnitude
of z is necessary for convergence when solving high-frequency problems [19], and on
the other hand, a small |z| will significantly increase the computational burden to
approximate (A − zI)−1: standard multigrid methods are no longer guaranteed to
be effective [10], and ILU factors become dense and even unstable. The aim of this
paper is to propose an efficient and robust preconditioning technique to overcome
these difficulties.

1.3. Outline of the proposed method. In this paper, we solve the three-
dimensional (3D) Helmholtz problems in a contour integration framework adapted
from [46], with a new fixed-point iteration for the shifted systems. The fixed-point
iteration is based on a polynomial approximation of the matrix exponential, which is
suitable for the case when the spectrum is confined in a rectangle with a small separa-
tion away from the origin and the standard Chebyshev iteration diverges. Compared
with existing methods for solving shifted problems, the new approach is robust and
has a fixed storage requirement even if the imaginary part of the shift nears the ori-
gin. In the proposed contour integration framework, the fixed-point iteration is used
to resolve components of the subproblem associated with large eigenvalues of A, and
GMRES is used to resolve the remainder.

For the Helmholtz equation with the impedance boundary condition, we show for
an idealized case that inside some contour the imaginary part of each eigenvalue is well
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60 X. LIU, Y. XI, Y. SAAD, AND M. V. DE HOOP

separated from the real axis. Then, iA may have a positive definite Hermitian part for
the problem inside the contour, in which case GMRES converges fast. We give several
techniques to improve the effectiveness of the solver and demonstrate the performance
of the proposed scheme for challenging high-frequency variable-coefficient problems
in three dimensions. It is well known that spectral methods require fewer grid points
per wavelength relative to finite difference and finite element methods [39]. Since
the proposed method only accesses the matrix through matrix-vector products, it is
ideally suited for solving dense linear systems resulting from spectral discretizations,
for which matrix-vector products can be performed with almost linear complexity.

The remaining sections are organized as follows. In section 2, we review the con-
tour integration framework for general indefinite linear systems. In section 3, we char-
acterize the spectrum of the Helmholtz problem based on linear algebra assumptions.
A fixed-point iteration method is developed in section 4 to solve shifted problems. In
section 5, the distribution of eigenvalues of the interior impedance problem is studied.
Some useful techniques are provided in section 6 to achieve an optimal performance
of the proposed method. In section 7, numerical examples are presented using Fourier
spectral and finite difference methods. Conclusions are drawn in section 8.

The following notation will be used throughout the remaining sections:
• Range(G) and Null(G) denote the range and null space, respectively, of a matrix
G;
• ρ(G) represents the spectral radius of a matrix G;
• G � (�) 0 means G is Hermitian positive (semi-)definite.

2. Review of the contour integration framework. The inverse of a matrix
A can be approximated by a linear combination of the resolvent (A − zI)−1 with
several complex shifts [35, 46]. In this section, we provide theoretical justifications of
the key ideas in [46] and also suggest some new improvements.

In [46], the authors only consider circular contours. Here, we first generalize their
results to arbitrary contours. Let γ be a closed piecewise smooth Jordan curve in the
complex plane C that encloses the origin and such that no eigenvalue of A lies on γ.
Then the eigenprojector P associated with the eigenvalues outside γ can be expressed
as

P =
1

2πi

∫
γ

(
I − zA−1

)−1 dz

z
,(2.1)

where the integral is taken counterclockwise on γ. This is because

P =
−1

2πi

∫
γ

(
1

z
−A−1

)−1

d
1

z
=

1

2πi

∫
γ−1

(
z′I −A−1

)−1
dz′,(2.2)

where γ−1 = {z−1 : z ∈ γ} and the last integral is taken counterclockwise on γ−1. The
right-hand side of (2.2) takes the standard form of an eigenprojector of A−1 associated
with eigenvalues enclosed by γ−1; see, for example, [35, Theorem 3.3]. Assuming that
the 1/λi’s are those eigenvalues of A−1 enclosed by γ−1, we then have

Range(P ) =
⊕
i

Null

(
1

λi
I −A−1

)li
=
⊕
i

Null (λiI −A)
li ,

where li is the index of λi [35, section 1.8.2]. The above equality implies that P in
(2.1) is equal to the spectral projector of A associated with eigenvalues outside γ.
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MATRIX-FREE HELMHOLTZ SOLUTION 61

The method proposed in [46] is based on the Cauchy integral representation of
PA−1:

PA−1 =
1

2πi

∫
γ

(A− zI)
−1 dz

z
.(2.3)

Again, the integral is taken counterclockwise on γ. PA−1 ignores the eigenvalues of
A that are inside γ, and attempts to solve the restricted problem in the subspace
spanned by the eigenvalues outside γ. This restricted problem is referred to as the
outer problem.

If a numerical quadrature rule is applied to discretize the right-hand side of (2.3),
PA−1 can be approximated as

PA−1 ≈
∑
i

σi
zi

(A− ziI)−1,(2.4)

where {zi} are the quadrature nodes along γ and {σi} are the corresponding weights.
For a given right-hand side f , the method proposed in [46] first approximates

PA−1f ≈ w :=
∑
i
σi

zi
(A − ziI)−1f and then tries to minimize the residual of the

solution in the range of I − P with an iterative method,

min
v
‖Av − (f −Aw)‖2.(2.5)

This problem focuses on eigenvalues inside γ and is referred to as the inner problem.
Afterward, v + w serves as an approximate solution. The problem (2.5) is easier

to solve than the original problem because the spectrum is restricted inside γ. This
framework has some flexibilities regarding the selection of contours and quadrature
points and is summarized in Algorithm 2.1. Since the linear system is not solved to
high accuracy in a single run of FCI, it is necessary to use flexible iterative methods,
such as FGMRES [36], or iterative refinement to improve the accuracy.

Regarding line 4 of Algorithm 2.1, we introduce a scalar multiplier d to further
reduce the two-norm residual error. If Aw 6= 0, the objective function has a unique

minimizer at d = (Aw)Hf
(Aw)HAw

. It takes one matrix-vector product and two inner products

Algorithm 2.1. Fast contour integration approximation of A−1f

1: procedure FCI (f ∈ Cn, A ∈ Cn×n, {zi ∈ γ}, {σi ∈ C})
. zi and σi are quadrature points and weights on a contour γ

2: Solve (A− ziI)yi = f for each quadrature point zi
3: Approximate PA−1f with a quadrature

w =
∑
i

σi
zi
yi

4: Compute a scalar multiplier d as follows to compensate quadrature error

d = argmind∈C ‖f − dAw‖2=
(Aw)Hf

(Aw)HAw

5: Solve v = argminv ‖Av − (f − dAw)‖2 with a few steps of GMRES
6: return the approximate solution v + dw
7: end procedure
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62 X. LIU, Y. XI, Y. SAAD, AND M. V. DE HOOP

to compute d. Theoretically speaking, when P is an orthogonal projection and w
exactly equals PA−1f , this step has no effect because

(Aw)Hf

(Aw)HAw
=

fHPHf

fHPHPf
= 1.

In practice, this step becomes meaningful because it makes the method more robust
to quadrature error.

In the following sections, we will discuss how to maximize the efficiency of
Algorithm 2.1 to solve (1.2) by exploiting the spectral properties of the discretized
Helmholtz operators.

3. Eigenvalue distribution of the discretized Helmholtz operators. In
order to apply the FCI preconditioner (Algorithm 2.1) to solve the linear system
(1.2), the spectrum information of the coefficient matrix is crucial for the selection
of the contour as well as the resulting preconditioning effect. In this section, we will
systematically study the eigenvalue distribution of the discretized Helmholtz operators
as well as some of its variants. More specifically, we will investigate the spectrum of
two types of matrices: (1) the coefficient matrix A in (1.2) and (2) a related double-size
matrix.

Case One. For this simplest case, Algorithm 2.1 is applied to solve (1.2) directly.
The skew-Hermitian part of the coefficient matrix A comes from absorbing boundary
conditions or various types of damping. Here we assume the skew-Hermitian part of
A is −i multiplied by a positive semidefinite matrix. That is,

A = A1 − iA2,

where both A1 and A2 are Hermitian, and A2 is positive semidefinite. This assumption
has previously appeared in [22, equation (12)] and also in [19, equation (1.7)]. Under
this assumption, it is easy to characterize the spectrum of A as follows.

Lemma 3.1. If the Hermitian matrices A1, A2 satisfy A1 + I � 0 and A2 � 0,
then the spectrum of A = A1 − iA2 is contained in the closed rectangle

{λ ∈ C : Re(λ) ∈ [−1, ρ1 − 1], Im(λ) ∈ [−ρ2, 0]},

where ρ1 = ρ(A1 + I) and ρ2 = ρ(A2).

Proof. Let v be a unit right eigenvector of A. Then the corresponding eigenvalue
λ satisfies

λ = vHAv = vHA1v − ivHA2v.

This implies that

Re(λ) = vHA1v ∈ [−1, ρ1 − 1], Im(λ) = −vHA2v ∈ [−ρ2, 0].

Lemma 3.1 can also be derived from Theorem 1 in [8].

Remark 3.1. The assumption A1 + I � 0 is not essential. One can always
normalize the matrix A first to make the assumption hold. This normalization does
not affect the conditioning of the matrix or the relative (residual) accuracy of the
solution, but either the absolute error or the absolute residual error is changed. In
Lemma 3.1, ρ1 and ρ2 represent the horizontal and the vertical stretch of the spectrum,
respectively, and ρ1/ρ2 measures the aspect ratio of this rectangle.
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MATRIX-FREE HELMHOLTZ SOLUTION 63

Case Two. We now consider a double-size linear system:

(iC − I)

(
iu
u

)
=

(
0
f

)
, C =

(
I

−(A1 + I) −A2

)
.(3.1)

One can check that u in (3.1) is exactly the solution of (1.2). We can apply Algorithm
2.1 to solve the system (3.1) instead. Although the size of the coefficient matrix iC−I
in (3.1) is twice as large as that of (1.2), it could be less costly to solve (3.1) than
(1.2). This is because the spectrum of iC − I can be more compact than that of A
under some discretization schemes, which is analyzed in the following theorem.

Theorem 3.2. Following the same assumption as in Lemma 3.1, the spectrum of
the matrix iC − I defined in (3.1) is contained in the rectangle{

µ ∈ C : |Re(µ) + 1| ≤ ρ2

2
+

√(ρ2

2

)2

+ ρ1, Im(µ) ∈ [−ρ2, 0]

}
,

where ρ1 and ρ2 are defined in Lemma 3.1. Furthermore, if ρ2 = 0, then the set of
eigenvalues of iC − I is

{−1±
√
λi : λi is an eigenvalue of A1 + I}.

Proof. It suffices to prove that the spectrum of the matrix C defined in (3.1) is
contained in {

µ ∈ C : |µ| ≤ ρ2

2
+

√(ρ2

2

)2

+ ρ1, Re(µ) ∈ [−ρ2, 0]

}
,

and {±i
√
λi : λi is an eigenvalue of A1 + I} is the set of eigenvalues of C for ρ2 = 0.

If µ is a nonzero eigenvalue of C, then the Schur complement S of µI − C

S = µI +A2 + µ−1(A1 + I)

has to be singular.
Denote µS by E. For a nonzero vector v in the null space of E, we have

0 =

∣∣∣∣vHEvvHv

∣∣∣∣ ≥ |µ2| − |µ|ρ2 − ρ1.

Thus, |µ| ≤ ρ2
2 +

√(
ρ2
2

)2
+ ρ1.

If µ is real, then for any vector w, we have∣∣∣∣wHEwwHw

∣∣∣∣ ≥ |µ2| − |µ|ρ2.

This implies that µ ∈ [−ρ2, 0], because otherwise E � 0 is a contradiction. If µ has a
nonzero imaginary part, then the Hermitian part of E/(Im(µ)i) is

Im(µ2)

Im(µ)
I +A2 = 2 Re(µ)I +A2,

which is positive definite for Re(µ) > 0 and is negative definite for Re(µ) < −ρ2/2.
Therefore, Re(µ) ∈ [−ρ2, 0].

Finally, we consider the special case when ρ2 = 0. Let V −1ΛV be the diagonal-
ization of A1 + I. If ρ2 = 0, then A2 = 0 and we have
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Fig. 3.1. Comparison of the spectrum between Case One (1.2) and Case Two (3.1). The
test matrix is based on the finite difference method on a 1002 grid, with absorbing layers near the
boundary. The eigenvalues are computed by eig in MATLAB. The rectangles are the results of
Lemma 3.1 and Theorem 3.2, where ρ1 ≈ 17.2, ρ2 ≈ 1.3. Case Two shows the spectrum of the
matrix iC − I.

(
V

V

)
C

(
V −1

V −1

)
=

(
I

−Λ

)
.

For the characteristic polynomial, we have

det(µI − C) = det

(
µI −I
Λ µI

)
=
∏
i

(µ2 + λi).

This shows {±i
√
λi} are the eigenvalues of C when ρ2 = 0.

Remark 3.2. We can compare iC−I with the matrix A in terms of the spreading
of spectrum. The spectrum of iC−I is contained in a ρ2 +

√
ρ2

2 + 4ρ1 by ρ2 rectangle,
but the spectrum of A is contained in a ρ1 by ρ2 rectangle. A can have a more
elongated spectrum when ρ1/ρ2 is large. Therefore, although iC − I is double in size,
it may be more suitable for iterative solvers because the spectrum is less spread out.
See Figure 3.1 for a 2D example.

4. Polynomial preconditioners for solving shifted problems. The appli-
cation of Algorithm 2.1 to solve discretized Helmholtz equations involves several linear
system solutions with shifted problems:

(A− zI)y = f.(4.1)

If | Im(z)| is large enough, then according to the previous section i(A− zI) has a sign
definite Hermitian part, and many existing elliptic solvers or preconditioners can be
used. However, they become expensive to compute or to store as | Im(z)| reduces. In
this section, we will propose several efficient polynomial preconditioning techniques
to solve (4.1) even when | Im(z)| is relatively small.

We can write the general form of a polynomial fixed-point iteration of (4.1) as

y(m+1) = y(m) + p(A− zI)r(m),(4.2)

where p is a polynomial, and r(m) = f − (A− zI)y(m) is the residual at the mth step.
If all the roots of the polynomial p are known explicitly, then (4.2) can be rewritten
as a cyclic Richardson iteration. Motivated from Lemma 3.1 in section 3, we assume
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MATRIX-FREE HELMHOLTZ SOLUTION 65

in this section that the spectrum of A is contained in a closed rectangle B. For fixed
z, we define

R(λ) = 1− (λ− z)p(λ− z).(4.3)

R is usually called the residual polynomial. A desirable polynomial p should solve the
following minimax problem in some special set of polynomials denoted by P:

min
p∈P

max
λ∈B
|R(λ)| = min

p∈P
max
λ∈∂B

|R(λ)|.(4.4)

The polynomial p can either be used directly in the fixed-point iteration (4.2) or be
used as a preconditioner in Krylov methods.

4.1. Stationary Richardson iteration. The scheme (4.2) is a stationary
Richardson iteration if p is a complex constant. The minimax problem (4.4) is es-
sentially solved by the method in [29]. Here, we present a slight generalization to
the case of rectangular spectrum. The following theorem shows how to choose the
complex constant for optimal convergence rate.

Theorem 4.1. Let B ⊂ C be the rectangle with vertices {b1, b2, β1, β2} such that

Im(bj) = 0, Im(βj) < 0, j ∈ {1, 2}.

Assuming that p ∈ C, the minimax value of R(λ) in (4.3)–(4.4) is taken on the vertices

min
p∈C

max
λ∈B
|R(λ)| = min

p∈C
max

λ∈{b1,b2,β1,β2}
|R(λ)|.

Furthermore, if Im(z) 6∈ [Im(β1), 0] and z is enclosed by the circumcircle of B, then

the minimax value of R(λ) equals |α1−α2|
|α1|+|α2| at p∗ = |α1|/α1+|α2|/α2

|α1|+|α2| , where

α := (α1, α2) =

{
(b1 − z, b2 − z) if Im(z) > 0,

(β1 − z, β2 − z) otherwise.

Proof. Let o = 1/p+z be the root of the residual polynomial R(λ) = 1−(λ−z)p.
The absolute value of R(λ) is related to the distance from o

|R(λ)| = |1− (λ− z)p| =
∣∣∣∣1− λ− z

o− z

∣∣∣∣ =
|λ− o|
|z − o|

.

For fixed z and o, |R(λ)| is convex, so the maximum value on each line segment is
taken on a vertex. ∂B has four sides, and the maximum value is taken on one of the
four vertices.

For the remaining part of the theorem, it suffices to prove for the case Im(z) > 0
because the other case follows from symmetry. The minimax problem restricted to a
line segment is solved in [29, Example 5.1], which suggests

min
p∈C

max
λ∈[b1,b2]

|1− (λ− z)p| = |α1 − α2|
|α1|+ |α2|

< 1,

and the optimal value of p is p∗. For circles containing b1, b2, the one centered at
o∗ = 1/p∗ + z does not contain z because |b1 − o∗| = |b2 − o∗| < |z − o∗|, but the
circumcircle of B contains z. So, o∗ is closer to β1, β2 than to b1, b2. That is,

|β1 − o∗| = |β2 − o∗| < |b1 − o∗| = |b2 − o∗|.
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Therefore,
|b1 − o∗|
|z − o∗|

= min
p∈C

max
λ∈{b1,b2,β1,β2}

|R(λ)| = min
p∈C

max
λ∈B
|R(λ)|.

p∗ solves the minimax problem (4.4) for B.

Remark 4.1. If b1b2 < 0, which means the matrix A in (4.1) is indefinite, for an
imaginary shift z (or |Re(z)| is much smaller than |b1| or |b2|), the convergence rate
is close to

|α1 − α2|
|α1|+ |α2|

=
|b1|+ |b2|√

b21 + Im2(z) +
√
b22 + Im2(z)

.

Using the Taylor expansion of
√

1 + x2, one can check that an O(| Im(z)|−2) number
of iterations is needed to reach certain relative accuracy. This result can be improved
by considering high-order polynomials.

4.2. High-order polynomials. High-order polynomials p(λ−z) have the capa-
bility to improve the convergence rate. For well-conditioned problems, existing work
such as Chebyshev iterations [44, 25, 26, 21] and Leja points [31] can select the roots
of the polynomial near the spectrum for asymptotic optimal convergence. Some more
advanced polynomial preconditioners for solving a sequence of shifted linear systems
can be found in [1, 16]. Since the shifted system (4.1) may not be sufficiently well con-
ditioned, we will design such a polynomial from the approximation of the exponential
function.

For given z, the residual polynomial R(λ) defined in (4.3) can be reformulated as

R(λ) =
p̃(λ)

p̃(z)
(4.5)

for some polynomial p̃ because this form also takes the value of 1 at λ = z. The ideal
polynomial should yield small value of |R(λ)| at every eigenvalue λ.

The choice of p̃ is motivated from the exponential function. If Im(λ − z) has a
fixed sign for λ ∈ B, then with a suitable choice of δ ∈ R, the following quantity can
be arbitrarily small:

|e−iδλ|

|e−iδz|
= eδ Im(λ−z) � 1.

Choosing p̃(λ) ≈ e−iδλ can possibly reduce |R(λ)|. The simplest choice of p̃ is based
on the Taylor expansion of the exponential function

p̃(q)(λ) =

q∑
j=0

(−iδ(λ− z0))j

j!
,(4.6)

where z0 is the center of the Taylor expansion. Then the polynomial p of degree q− 1
in (4.2) has the form

p(λ− z) =

(
1− p̃(q)(λ)

p̃(q)(z)

)/
(λ− z).(4.7)

The explicit form of p(λ−z) is quite complex, but there is a recursive expression that
makes it easier to compute. Notice that

p̃(q)(z)p(λ− z) =
p̃(q)(z)− p̃(q)(λ)

λ− z
=

q∑
j=1

κj ,
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MATRIX-FREE HELMHOLTZ SOLUTION 67

where κj is defined as − (−iδ)j

j!

∑j−1
l=0 (λ− z0)l(z − z0)j−1−l. It is easy to see that

κ1 = iδ,

κj =
−iδ

j

[
(λ− z0)κj−1 +

(−iδ(z − z0))j−1

(j − 1)!

]
, j ∈ {2, 3, . . . , q}.

Therefore, for the specific choice (4.6)–(4.7), the fixed-point iteration (4.2) can be
rewritten as

k1 = iδr(m),

kj =
−iδ

j

(
(A− z0I)kj−1 +

(−iδ(z − z0))j−1

(j − 1)!
r(m)

)
, j ∈ {2, 3, . . . , q},

y(m+1) = y(m) +
1

p̃(q)(z)

q∑
j=1

kj .

(4.8)

For solving (4.1), the error at the mth step satisfies

y(m) − y =

(
p̃(q)(A)

p̃(q)(z)

)m (
y(0) − y

)
.

The optimal parameters z0 and δ in the scheme (4.8) can be computed by solving
an optimization problem for each fixed polynomial degree q. Here we propose a
heuristic to simplify this procedure. We choose z0 to guarantee robustness and δ for
fast convergence. By robustness we mean for sufficiently small |δ|, the spectral radius
ρ(p̃(q)(A)/p̃(q)(z)) is less than 1. This is done by considering the following equation:

∣∣∣∣ p̃(q)(λ)

p̃(q)(z)

∣∣∣∣2 =

∣∣∣∣1− iδ(λ− z0)

1− iδ(z − z0)

∣∣∣∣2 + o(|δ|) =
1 + 2δ Im(λ− z0)

1 + 2δ Im(z − z0)
+ o(|δ|).

If we fix Im(z0) = Im(z) and assume Im(λ− z0) has a fixed sign, then we can always
find some δ with a small absolute value such that δ Im(λ−z0) < 0, which controls the
spectral radius. Since z0 = (b1 + b2)/2 + i Im(z) is the optimal choice for q = 1, we
will always follow this choice for high-order polynomials. After that, δ is determined
by numerically minimizing the convergence rate

ν = min
δ∈R

max
λ∈∂B

∣∣∣∣ p̃(λ)

p̃(z)

∣∣∣∣ .(4.9)

This is a 2D optimization problem which is easy to solve. Table 4.1 compares the
convergence rate ν for different order q. We prefer choosing q with a minimum ν1/q

value since this quantity gives the fastest converging method for a given number of
matrix-vector products.
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68 X. LIU, Y. XI, Y. SAAD, AND M. V. DE HOOP

Table 4.1
Convergence rate of (4.8) for different order q. The spectrum of A in (4.1) is within a rectangle

B with the real part in [−1, 2.8] and the imaginary part in [−0.65, 0], and the shift is z = i. The test
matrix is based on Fourier spectral method on a 803 grid, with absorbing layers near the boundary.
δ∗ is the optimal choice of δ. ν is the estimated convergence rate, and ν1/q quantifies the convergence
rate per matrix-vector product.

q δ∗ ν ν1/q

1 0.250 0.866 0.866

2 0.688 0.537 0.733

3 0.750 0.530 0.810

4 0.750 0.547 0.860

5 0.938 0.416 0.839

Table 4.2
Estimated number of matrix-vector products that reduces the residual by 102 times. The shifts

are purely imaginary. The test matrix A is the same as Table 4.1.

z = i z = i/2 z = i/4 z = i/8

q = 1 33 110 420 1656

q = 2 16 38 110 304

q = 3 24 30 60 135

q = 4 32 44 72 128

q = 5 30 60 120 180

We are also concerned with how the cost depends on the shift z. The proof of
Theorem 4.1 mentions a symmetry argument that by choosing the horizontal symme-
try axis of B as the axis of reflection, any point z above the axis is equivalent with
another point below the axis. The solution method (4.8) is also symmetric when z
and z0 are simultaneously reflected. Therefore, it suffices to study points above the
horizontal symmetry axis of B, which are points with positive imaginary parts.

As z approaches an example B along the positive imaginary axis, Table 4.2 gives
the estimated number of matrix-vector products for reducing the residual by 102 times.
The estimated number is qdlog 10−2/ log νe, where ν is defined in (4.9) and d·e is the
ceiling function. The cost of the stationary Richardson iteration (q = 1) quadruples
as the distance reduces by 1/2. For high-order methods such as q = 3, the results
are much better. The cost roughly doubles when the imaginary shift reduces by 1/2.
As the imaginary shift decreases, one might want to increase q slightly to approach
a desirable performance. In practice, we choose q to have the best convergence by
solving

min
q∈N+

min
δ∈R

max
λ∈∂B

∣∣∣∣ p̃(q)(λ)

p̃(q)(z)

∣∣∣∣ .
Table 4.3 shows the costs of solving several complex shifted problems. The estimated
costs in Table 4.3(b) match well with the actual costs in Table 4.3(c) in a sample run.
The estimate is reliable and insensitive to the right-hand sides because it directly
comes from solving the minimax problem (4.4). One can see that the real part of the
shift plays a minor role in determining the cost.

Finally, we compare the cost of solving a pair of shifted problems corresponding to
the two cases (1.2) and (3.1). In order to draw a fair comparison, we force the shifted
problems to be equivalent. Let A be a Hermitian indefinite matrix and complex
numbers z and s satisfy z + 1 = (s+ 1)2. Then the pair of shifted problems are

(A− zI)y = f(4.10)
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MATRIX-FREE HELMHOLTZ SOLUTION 69

Table 4.3
Costs of solving shifted problems for general complex shifts. The number of matrix-vector

products (mvs) that reduces the residual by 102 times is both estimated and tested. The optimal
order q is selected. The test matrix A is the same as Table 4.1. The right-hand side has a single
nonzero value at grid location (40, 40, 40).

(a) Complex shift z

−1/2 + i −0.25 + i i 0.25 + i 0.5 + i

−1/2 + 0.75i −0.25 + 0.75i 0.75i 0.25 + 0.75i 0.5 + 0.75i

−0.5 + 0.5i −0.25 + 0.5i 0.5i 0.25 + 0.5i 0.5 + 0.5i

−0.5 + 0.25i −0.25 + 0.25i 0.25i 0.25 + 0.25i 0.5 + 0.25i

(b) Estimated mvs for shifts from (a)

14 14 16 16 16

18 20 22 22 22

33 33 30 30 30

66 66 60 54 54

(c) Actual mvs for shifts from (a)

12 12 14 14 14

18 18 20 20 20

33 30 30 27 27

63 60 54 51 51

Table 4.4
Number of matrix-vector products for reducing the residual by 102 times. Boldface numbers

indicate a superior performance over the alternative case.

(a) Case One: solving (4.10)

Spectrum z = i z = i/2 z = i/4 z = i/8

[−1, 8] 28 67 156 276

[−1, 16] 52 145 381 721

[−1, 32] 97 436 861 1691

[−1, 64] 331 916 1831 3736

(b) Case Two: solving (4.11)

Spectrum z = i z = i/2 z = i/4 z = i/8

[−1, 8] 67 121 209 441

[−1, 16] 85 157 229 609

[−1, 32] 113 193 397 681

[−1, 64] 149 221 449 909

and (
−(s+ 1)I iI
−i(A+ I) −(s+ 1)I

)(
iy

(s+ 1)y

)
=

(
0
f

)
.(4.11)

The results are tabulated in Table 4.4. Note that the cost of each matrix-vector
product is roughly the same. (4.10) is more suitable for the case that the spectrum
of A is compact and the imaginary shift is large; otherwise (4.11) is better suited.

5. Characterization of small eigenvalues. In this section, we analyze the
distribution of eigenvalues with small magnitude for the Helmholtz equation. It is
important to study near-zero eigenvalues because they govern the conditioning of
the problem. A stability estimate is proved in [28, 11, 19] for the constant-coefficient
Helmholtz equation in a star-shaped domain Ω with the impedance boundary condition.
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The part of the statement we want to highlight is that

ω‖u‖L2(Ω) ≤ α‖f‖L2(Ω),

where u is the solution of the right-hand-side f , and α is a constant independent from
the angular frequency ω. This result implies that all the eigenvalues of A are at least
O(ω) distance away from the origin.

For the constant-coefficient case in a hypercube, we can further describe the
distribution of eigenvalues with the impedance boundary condition. In fact, we can
show that the imaginary part is at least O(ω) for eigenvalues with magnitude smaller
than ω2. Let the wavespeed be normalized as one in the d-dimensional unit hypercube
[0, 1]d. Consider the eigenvalue problem in multiple dimensions (d ≥ 2), and an
eigenpair (λ, v) satisfies

(5.1)

{
−∆v − ω2v = λv in [0, 1]d,

∂nv − iωv = 0 on ∂[0, 1]d,

where ∂n means taking the directional derivative along the outward unit normal.

Theorem 5.1. For any fixed ρ ∈ (0, 1), there exists a positive constant s such
that every eigenvalue λ of (5.1) with |λ| ≤ ρω2 satisfies | Im(λ)| ≥ sω for sufficiently
large ω.

The theorem gives a more detailed characterization of small eigenvalues. Figure
5.1 illustrates how this compares with existing stability results. The proof is based
on a separation of variables in the following form:

v(x) =

d∏
j=1

ϕj(xj), ϕ′′j (xj) + ξ2
jϕj(xj) = 0,(5.2)

where ξj ∈ C and Re(ξj) ≥ 0. An eigenvalue can be written as λ = ξ · ξ − ω2, where
ξ =

(
ξ1 ξ2 · · · ξd

)
. The general solution of (5.2) is ϕj(xj) = a+

j e
iξjxj +a−j e

−iξjxj .
The boundary condition in (5.1) suggests

−ϕ′j(0) = iωϕj(0), ϕ′j(1) = iωϕj(1).(5.3)

Fig. 5.1. Distribution of eigenvalues in the complex plane for the Helmholtz equation with
impedance boundary condition. All the eigenvalues are in the shaded area of the lower half plane.
The dashed circle around the origin with radius O(ω) is the result of [28, 11, 19]. In the circle with
radius ρω2, the minimum sω distance from the real axis is the result of Theorem 5.1.
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MATRIX-FREE HELMHOLTZ SOLUTION 71

Substituting the general solution into (5.3), we have

a+
j (ω + ξj) = −a−j (ω − ξj),(5.4)

a+
j (ω − ξj)eiξj = −a−j (ω + ξj)e

−iξj .(5.5)

Eliminating a±j , we have that every ξj solves the same equation of z,

ω − z
ω + z

= ±e−iz.(5.6)

There is no root in the first quadrant {z : Re(z) ≥ 0, Im(z) > 0} because

|ω − z|
|ω + z|

≤ 1, |e−iz| > 1.

So we are only interested in the fourth quadrant {z : Re(z) ≥ 0, Im(z) ≤ 0}. The
following lemma will be used in the proof of Theorem 5.1.

Lemma 5.2. Given a sequence of angular frequencies {ωm} that goes to infinity,
and for a sequence of complex numbers in the fourth quadrant {zm = am − ibm :
am, bm ≥ 0}, if there exists c1, c2 > 0 such that bm ≥ c1ωm, bm ≥ c2am, then zm does
not solve (5.6) for sufficiently large m.

Proof. The lemma can be easily proved by taking the absolute value on both sides
of (5.6). For the left-hand side of (5.6), we have∣∣∣∣ωm − am + ibm

ωm + am − ibm

∣∣∣∣ ≥ bm
|ωm + am − ibm|

≥ 1√
(1/c1 + 1/c2)2 + 1

.

The right-hand side of (5.6) satisfies

lim
m→∞

| exp(−bm − iam)| = lim
m→∞

exp(−bm) = 0.

So the equality does not hold for sufficiently large m.

Proof of Theorem 5.1. If the statement is false, then there exists a ρ > 0, a
sequence of angular frequencies {ωm} that goes to infinity, and a sequence of complex
phase vectors {ξ(m) ∈ Cd} satisfying (5.2) and (5.3), but for λm = ξ(m) · ξ(m) − ω2

m,
we have that

|λm| ≤ ρω2
m, lim

m→∞

Im(λm)

ωm
= 0.(5.7)

We can assume that there exists a sequence of indices {jm ∈ {1, 2, . . . , d}} such
that

|ξ(m)
jm
| ≥ ωm

√
1− ρ
d

,(5.8)

because otherwise |ξ(m)|2 < ω2
m(1− ρ), and we have

|λm| ≥ ω2
m − |ξ(m)|2 > ρω2

m,

which contradicts with (5.7).
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Let ξ
(m)
jm

= am − ibm. Because of (5.6)–(5.8), am, bm ≥ 0 satisfy

a2
m + b2m ≥

1− ρ
d

ω2
m,(5.9)

lim
m→∞

ambm
ωm

= 0,(5.10)

ωm − am + ibm
ωm + am − ibm

= ± exp(−bm − iam).(5.11)

From (5.9) and (5.10), we get

ωmambm
a2
m + b2m

=
ambm
ωm

ω2
m

a2
m + b2m

→ 0.

Then we can find subsequences (still denoted by {am}, {bm}) such that either ωmam/bm
or ωmbm/am goes to zero.

If ωmam/bm → 0, then am/bm → 0 for large ωm. From (5.9), we also have

ωm
bm
≤

√
d

1− ρ

(
1 +

a2
m

b2m

)
.

{am− ibm} satisfies the assumptions in Lemma 5.2. Hence they are not roots of (5.6)
for large m, a contradiction.

If ωmbm/am → 0, then from (5.10)

b2m =
ωmbm
am

ambm
ωm

→ 0.

From (5.9), we have
a2
m

ω2
m

≥ 1− ρ
d
− b2m
ω2
m

.

So am/ωm is bounded above zero. From (5.11),

1 = exp
(
− lim
m→∞

bm

)
= lim
m→∞

|1− am/ωm|
1 + am/ωm

.

So am/ωm →∞. For the complex phase vectors {ξ(m)},

λm = (a2
m − b2m − ω2

m)− i2ambm +
∑
l 6=jm

ξ
(m)
l ξ

(m)
l .

For large m, we have a2
m − b2m − ω2

m > 2ρω2
m. We can find another sequence {ξ(m)

lm
:

lm 6= jm} such that

Re
(
ξ

(m)
lm

ξ
(m)
lm

)
< − ρ

d− 1
ω2
m.

Because otherwise

Re(λm) > 2ρω2
m +

∑
l 6=jm

Re
(
ξ

(m)
l ξ

(m)
l

)
≥ 2ρω2

m − (d− 1)
ρ

d− 1
ω2
m = ρω2

m,

which contradicts with (5.7). Let ξ
(m)
lm

= ãm − ib̃m with nonnegative ãm and b̃m. We
have

ã2
m − b̃2m < − ρ

d− 1
ω2
m.

So b̃m > ãm and b̃m >
√
ρ/(d− 1)ωm. Because of Lemma 5.2, this sequence does not

solve (5.6) for large m, which is a contradiction.
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Theorem 5.1 depicts the fine structure of spectrum of discretized Helmholtz
operators near the origin. Since the smallest eigenvalues of A are some distance away
from the real axis, GMRES is expected to converge fast for the inner problem (2.5).

6. Techniques for improved performance. In this section, we will discuss
several special techniques to improve the speed and robustness of Algorithm 2.1.

6.1. Quadrature on an ellipse. The contour γ is usually selected as a circle
in existing methods. By shrinking, say, the real axis, the circle is transformed into an
ellipse in the form of

{tr cos θ + ir sin θ : t, r > 0, θ ∈ [0, 2π]} .(6.1)

For fixed r, the advantage of using a small ratio t is that there are fewer eigenvalues
enclosed by the contour. Hence the contour integration (2.3) is closer to the true
inverse. The disadvantage is that the shape of γ becomes irregular, so the number of
quadrature points may need to increase.

One way to derive quadrature rules on an ellipse is by mapping it to the unit
circle parametrized by the angle θ. Note that

1

2πi
dz =

1

2πi
d(tr cos θ + ir sin θ) = (r cos θ + itr sin θ)

dθ

2π
.

For an equispaced set of angles {θj}, the quadrature weights can be chosen as

σj = (r cos θj + itr sin θj)/J,

where J is the number of quadrature points. Choosing J as an even number gives
symmetric quadrature points with respect to the major and minor axes.

6.2. Shifting the center. In order to avoid an ill-conditioned shifted system,
we shift the center of the ellipse according to the spectrum and choose a small number
of points such as 6 so that the quadrature points are not close to any eigenvalue. This
makes the contour integration method robust.

After determining t and an even J from the previous subsection, we simply choose
the center of the contour as −tr cos πJ−iρ22 . Recall from Lemma 3.1 that the imaginary
part of each eigenvalue belongs to the interval [−ρ2, 0]. Then, each quadrature point
zj satisfies

zj = tr

(
cos

(2j − 1)π

J
− cos

π

J

)
+ i

(
r sin

(2j − 1)π

J
− ρ2

2

)
, j ∈ [1, . . . , J ].(6.2)

Re(zj) ≤ 0 so that the shifted matrices cannot be more indefinite than the original
one.

Let ε be a positive parameter. The following choice of r ensures that each zj is
at least ε-distance away from the spectrum:

r =
ρ2
2 + ε

sin π
J

(6.3)

so that the imaginary part is

Im(zj) 6∈ (−ε− ρ2, ε).

The new parameter ε further pushes the quadrature points away from the spectrum.
In summary, the quadrature points satisfy (6.2)–(6.3). The imaginary part of the

spectrum uses ρ2 from Lemma 3.1 explicitly. One can reduce t, ε and increase J for
more accurate approximation of A−1, and vice versa for faster approximation. The
quadrature points are visualized in Figure 6.1.
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Fig. 6.1. Illustration of the quadrature points (6.2). Here, t = 0.5, r = 0.6, and J = 6.

6.3. Preconditioning the inner problem. The inner problem (2.5) discussed
in section 5 is an idealized case where the outer problem is exactly solved. Error
in the solution and quadrature may affect the convergence of the inner problem.
One can apply some standard preconditioners to improve the convergence. We find
that an (approximate) discrete Laplacian usually gives a satisfactory performance by
deflating the large eigenvalues of the Helmholtz problem. For the sparse case, this
can be achieved by computing an ILU factorization without fill-in.

7. Numerical examples. To illustrate the performance of the proposed method,
we present the test results for solving a challenging 3D high-frequency Helmholtz equa-
tion. Since the method has little restrictions on the type of discretization, we attempt
to solve both dense linear systems from a Fourier spectral method as well as sparse
ones based on finite difference methods. The solution algorithms are implemented by
MATLAB. The test machine is a Linux workstation having 3.5GHz CPU and 64GB
RAM. In this section, we use the following notation:

• its: number of outer iterations;
• mvs: total number of matrix-vector products;
• i-t: iteration time in seconds.

7.1. Description of test problems. Every test matrix can be written for-
mally as

A = S −M + iD(7.1)

for some Hermitian positive semidefinite matrices S, M , and D. S is the negative
discrete Laplacian, M is the mass matrix that generates the indefiniteness of A, and
D gives the non-Hermitian part. For solving free-space problems, D is used to reduce
artificial reflections near the boundaries of the computational domain. One example
is a diagonal matrix which has positive diagonal entries for points near the boundary
and zero elsewhere; see, for example, [40].

If S,M,D � 0, and ρ(M) ≤ 1, then S−M+I � 0 and A satisfies the assumptions
of Lemma 3.1. It is helpful to know ρ1 = ρ(S −M + I) and ρ2 = ρ(D), because they
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characterize the spectrum of A. Since ρ2 only depends on D, we study the combined
effect of S and M on ρ1 for our test problem.

Consider the 3D problem in a cuboid domain with an equispaced regular grid.
The Fourier spectral method can be applied because the proposed method only
requires matrix-vector products of the discrete Laplacian. S can be diagonalized
by a 3D fast Fourier transform (FFT):

S = FHΛF,

where F is the transformation matrix of a forward FFT, and Λ is the diagonal matrix
consisting of the eigenvalues of S. Each eigenvalue can be written as

λi =

(
lmin

N

)2 3∑
j=1

min(i2j , (N − ij)2),(7.2)

where i is a zero-based multi-index in an N3 grid, and lmin is the minimum sampling
rate (minimum number of points per wavelength). Clearly,

ρ(S) = max
i
|λi| ≤

(
lmin

N

)2 3∑
d=1

(
N

2

)2

=
3

4
l2min.

The standard seven-point stencil can also be used to generate a sparse matrix S̃; then
the eigenvalues are replaced by

λ̃i =

(
lmin

2π

)2 3∑
j=1

2

(
1− cos

ij
N
π

)
.

The spectral radius is instead ρ(S̃) = maxi |λ̃i| ≤ 3
π2 l

2
min. Low-order finite difference

methods may need a large sampling rate lmin, which increases the size and spectral
radius of A.

The mass matrix M contains the variations of the wavespeed. For the simplest
diagonal case, the ith nonzero diagonal entry is simply

Mii =
l2min

l2i
,

where li is the local sampling rate on the ith grid point. For this case, ρ1 defined in
Lemma 3.1 satisfies

ρ1 = ρ(S −M + I) ≤ ‖S‖2 + ‖I −M‖2 = O(l2min) +
l2max − l2min

l2max

.

Regarding the spreading of the spectrum, the minimum sampling rate (lmin) has a
primary influence, and the variations of the wavespeed (lmax/lmin) play a secondary
role.

Finally we discuss the generation of the diagonal matrix D. For a point that is
j grid points away from the boundary, the corresponding diagonal value is ρ2(1 +
cos(min(j,m)π/m)). m is the thickness of the absorbing layers and is chosen as 10
here.
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Fig. 7.1. Wavespeed function c(x) in (1.1).

7.2. Scaling test. This scaling test checks the cost of solving (1.2) as the fre-
quency and the problem size increase. We choose a wavespeed function that has
eight high-wavespeed anomalies. Figure 7.1 visualizes the wavespeed function. The
parameters needed by the matrix (7.1) are given as follows:

• For the spectral method, the sampling rate is lmin = 2.25 in the background,
and is lmax = 4.5 inside the anomalies. For the constants in Lemma 3.1,
ρ1 ≈ 4.55, ρ2 ≈ 0.65.

• For the finite difference approach, the frequency is reduced by four times to
obtain a minimum sampling rate of lmin = 9 and a maximum sampling rate
of lmax = 18. ρ1 ≈ 25.37, ρ2 ≈ 0.65.

The right-hand side has a single nonzero at the center of the grid. Figure 7.2 shows
the solution of the largest problem size using spectral methods.

We set up the solver based on the techniques described in section 6. The solution
is computed by the FCI preconditioned flexible GMRES. Six quadrature points are
used in Algorithm 2.1, and their locations change with respect to the angular frequency
ω. For example, for the four problems in Table 7.2(a), we fix t = 0.1 in (6.2) and
select ε ∝ 1/ω in (6.3); then the sets of quadrature points are

0.00 + 0.80i
−0.22 + 2.05i
−0.43 + 0.80i
−0.43− 1.70i
−0.22− 2.96i

0.00− 1.70i

 ,


0.00 + 0.40i
−0.15 + 1.25i
−0.30 + 0.40i
−0.30− 1.30i
−0.15− 2.16i

0.00− 1.30i

 ,


0.00 + 0.27i
−0.12 + 0.99i
−0.25 + 0.27i
−0.25− 1.17i
−0.12− 1.89i

0.00− 1.17i

 ,


0.00 + 0.20i
−0.11 + 0.85i
−0.23 + 0.20i
−0.23− 1.10i
−0.11− 1.76i

0.00− 1.10i

 .

The first quadrature point in each set is closest to the origin. The sets of quadrature
weights are
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Fig. 7.2. Solution of the problem in Figure 7.1 using the spectral method.

1

10


0.26− 4.52i
0.20− 0.02i
2.10 + 3.38i
0.62− 1.96i
0.14 + 0.01i
0.12 + 2.12i

 ,
1

10


0.36− 6.15i
0.22− 0.03i
3.17 + 3.81i
0.51− 1.77i
0.13 + 0.00i
0.11 + 1.89i

 ,
1

10


0.45− 7.78i
0.24− 0.03i
4.12 + 3.93i
0.46− 1.67i
0.13 + 0.01i
0.10 + 1.77i

 ,
1

10


0.54− 9.42i
0.25− 0.03i
4.91 + 3.87i
0.43− 1.62i
0.12 + 0.01i
0.10 + 1.71i

 .

Note that each contour is far from being circular and the number of points is rather
small. The quadrature weights described in section 6 do not sum to one. We rely on
the scalar multiplier d in line 4 of Algorithm 2.1 to compensate for this error. For the
poles with smaller quadrature weights, the shifted problems can be solved to a lower
accuracy. Our heuristic of choosing the relative tolerance τi at the ith pole is

τi = τ1
√
|σ1|/|σi|,

where σi is the ith quadrature weight, and τ1 = 0.20 is the tolerance at the first pole
on the positive imaginary axis. The method in section 4.2 can be used to determine
the precise scheme for each shifted problem. Take the example of the first pole in
each set; the parameters for applying (4.8) are listed in Table 7.1.

Regarding different cases in section 3, by estimating the spectrum we find that
for the spectral method one can apply Algorithm 2.1 to the original matrix A because
the spectrum is more compact, and the modified matrix iC − I in (3.1) is suitable for
the finite difference method. The spectral method case includes a regularized inverse
Laplacian preconditioner and is diagonalized by FFT with eigenvalues {1/max(λi, 1)},
where λi is defined in (7.2); the finite difference case includes an ILU(0) precondi-
tioner based on the seven-point stencil discrete Laplacian. Since the cost of applying
the Laplacian preconditioner is similar to one matrix-vector product, the counts are
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Table 7.1
Parameters of the polynomial iteration (4.8) for one pole. The parameters are computed by

solving (4.9). z is the complex shift. The method stops when the residual is reduced by five times.

n z q δ mvs

803 0.8i 2 0.51 10

1603 0.4i 3 0.91 18

2403 0.27i 3 0.88 27

3203 0.2i 3 0.85 39

Table 7.2
Scaling test for fixed sampling rate and increasing problem sizes.

(a) Fourier spectral method

n ω/(2π) its mvs i-t

803 35.56 6 879 39.8

1603 71.11 8 1795 719.6

2403 106.67 9 2670 4610.2

3203 142.22 11 3754 14841.6

(b) Finite difference method

n ω/(2π) its mvs i-t

803 8.89 9 341 18.9

1603 17.78 8 536 293.7

2403 26.67 11 842 1649.2

3203 35.56 10 1065 4954.5
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(a) Matrix-vector products (b) Iteration time

Fig. 7.3. 3D scaling test.

combined in mvs. The inner problem is more challenging, so we distribute 80% of the
cost there. For each call of Algorithm 2.1, this is done by first counting the number
of matrix-vector products for solving shifted problems, and then setting the number
of Laplacian-preconditioned GMRES iterations to be double that number.

Table 7.2 and Figure 7.3 are the test results for reducing the residual by 103.
For both cases, the number of matrix-vector products is proportional to the angu-
lar frequency O(ω). Because of the lack of sparsity, spectral methods are rarely
considered for 3D Helmholtz problems. As can be seen from Table 7.2(a), the pro-
posed solution method is suitable for solving this type of problems. Spherical patterns
can be observed in Figure 7.2. This shows that the solution is qualitatively speaking
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MATRIX-FREE HELMHOLTZ SOLUTION 79

meaningful. Note that we have chosen a straightforward Fourier spectral method here
as the first attempt. In order to have accurate solution of variable-coefficient problems,
the discretization method and the sampling rate may be improved in the future. In
[15], a pseudospectral method is proposed for the variable-coefficient wave equation,
and it is likely that similar techniques can be used for the Helmholtz equation.

7.3. SEG/EAGE salt-dome model. The SEG/EAGE salt-dome model [2]
is a 3D wavespeed model commonly used in exploration geophysics. The physical
size is 12km×12km×4.5km. The wavespeed ranges between 1500m/s and 4500m/s;
see Figure 7.4 for sections of the wavespeed. At high frequency, 33.33Hz, we apply
Fourier spectral discretization on a 201×676×676 grid. Figure 7.5 visualizes the

Fig. 7.4. Wavespeed function of the SEG/EAGE salt-dome model.

Fig. 7.5. 33.33Hz solution wavefield corresponding to Figure 7.4.
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Iteration
0 10 20 30 40 50 60

R
es

id
ia

l 
n
o
rm

10 -8

10 -6

10 -4

10 -2

10
0

Fig. 7.6. Residual history of FCI iterations of SEG/EAGE salt-dome model.

solution wavefield. For 10−2, 10−4, and 10−6 relative residual, the proposed method
takes 17 iterations (984 min), 32 iterations (1850 min), and 51 iterations (2943 min),
respectively. Figure 7.6 shows that linear convergence of the residual still holds even
when the wavespeed is rather complex. This test shows the capability of solving
a realistic 3D high-frequency problem with limited memory consumption. This is
possible because spectral methods can reduce the matrix size, and the solution method
here does not generate or factorize any block of the matrix directly.

8. Conclusions. An iterative method was proposed to solve the discretized 3D
high-frequency Helmholtz equation. In the framework of the contour integration
method which implicitly decomposes the original problem into an inner and an outer
problem, a fixed-point iteration was introduced to solve the outer problem. GMRES
is suitable for solving the inner problem because of our theoretical estimates on the
distribution of eigenvalues. 3D numerical examples show that the computational cost
of this method scales as O(ω4) or O(n4/3). The method is especially suitable for
solving high-frequency problems when combined with spectral methods.

Acknowledgment. We would like to thank both referees for their suggestions.
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