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Abstract. The resolution analysis of generalized Radon transform (GRT) inversion of seismic
data is carried out in general anisotropic media. The GRT inversion formula is derived from
the ray-Born approximation of the wave field for volume scatterers. However, by considering
scattering surfaces in the resolution analysis, rather than parameter perturbations, we show that
the inversion provides a reflectivity map and reflection/transmission coefficients as functions of
scattering angles and azimuths. Those coefficients can be subjected to any type of amplitude
versus angle (AVA) or amplitude versus offset (AVO) analysis. By applying the inversion to
Kirchhoff approximate data rather than Born approximate data, we show that the output is
actually linear in the reflection coefficients and, hence, a nonlinear function of the change in
medium parameters across discontinuity surfaces—the reflectors of the medium.

1. Introduction

In exploration geophysics, in current acquisition practice, one takes surface reflection-
seismic measurements at increasingly larger scattering angles both for image enhancement
and improved estimation of elastic parameters. To achieve a better resolution from
imaging and inverting these measurements, however, one must account for the interplay
between heterogeneity and anisotropy at different length scales in the subsurface. Also,
to accommodate inversion of wide angle data, one has to take account of the nonlinear
dependence of the reflected amplitude on changes in medium parameters, at least near the
relevant reflectors in the configuration. We use thegeneralized Radon transformor GRT
formulation to achieve these goals.

Our analysis begins with the ray-Born approximation of the direct scattering problem,
which represents the scattered field as a volume integral. This representation is recast as a
sum of surface integrals over the (curved) discontinuity surfaces of the medium parameters—
the reflectors in the subsurface. Then the inversion of the linearized scattering problem is
carried out. The linearization, however, restricts the validity of the procedure to narrow
scattering angles. The resolution analysis of the linearized GRT inversion serves as the
basis to formulate the inverse problem in terms of conormal distributions: thus the validity
of the GRT inversion is extended by applying a stationary phase analysis with respect to
migration dip—defined as the normalized gradient of total travel time along the scattering
characteristic. In this process, carrying out the GRT inversion on Kirchhoff-type data, an
explicit adjustment of the inversion formula is found.

By identifying the data, for each image point, in common scattering-angle/azimuth
gathers, the GRT inversion formula can be modified to obtain reflection/transmission
coefficients at specular ray geometries. Any amplitude versus scattering angle (AVA)
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analysis can then be applied to those coefficients to derive information about the medium
perturbation. Several parametrizations of this perturbation have been developed to reveal
to which quantities the coefficients are sensitive.

The idea of estimating angle-dependent reflectivity has been developed by various
authors; see, for example, Geoltrain and Chovet [1] and Lumley [2]. A more rigorous
discussion of such an approach can be found in Bleisteinet al [3]. In our paper, we
derive a GRT-based inversion procedure that accomplishes the goal of constructing exact
plane-wave reflection coefficients as functions of scattering angle and azimuth, in closed
form.

GRT-type inversion formulas for thelinearized inverse problem have been developed
by Norton and Linzer [4], by Beylkin [5–8], by Milleret al [9–10], by Beylkinet al [11],
and by Rakesh [12] for the acoustic case. The extension to the elastic case was discussed
by Beylkin and Burridge [13], and anisotropy was considered by De Hoopet al [14] and
Spencer and De Hoop [15]. Inversion formulae aiming to estimate reflectivity rather than the
medium perturbation were developed by Cohen and Bleistein [16], by Bleistein and Cohen
[17], and by Bleistein [18, 19]. This paper brings the two approaches together. Discussion
of the numerical implementation of GRT inversion procedures can be found in De Hoop
and Spencer [20].

The GRT approach is ahigh-frequencyapproach to inversion. There are two equally
valid points of view about the utility of this method. First, for full bandwidth data, we obtain
by this method only the mostsingular part of the solution to the inverse problem, since it
is this part of the solution that is tied to the limit of frequency approaching infinity. On
the other hand, as a practical matter, the typical bandwidth of the seismic inverse problem
is such that the data can be viewed ashigh-frequencydata for most of the length and time
scales of the geophysical model. Thus, numerical implementations of the derived inversion
formulae produce useful results for seismic exploration.

Throughout the paper we have excluded the possibility of multipathing of the rays
connecting the image point to a source or a receiver in the predefined background medium.
In the case of multipathing, the GRT inversion cannot be carried out simply per scattering-
angle/azimuth; we will investigate this complication in a separate paper.

2. The basic equations

We consider a configuration, in which we illuminate a remote scattering domain with elastic
waves generated by point body forces and observed by multi-component point receivers. We
will analyse the scattered field due to singular medium perturbations of a smooth background.

2.1. Notation

First, we introduce some basic notation. Choose coordinates in the configuration according
to x = (x1, x2, x3), the Cartesian position vector,s = (s1, s2, s3), the source point,
r = (r1, r2, r3), the receiver point, andt , the time. The medium is described byρ(x),
the density, andcijk`(x), and the elastic stiffness tensor, while the wave field is described
by u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), the displacement vector, and generated by a
source distribution given byf(x, t) = (f1(x, t), f2(x, t), f3(x, t)), the body-force source
density. In the remainder of the paper, we will employ the summation convention.
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2.2. Governing wave equation

The displacement in a heterogeneous anisotropic medium satisfies the elastodynamic wave
equation

ρ∂2
t ui − ∂j (cijk`∂`uk) = fi (1)

with summation over repeated lower case indices, here and below. Let

G(x,x′, t) = (Gip(x,x
′, t)) (2)

be the causal Green tensor, which satisfies (cf equation (1))

ρ∂2
t Gip − ∂j (cijk`∂`Gkp) = δipδ(x− x′)δ(t) Gip = 0 for t < 0. (3)

2.3. Asymptotic ray theory

Here, we summarize the formulation of anisotropic ray theory for the evaluation of the
Green tensor (see, e.g., Kendallet al [21]). Let

Gip(x,x
′, t) =

∑
N

A(N)(x,x′)ξ (N)i (x)ξ (N)p (x′)δ(t − τ (N)(x,x′))+ terms smoother int.

(4)

In this equation, the arrival timeτ (N) and the associated polarization vectorξ(N) satisfy

(ρδik − cijk`(∂`τ (N))(∂j τ (N)))ξ (N)k = 0 (at all x) (5)

which implies the eikonal equation

det(ρδik − cijk`(∂`τ )(∂j τ )) = 0 (at all x). (6)

The polarization vectors are assumed to be normalized so thatξ
(N)
i ξ

(N)
i = 1. Define the

slowness vectorγ(N) by

γ(N)(x) = ∇xτ (N)(x,x′). (7)

Then, equation (6) constrainsγ to lie on the sextic surfaceA(x) given by

det(ρδik − cijk`γ`γj ) = 0. (8)

A(x) consists of three sheetsA(N)(x), N = 1, 2, 3, each of which is a closed surface
surrounding the origin. An individual sheet is also described by (cf equation (5))

2H = ρ − ξicijk`γ`γj ξk = 0. (9)

The scalar amplitudesA(N) must satisfy the transport equation

∂j (cijk`ξ
(N)
i ξ

(N)
k (A(N))2∂`τ

(N)) = 0 (10)

whereN , again, indicates the mode of propagation, that is, the sheet of the slowness surface
on which the corresponding slowness vector lies.

The characteristic or group velocitiesv(N) are normal toA(N)(x) at γ(N) and satisfy

v(N) · γ(N) = 1 v = ∇γH
γ · ∇γH

∣∣∣∣
H=0

(11)

see equation (9). The normal or phase speeds are given by

V (N) = 1

|γ(N)| . (12)
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The unit phase direction follows as

α(N) = V (N)γ(N).
From equation (11) it follows that

V (N) = |v(N)| cosχ(N) (13)

whereχ(N) is the angle betweenv(N) andγ(N).
The amplitudes can be expressed in terms of certain Jacobians,

A = 1

4π [ρ(x)ρ(x′)M]1/2
with M = |v(x′)|V (x)

∣∣∣∣ ∂x∂q1
∧ ∂x

∂q2

∣∣∣∣
x

/∣∣∣∣ ∂γ∂q1
∧ ∂γ

∂q2

∣∣∣∣
x′

(14)

in which A, M, v, andV carry the superscript(N). Here, (q1, q2) parametrize the rays
originating from the source. One can verify that the dimension ofA is [time]2×[mass]−1,
which upon multiplication by force, with dimensions [mass]×[length]× [time]−2, gives the
dimension of displacement, i.e. [length].

2.4. Source and receiver Green functions

In the integral representation for the scattered field, we need the Green functions originating
both at the source and the receiver points. Furthermore, the gradient of total travel times
from the source to a scattering point to the receiver are required in preparation of the GRT
inversion. We introduce these functions here.

Set

G̃(x, t) = G(x, s, t) Ĝ(x, t) = G(r,x, t). (15)

Employing asymptotic ray theory in both Green functions, we introduce the notation

Ã(Ñ)(x) = A(N)(x, s) Â(M̂)(x) = A(M)(r,x) (16)

in the case of scattering from incident modeN to outgoing modeM.
According to equation (7), the slowness vectors atx are given by

γ̃(Ñ)(x) = ∇xτ (N)(x, s) γ̂(M̂)(x) = ∇xτ (M)(r,x) (17)

the associated phase directions are given by

α̃(Ñ) = γ̃(Ñ)

|γ̃(Ñ)|
α̂(M̂) = γ̂(M̂)

|γ̂(M̂)|
(18)

and the phase speeds (cf equation (12)) are given by

Ṽ (Ñ) = 1

|γ̃(Ñ)|
V̂ (M̂) = 1

|γ̂(M̂)|
. (19)

We also define the two-way travel timeT (ÑM̂) and its gradient,

T (ÑM̂)(r,x, s) ≡ τ (N)(x, s)+ τ (M)(r,x)
Γ(ÑM̂)(r,x, s) ≡ ∇xT (ÑM̂)(r,x, s).

(20)

From equation (17) we see that

Γ(ÑM̂)(r,x, s) = γ̃(Ñ)(x)+ γ̂(M̂)(x). (21)
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The direction ofΓ(ÑM̂),

ν ≡ Γ(ÑM̂)

|Γ(ÑM̂)|
will be the migration dip, which we referred to in the introduction. The ray geometry and
slowness vectors are illustrated in figure 1; the associated polarization vectors are shown in
figure 2.
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Figure 1. Source–receiver ray geometry (S2 = unit sphere).

3. Medium description

Let c(x) denote a smoothly varying background medium. To analyse a typical geological
setting, we consider the following, microlocal, representation,

c(1)(x)→ c(1)(x, φ(x)) (22)

of the medium’s perturbation. Here,φ is a smooth function ofx, some (curved) level
surfaces of which describe a family of interfaces. The gradient of the perturbation is assumed
to vary rapidly normal to the level surfaces ofφ and smoothly along them, implying that

∇xc(1) = (c(1))′(∇xφ)+ terms smoother inx (c(1))′ = ∂φc(1). (23)

This representation extends to a small ball around any point, in particular the image point
y, say, under investigation. The derivative(c(1))′ is understood in the distributional sense.
Typically, it will have a Dirac-distribution-type behaviour across any geological interface.
Loosely, the derivative can be interpreted as the difference in medium properties across a
level surface. The support ofc(1) is denoted byD.
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In the background medium we assume that the ray theory of the previous section applies.
In the forward problem the backgroundc and the perturbationc(1) are both known; in the
inverse problem the aim is to reconstructc(1) given c.

We will omit the first argument ofc(1) in the remainder of this paper, and take only the
most rapidly varying term of the perturbation’s derivatives into account. Imaging reflectors
or interfaces amounts to mapping this leading-order behaviour,(c(1))′. We will confirm
below that our inversion procedure does this, and also provides estimates of angularly
dependent reflection coefficients.
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~ 

 

(M) 
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n n ~ 
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x 
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(NM) ^ ~ 

 

S2 

=t 

Figure 2. Source–receiver ray polarizations.

4. The single scattering equation

In this section, we introduce the Born approximation representing the singly scattered wave
field. We then show how to recast this volume integral representation into a surface integral
for the response to the most singular element of the scattering process, namely, reflecting
the discontinuities of the medium parameters.

4.1. Volume integral representation

We begin the analysis with the volume-scattering representation of the ray-Born
approximation for the scattered displacement fieldu(1) for the (NM) conversion. Let
(r, s) ∈ ∂R × ∂S; ideally, the boundaries∂R, ∂S ∼ S2 (S2 = unit sphere) are closed
surfaces surrounding the heterogeneous domainD. Then thep-component displacement at
r due to aq-component point body force ats is given by (De Hoopet al [14])

u(1)pq (r, s, t) = −
∫
D
ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(x)(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T

×c(1)(x)δ′′(t − T (ÑM̂)(r,x, s)) dx (24)

whereN,M ∈ {1, 2, 3},

A(ÑM̂)(x) = ρ(x)Ã(Ñ)(x)Â(M̂)(x) (25)
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contains the amplitudes,

w(ÑM̂) = {ξ̃ (Ñ)i ξ̂
(M̂)
i , 1

2[â(M̂)ij ã
(Ñ)
k` + â(M̂)k` ã

(Ñ)
ij ]}

â
(M̂)
ij = 1

2V
(M̂)
◦ (ξ̂

(M̂)
i γ̂

(M̂)
j + ξ̂ (M̂)j γ̂

(M̂)
i )

ã
(Ñ)
k` = 1

2V
(Ñ)
◦ (ξ̃

(Ñ)
k γ̃

(Ñ)
` + ξ̃ (Ñ)` γ̃

(Ñ)
k )

describes the contrast-source radiation patterns, and

c(1) =
{
ρ(1)

ρ
,

c
(1)
ijk`

ρV
(M̂)◦ V

(Ñ)◦

}
represents the relative medium perturbation. Here,V (P )◦ denotes the (local) normal speed of
modeP in the background medium averaged over all phase directions. By introducing this

convenient scale, we have made the quantitiesâ
(M̂)
ij , ã(Ñ)k` , andc(1) dimensionless since the

γ’s have the dimensions of [slowness] andcijkl has the dimension of [density]×[velocity]2.
The notation◦ is meant to emphasize that the quantity is angle independent, which is
important for retaining the actual medium perturbation fromc(1) and the GRT inversion to
be applicable.

In the microlocal setting, substituting equation (22) into equation (24), we have

u(1)pq (r, s, t) = −
∫
D
ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(x)(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T

×c(1)(φ(x))δ′′(t − T (x)) dx (26)

where, for convenience, we employ the shorthand notation

T (x) = T (ÑM̂)(r,x, s) Γ(x) = ∇xT (ÑM̂)(r,x, s) (27)

see equation (20). To make use of the properties of the gradient of the medium’s perturbation
(cf equation (23)), we will partially integrate expression (26). Since

(∇xT )(x)δ′′(t − T (x)) = −∇xδ′(t − T (x)) (28)

we have

δ′′(t − T (x)) = − 1

(ν̄ · ∇xT )(x) ν̄ · ∇xδ
′(t − T (x)) (29)

for arbitrary ν̄ ∈ S2 as long asν̄ · ∇xT 6= 0. Hence,

u(1)pq (r, s, t) ' −
∫
D
ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(x)(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T

×(c(1))′(φ(x)) (ν̄ · ∇xφ)
(ν̄ · Γ)

∣∣∣∣
x

δ′(t − T (x)) dx. (30)

Here, the approximation arises from neglecting lower-order terms as in equation (23), as
well as neglecting derivatives of the remaining amplitude in equation (26), compared to
(c(1))′. These will produce asymptotically lower-order contributions to the wave field.

It is assumed that̄ν = ν̄(x) is slowly varying in space, and may be chosen equal to
the localgeological dip,

νφ ≡ ∇xφ|∇xφ| . (31)

On the other hand, we can chooseν̄ = ν, which we always know. In the inverse scattering
problem, the geological dip is unknown and has to be determined. Below, we show that at
stationarity the geological and migration dips must be parallel.
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4.2. Surface integral representation

Now, we show how to recast the volume integral representation (30) into an integral over
surface integrals over the level surfaces ofφ. To this end, we choose curvi-linear coordinates
σ = σ(x), σ = (σµ, σ3), µ = 1, 2, such that theσµ are coordinates in the level surfaces of
φ andσ3 is the local coordinate in theνφ-direction. If σ3 represents the actual value of the
level of φ, we setσ3 = L. (We denote these coordinates as interface normal coordinates.)
The volume form is given by

dx = 1

|∇xφ| dL d6(x) d6(x) = |∂σ1x ∧ ∂σ2x| dσ1 dσ2.

The transformation from Cartesian to curvilinear coordinates yields the Jacobian

∂(x)

∂(σ)
= |∂σ3x · (∂σ1x ∧ ∂σ2x)| =

|∂σ1x ∧ ∂σ2x|
|∇xφ| . (32)

Now write

(c(1))′(φ(x)) =
∫
R
(c(1))′(L)δ(φ(x)− L) dL. (33)

Substituting equation (33) into (30), interchanging the order of integration, and using the
property (cf equation (32))∫

D
. . . δ(φ(x)− L) dx =

∫
φ=L

. . .
1

|∇xφ| d6(x)

we obtain

u(1)pq (r, s, t) ' −
∫
R

dL

[ ∫
φ=L

ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(x)(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T

×(c(1))′(L) (ν̄ · ∇xφ)
(ν̄ · Γ)|∇xφ|

∣∣∣∣
x

δ′(t − T (x)) d6(x)

]
= −

∫
R

dL

[ ∫
φ=L

ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(x)(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T

×(c(1))′(L)(ν̄ · νφ)
(ν̄ · Γ)

∣∣∣∣
x

δ′(t − T (x)) d6(x)

]
. (34)

As a consequence of equation (34), we also have

∂tu
(1)
pq (r, s, t) = −

∫
R

dL

[ ∫
φ=L

ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(x)(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T

×(c(1))′(L)(ν̄ · νφ)
(ν̄ · Γ)

∣∣∣∣
x

δ′′(t − T (x)) d6(x)

]
. (35)

The singular support of the medium perturbation,φ(x) = L, and the isochrone surfaces,
T (x) = t , are illustrated in figure 3.

5. Reflection and transmission coefficients

To identify reflection and transmission coefficients in equation (35), we first extract phase
velocities at the scattering point from the amplitudes,

Au(x) = A(ÑM̂)(x)[Ṽ (Ñ)(x)(V̂ (M̂)(x))3]1/2 (36)
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specular direction

migration dip

geological dip

neighborhood

T( ) = T( ){ }x y

φ( ) = L{ }x

ν

νφ

Figure 3. Microlocal medium perturbation.

then equation (35) can be written in the form

∂tu
(1)
pq (r, s, t) = −

∫
R

[ ∫
φ=L

ξ̂ (M̂)p (r)ξ̃ (Ñ)q (s)Au(x)R
(ÑM̂)
L (x, α̃(Ñ)(x), α̂(M̂)(x))

×(ν̄ · νφ)(ν̄ · Γ)|x δ′′(t − T (x))d6(x)

|∇xφ|
]

dL (37)

in which

R
(ÑM̂)
L (., α̃(Ñ)(.), α̂(M̂)(.)) = (w(ÑM̂))T (c(1))′|∇xφ|

[Ṽ (Ñ)(V̂ (M̂))3]1/2|Γ|2(ν̄ · ν)2 (38)

represents the scattering coefficient for the(NM) conversion atx with φ(x) = L, i.e.

R
(ÑM̂)
L really depends onσµ(x), µ = 1, 2. Observe that the scattering coefficient contains

a function that may be singular on the level surfaces ofφ. In fact, the integration overL
picks up the singular support of(c(1))′.

5.1. Specular reflection and transmission

Now, let c(1) contain a step function inL (across a curved interface atL = L0). Then

(c(1))′(L) = (1c(1))δ(L−L0). At the specular point for givenνφ , the pairα̃(Ñ)(.), α̂(M̂)(.)
satisfies Snell’s law,

α̂(M̂)

V̂ (M̂)
· (I − νφνφ) = − α̃

(Ñ)

Ṽ (Ñ)
· (I − νφνφ). (39)

(In an isotropic medium withM = N the solution is simply given by

α̂(N̂)s = −α̃(Ñ) · (I − 2νφνφ
)

representing ordinary reflection.) At the specular point, the migration dip coincides with
the geological dip,ν = νφ .
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Substituting the solution,α̂(M̂)s , of (39) into the scattering matrix (38), yields the

linearized reflection/transmission coefficientsr(ÑM̂),

r(ÑM̂)L0
(., α̃(Ñ)(.))δ(L− L0) = R(ÑM̂)L (., α̃(Ñ)(.), α̂(M̂)s (.)). (40)

Here, the left-hand side exploits the evaluation ofα̂(M̂) at specular and explicitly notes the
distributional character of the right-hand side. In fact, withν̄ = νφ , (37) is equivalent to
the Kirchhoff–Born approximation, which unlike the Kirchhoff approximation satisfies the
principle of reciprocity. For notational convenience, we introduce

R(ÑM̂)
L (., α̃(Ñ)(.)) = r(ÑM̂)L0

(., α̃(Ñ)(.))δ(L− L0) (41)

to absorb the Dirac distribution inR(ÑM̂)
L .

5.2. The Kirchhoff approximation

Here, we show how to go from the linearized Born representation equation (35) to the
nonlinear Kirchhoff approximation. For general reference, we introduce the relevant
scattering and specular angles: in addition toν, we set

cosθ = α̃(Ñ) · α̂(M̂) ψ = third Euler angle. (42)

Then, at any point inD, we have a mapping

(α̃(Ñ)(.), α̂(M̂)(.))→ (ν ., θ., ψ.). (43)

If ν = νφ , the ray geometry is specular; let the associated specular scattering angles be
defined as

cosθ̃ = α̃(Ñ) · νφ cosθ̂ = α̂(M̂)s · νφ θs = θ̃ − θ̂ . (44)

In the non-reciprocal, ‘nonlinear’ Kirchhoff approximation, the scattering matrix is simply
replaced by theexactreflection/transmission coefficients at specular, cf equation (37) with
ν̄ = νφ ,

∂tu
(1)
pq (r, s, t) = −

∫
R

[ ∫
φ=L

ξ̂ (M̂)p (r)ξ̃ (N̂)q (s)Au(x)R
(ÑM̂)
L (x, α̃(Ñ)(x))(νφ · Γ)|x

×δ′′(t − T (x))d6(x)

|∇xφ|
]

dL. (45)

For wide-angle (θ ) scattering, this representation is certainly more adequate than
equation (37). The time derivative is taken to pave the way for the Radon transform
inversion. (In three dimensions, one needs the second derivative of the Dirac distribution.)
In our further analysis, we actually employ the reciprocal representation equation (37) in

which R(ÑM̂)L is replaced by the full reflection/transmission coefficient at specular. Note

that due to the singular function contained inR(ÑM̂)
L , cf equation (40), the integration over

L in (45) reduces to a sum over scattering surfaces or interfaces.

6. Stationary phase analysis of the direct scattering problem

By applying stationary phase arguments, the integral in equation (37) can be evaluated. The
analysis confirms the consistency with asymptotic ray theory in configurations with a family
of surface scatterers.
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We choose rotated Cartesian coordinates(xµ, z), µ = 1, 2, in the neighbourhood of a
yet-to-be determinedspecular pointy(L) ∈ {φ = L}, such that

z ‖ νφ {xµ} ⊥ νφ (46)

and

ν = νφ
see figure 3. The functionT (y(L)) has a derivative given by

dT

dL
= |∇xT ||∇xφ|

∣∣∣∣
y(L)

(47)

while, by the implicit function theorem, the functionLy(t) satisfying

T (y(Ly(t))) = t
exists.

Taylor expansions of the level and isochrone surfaces including the curvature terms
yield

0= φ(x)− φ(y) = |∇xφ(y)|z + 1
2xµφµν(y)xν

T (x) = T (y)+ |∇xT (y)|z + 1
2xµTµν(y)xν. (48)

(Summations are carried out overµ, ν.) Here,

φµν(y) = ∂2φ

∂xµ∂xν

∣∣∣∣
y

Tµν(y) = ∂2T

∂xµ∂xν

∣∣∣∣
y

. (49)

The first equality in (48) amounts to the representation of the level surface{φ = L},

z = −xµφµνxν
2|∇xφ|

which upon substitution in the second equality yields

T (x) = T (y)+ 1
2|∇xT (y)|xµϒµν(y)xν (50)

with

ϒµν ≡ Tµν

|∇xT | −
φµν

|∇xφ|
andx,y in the same level surface. Note that the matrixϒ may vary with the levelL, and
can be negative or positive definite, or indefinite. Assuming that the rank ofϒ is full, for
t nearT (y), we have the intermediate result∫
φ=L

δ′(t − T (x)) d6(x) = ∂2
t

∫
φ=L

H(t − T (x)) d6(x)

' ∂2
t

∫
R2
H(t − T (y)− 1

2|∇xT (y)|xµϒµν(y)xν) dx1 dx2

= 2πδ∗(t − T (y))
|Γ(y)|√| det(ϒ(y))| (51)
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using tangent plane coordinates, and where

δ∗ =


δ if ϒ positive definite

Hδ if ϒ indefinite

−δ if ϒ negative definite.

(52)

In the aboveH denotes the Hilbert transform; the notation∗ indicates an action on the
time dependence. If the rank ofϒ drops—in the vicinity of a caustic—higher-order Taylor
expansions in equation (48) are required; still, upon taking one time derivative and the
Heaviside function together, the integral in equation (51) can be evaluated (see also Chester
et al [22] and Hanyga and Seredynska [23]).

We will use equation (51) to evaluate the integral in equation (34) eventually. First,
note that equation (51) implies∫
R

dL

[ ∫
φ=L

(c(1))′(L)
(ν̄ · νφ)
(ν̄ · Γ)

∣∣∣∣
x

δ′(t − T (x)) d6(x)

]
'
∫
R

dL(c(1))′(L)
2π

|Γ|√| det(ϒ)|
(ν̄ · νφ)
(ν̄ · Γ)

∣∣∣∣
y(L)

δ∗[t − T (y(L))]

= 2π

|Γ|√| det(ϒ)|
(ν̄ · νφ)
(ν̄ · Γ)

∣∣∣∣
y(Ly(t))

(
dT

dL

)−1

(c(1))′
∣∣∣∣∗
Ly(t)

(53)

where, for any functionf,(
dT

dL

)−1

f
∣∣∣∣∗
Ly(t)

=
∫
R

f(L)δ∗[t − T (y(L))] dL.

Substituting equation (47) into (53), and using the result in (34) implies

u(1)pq (r, s, t) ' −
2π |∇xφ|√| det(ϒ)||Γ|3 ξ̂

(M̂)
p (r)ξ̃ (Ñ)q (s)A(ÑM̂)(.)

×(w(ÑM̂)(., α̃(Ñ)(.), α̂(M̂)s (.)))T |y(Ly(t))(c(1))′|∗Ly(t) (54)

since at the specular point we haveν = νφ andνφ ·Γ = |Γ|. This formula is an extension
of the convolutional modelapproximation in one-dimensional space to three dimensions.

In terms of the reflection/transmission coefficients, we have

u(1)pq (r, s, t) ' −
2π√| det(ϒ)||Γ| ξ̂

(M̂)
p (r)ξ̃ (Ñ)q (s)Au(.)R

(ÑM̂)
L

∣∣∣∣∗y=y(L)
L=Ly(t)

(note that the∗ relates to the KMAH index, see e.g. Hörmander [24]). To verify this result,
use equations (36), (38), (40), and (41) in (54).

7. Inversion based on the GRT

First, we recognize that equation (35) has the structure of a GRT. Beylkin [7] has developed
a way to invert the GRT asymptotically by proving the property that∫
S2

[1+O(|x− y|)]δ′′(ν · (y − x)+O(|x− y|2)) dν

= − 8π2δ(y − x)+ smoother terms (55)
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whereO(|x− y|) andO(|x− y|2) may depend onν. Up to leading orders, this property
can be recast into the form

−8π2δ(φ(y)− L) =
∫
S2

∫
D
δ(φ(x)− L)δ′′((y − x) · ν) dx dν

=
∫
S2

∫
φ=L

δ′′((y − x) · ν)d6(x)

|∇xφ| dν. (56)

We will now use this expansion to invert equation (35).

7.1. Linearized inversion

In preparation of the inverse transformation, we introduce the scalar quantity on the
diffraction surface,

∂tu
(ÑM̂)(r, s,y) = ξ̂ (M̂)p (r)∂tu

(1)
pq (r, s, T

(ÑM̂)(r,y, s))ξ̃ (Ñ)q (s)

A(ÑM̂)(y)
. (57)

Then, using equation (37), we get

∂tu
(ÑM̂)(r, s,y)

[Ṽ (Ñ)(y)(V̂ (M̂)(y))3]1/2
' −

∫
R

[ ∫
φ=L

R
(ÑM̂)
L (x, α̃(Ñ)(x), α̂(M̂)(x))

×(ν̄ · νφ)(ν̄ · Γ)|x δ′′(T (y)− T (x))d6(x)

|∇xφ|
]

dL. (58)

Here, we have setAu(x)/Au(y) = 1+ O(|x − y|), which is its value at the dominant
critical point of the integrand. Furthermore, we will exploit the expansion

T (y)− T (x) = Γ(y) · (y − x)+O(|x− y|2) ' |Γ(y)|(y − x) · ν (59)

which describes the tangent plane to the isochron aty. In our further analysis, we will
make use of the identity

δ′′(|Γ(y)|(y − x) · ν) = |Γ(y)|−3δ′′((y − x) · ν).
The inversion is accomplished by setting up a system of 22 equations, using the contraction
according to equation (57), and employingα̃ andα̂ as variables of integration, i.e.

w(ÑM̂)(y, α̃(Ñ)(y), α̂(M̂)(y))∂tu
(ÑM̂)(r, s,y)

|Γ|4
(ν · νφ)

∣∣∣∣
y

∂(α̃, α̂)

∂(s, r)

∣∣∣∣
y

ds dr

= −
∫
R

dL

[ ∫
φ=L

w(ÑM̂)(y, α̃(Ñ)(y), α̂(M̂)(y))

×w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x))T (c(1))′(L)

× (ν · Γ)
(ν · νφ)

∣∣∣∣
y

(ν̄ · νφ)
(ν̄ · Γ)

∣∣∣∣
x

∂(α̃, α̂)

∂(ν, θ, ψ)

∣∣∣∣
y

δ′′((y − x) · ν) d6(x)

]
dν dθ dψ. (60)

Define the matrix

3.(ν .) ≡
∫
S2
w(ÑM̂)(., α̃(Ñ)(.), α̂(M̂)(.))w(ÑM̂)(., α̃(Ñ)(.), α̂(M̂)(.))T

∂(α̃, α̂)

∂(ν, θ, ψ)

∣∣∣∣
.

dθ dψ

(61)
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at any image pointy. Then, employing equation (56) in (60) and settingν̄ = ν (recall that
ν̄ has been arbitrary until now), yields

(c(1))′(φ(y))|∇xφ|y =
∫
R
(c(1))′(L)δ(φ(y)− L)|∇xφ|y dL ' 1

8π2

∫
∂S×∂R

3−1
y

×w(ÑM̂)(y, α̃(Ñ)(y), α̂(M̂)(y))∂tu
(ÑM̂)(r, s,y)

|Γ|4
(ν · νφ)

∣∣∣∣
y

∂(α̃, α̂)

∂(s, r)

∣∣∣∣
y

ds dr.

(62)

Note that in this inversion formula the actual shape of the level surfaces ofφ is not
used; just the local normal at the image point plays a role. However, in section 9 it
will be argued that the inner product,(ν · νφ), can be removed from the formula without
changing the resolution analysis in the high-frequency approximation. The inverse of3 is
understood in thegeneralizedsense (see de Hoopet al [25]) which is necessary in view of
the possibility that not all parameters can be (stably) reconstructed. In fact, our inversion
for reflectivity will circumvent this problem. We will denote the intermediate reconstruction
as〈(c(1))′(φ(y))|∇xφ|y〉.

Through equation (60), we have the freedom to carry out the inversion equation (62) in
two steps. For a given image pointy, we can imagine the data [(s, r) pairs] to be sorted
into common(θ, ψ) gathers. The variable in such gathers is the migration dipν; formally,
we denote these gathers by(∂S × ∂R)′(y; θ, ψ). The integration over dip is then carried
out prior to the integration over scattering angle and azimuth. (In practice, shooting the
rays fromy would be controlled byα̃; α̂ then follows from(θ, ψ). The data would be
simply selected at those locations where the rays intersect∂S and∂R, respectively.)

To control the illumination of the image point at a given dip, we introduce the partition
of unity, {χJ }, and

〈(c(1))′(φ(y))|∇xφ|y〉 =
∑
J

1

8π2

∫
∂S×∂R

3−1
y w

(ÑM̂)(y, α̃(Ñ)(y), α̂(M̂)(y))∂tu
(ÑM̂)(r, s,y)

× |Γ|4
(ν · νφ)

∣∣∣∣
y

χJ (s, r)
∂(α̃, α̂)

∂(s, r)

∣∣∣∣
y

ds dr. (63)

Each term in the summation represents a partial reconstruction.

7.2. Resolution analysis

Backsubstituting the Kirchhoff–Born scattering formula equation (35) withν̄ = ν, into the
inversion formula (63) and substituting the one-sided Fourier representation of the Dirac
distribution,

δ′′(T (y)− T (x)) = −Re
1

π

∫
R+

exp[iω(T (y)− T (x))]ω2 dω

yields theresolutionoperator,

〈(c(1))′(φ(y))|∇xφ|y〉 =
∫
R

∫
φ=L
R(y,x)(c(1))′(φ(x))|∇xφ|x d6(x)

|∇xφ|x dL (64)

with matrix kernelR,

R(y,x) = Re
∑
J

1

8π3

∫
exp[i8(y,x,2)]a(y,x,2)χJ (2) d2. (65)
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Here,2 = (ω, s, r) and∫
R+×∂S×∂R

. . .d2 =
∫
∂S×∂R

∫
R+
. . . |Γ(y)|3ω2 dω ds dr. (66)

The resolution operator expresses how well the reconstruction can be accomplished within
the framework of the linear theory.

The phase function8 of the Fourier integral operator with kernel (65) is simply given
by

8(y,x,2) ≡ ω(T (y)− T (x)) (67)

while the amplitude function arises as the matrix

a(y,x,2) ≡ Au(x)

Au(y)
ξ̂ (M̂)p (r,y)ξ̂ (M̂)p (r,x)ξ̃ (Ñ)q (s,y)ξ̃ (Ñ)q (s,x)[(3y(ν(r,y, s)))

−1

×w(ÑM̂)(y, α̃(Ñ)(y), α̂(M̂)(y))(w(ÑM̂)(x, α̃(Ñ)(x), α̂(M̂)(x)))T ]

×
[
Ṽ (Ñ)(y)(V̂ (M̂)(y))3

Ṽ (Ñ)(x)(V̂ (M̂)(x))3

]1/2 |Γ(y)|
|Γ(x)|

(ν · νφ)x
(ν · νφ)y

∂(α̃, α̂)

∂(s, r)

∣∣∣∣
y

. (68)

In anticipation of introducing the scattering coefficients (cf equation (38)), we introduce the
one-dimensional array of functionsaR, satisfying

aR(y,x,2)R
(ÑM̂)
L (x, α̃(Ñ)(x), α̂(M̂)(x)) = a(y,x,2)(c(1))′(φ(x))|∇xφ|x. (69)

We will interpret2 in the spatial Fourier domain. To this end, we carry out two coordinate
transformations. First, we employ the ray-induced mapping

s = s(Ñ, M̂,ν, θ, ψ) r = r(Ñ, M̂,ν, θ, ψ) for fixed y (70)

with ∫
∂S×∂R

· · · ∂(α̃, α̂)
∂(s, r)

∣∣∣∣
y

ds dr =
∫
S2×S2

· · · ∂(α̃, α̂)
∂(ν, θ, ψ)

∣∣∣∣
y

dν dθ dψ.

Thus, aty, 2 is mapped on(ω,ν, θ, ψ), and we set

a(y,x, ω,ν, θ, ψ)
∂(α̃, α̂)

∂(s, r)

∣∣∣∣
y

= a(y,x, ω, s, r) ∂(α̃, α̂)
∂(ν, θ, ψ)

∣∣∣∣
y

.

We identify

T (ÑM̂)(r,x, s) with T (ÑM̂)(x,ν, θ, ψ).

Second, the frequencyω is transformed to the wavenumberk0 according to

k0 ≡ ω|Γ(y)|. (71)

Then ∫
R+
. . . |Γ(y)|3ω2 dω =

∫
R+
. . . k2

0 dk0. (72)

We now identify the wavevector

2′ ≡ k0ν ∈ R3 with d2′ = k2
0 dk0 dν (73)

and we will consider(θ, ψ) as parameters, i.e.2 → (ω,ν, θ, ψ) → (2′, θ, ψ). The
Jacobian of the latter transformation is written as (cf equation (72))

∂(2′)
∂(ω,ν)

∣∣∣∣
y

= h(y,ν)ω2 h(y,ν) = |Γ(y)|3.
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Formally, also

h = |det(Γ ∂ν1Γ ∂ν2Γ)|. (74)

The inverse transformation to frequency, the so-called Stolt mapping, is given by

ω(2′) = 2′ · Γ(y)
|Γ(y)|2 (75)

since also

2′ = ωΓ(y).

We identify

8(y,x,2) with 8(y,x,2′, θ, ψ).

In the phase space with coordinates(x,2′), equation (65) gives rise to the resolution
equation

〈(c(1))′(φ(y))|∇xφ|y〉 = Re
∑
J

∫
S2

1

8π3

∫
R

∫
φ=L

∫
R+×S2

exp[i8(y,x,2′, θ, ψ)]

×a(y,x,2′, θ, ψ)χJ (2′, θ, ψ)d2′×(c(1))′(φ(x))|∇xφ|x d6(x)

|∇xφ|x dL dθ dψ.

(76)

Forx neary,8 = 2′·(y−x)+· · · . The integration over2′ represents the spatial resolution,
whereas the integration overθ, ψ primarily represents the parameter resolution per migration
dip. However, note that the parameter resolution couples to the spatial resolution, since2′

in general depends on(θ, ψ).
Below, we will constrainχJ to be a function ofk0 = |2′|, θ, ψ alone.

7.3. Stationary phase analysis of the resolution operator

Inside the integral overω in equations (65) and (66), we considerω to be large. Then,
we apply a four-dimensional stationary phase analysis with respect to the integrations over
(σ1, σ2,ν) ∈ S(L) × S2, cf equation (76). The rangeS(L) indicates that the surfaces are
contained inD.

We choose polar coordinates on theν-sphere,

ν = (sinθν cosψν, sinθν sinψν, cosθν).

We extractL = σ3 andk0 = |2′| from the set of phase space coordinates,

(x,2′)→ (σ1, σ2, L, k0, θ
ν, ψν) η ≡ (σ1, σ2, θ

ν, ψν)

resubstitutek0 = ω|Γ(y)|, and set

8(y,x,2′, θ, ψ) = ω8′(y, L, η, k0, θ, ψ).
Writing the coordinates explicitly, the resolution equation (76) takes the form

〈(c(1))′(φ(y))|∇xφ|y〉 = Re
∑
J

∫
S2

1

8π3

∫
R

∫
R+

∫
S(L)×S2

exp[iω8′(y, L, η, k0, θ, ψ)]

×a(y, L, η, k0, θ, ψ)χJ (k0, θ, ψ)h(y,ν)(c(1))′(φ(x(σ)))|∇xφ|x(σ)
× dη

|∇xφ|x(σ) ω
2 dω dL dθ dψ (77)
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where

dη = d6(x) sinθνdθνdψν. (78)

For given(θ, ψ), the phase8′ is stationary with respect to the variables of integrationη if

∂σµ8
′ = 0 and ∂(θν ,ψν)8

′ = 0. (79)

Here,

∂σµ8
′ = −Γ · ∂σµx (80)

while

∂θν8
′ = [γ̂(M̂)(y)− γ̂(M̂)(x)] · ∂θνr + [γ̃(Ñ)(y)− γ̃(Ñ)(x)] · ∂θνs

∂ψν8
′ = [γ̂(M̂)(y)− γ̂(M̂)(x)] · ∂ψνr + [γ̃(Ñ)(y)− γ̃(Ñ)(x)] · ∂ψνs. (81)

The stationary points are denoted asσ 0
µ = σ 0

µ(y) and induce the mappingx(σ 0
µ, L) for any

L. The solution of the first equation in (79) with (80) implies that the stationary migration
dip, ν0, must be parallel to the geological dip,νφ , i.e.

ν0 = ±νφ. (82)

One solution,σ 0
µ, of the second equation is easy to identify:

x(σ 0
µ, L) = y.

At this value one expects the peak contribution to the resolved medium perturbation. At
x(σ 0

µ, L), given ν0, (θ, ψ) will determine the stationary values of(s, r). We denote the
stationary points byη0 = (σ 0

µ,ν
0(x(σ 0

µ, L))), and the stationary point set byH 0, which
contains at least two elements (cf equation (82)).

Applying the four-dimensional stationary phase approximation to equation (77) amounts
to

〈(c(1))′(φ(y))|∇xφ|y〉=
∑
η0∈H 0

Re
∑
J

∫
S2

1

8π3

∫
R

∫
R+

(
2π

ω

)2

exp

[
iω8′(y, L, η0, k0, θ, ψ)

+i
π

4
sig(∇η∇η8′)0

]
a(y, L, η0, k0, θ, ψ)√| det(∇η∇η8′)0|

χJ (k0, θ, ψ)h(y,ν
0)

×(c(1))′(φ(x(σ 0
µ, L)))|∇xφ|x(σ 0

µ,L)

|∂σ1x ∧ ∂σ2x|
|∇xφ|

∣∣∣∣
x(σ 0

µ,L)

ω2 dω dL dθ dψ (83)

in the absence of singularities. (Singularities require a separate analysis, which we will
discuss in a separate paper.) Here, sig denotes the number of positive eigenvalues minus the
number of negative eigenvalues of a matrix. In equation (83),k0 is the stretch of frequency
with |Γ(y)|0, the norm of the gradient of travel time in case the migration dip is stationary.

In terms of the scattering coefficients (cf equation (69)), forx(σ 0
µ, L) neary ∈ {φ = L},

expression (83) reduces to

〈(c(1))′(φ(y))|∇xφ|y〉 '
∑

ν0=±νφ

1

2

∑
J

∫
S2

∫
R

Re
1

π

∫
R+

exp

[
iω8′(y, L, η0, k0, θ, ψ)

+i
π

4
sig(∇η∇η8′)0

]
χJ (k0, θ, ψ)dk0

×aR(y, L, η
0, k0, θ, ψ)R

(ÑM̂)
L (η0, k0, θ, ψ)h(y,ν

0)

|Γ(y)|0√|det(∇η∇η8′)0|
×|∂σ1x ∧ ∂σ2x|

|∇xφ|
∣∣∣∣
x(σ 0

µ,L)

dL dθ dψ. (84)
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Recognizing the bandlimited Dirac distribution,

I1,J (ν
0 · (y − x)) ≡ 1

π

∫
R+

exp

[
iω8′(y, L, η0, k0, θ, ψ)+ i

π

4
sig(∇η∇η8′)0

]
×χJ (k0, θ, ψ)dk0 (85)

we find that the reconstruction amounts to a weighted integration of scattering coefficients,

〈(c(1))′(φ(y))|∇xφ|y〉 '
∑

ν0=±νφ

1

2

∑
J

∫
Eθ×Eψ

∫
R

ReI1,J (ν
0 · (y − x)) 1

|∇xφ|
∣∣∣∣
x(σ 0

µ,L)

×aR(y, L, η
0, k0, θ, ψ)R

(ÑM̂)
L (η0, k0, θ, ψ)h(y,ν

0)

|Γ(y)|0√|det(∇η∇η8′)0|
×|∂σ1x ∧ ∂σ2x|x(σ 0

µ,L)
dL dθ dψ (86)

where we have accounted for the fact that the range of integration overθ, ψ will be limited
by the acquisition geometry. The ranges are given byEθ = Eθ(ν0), Eψ = Eψ(ν0, θ).

In section 9, we will evaluate the Hessian det(∇η∇η8′)0 and show that sig(∇η∇η8′)0 =
0 atν0 = ±νφ . Then, in case the partition is complete, we have∑
J

ReI1,J (ν
0 · (y − x)) 1

|∇xφ| =
1

|∇xφ|δ(ν
0 · (y − x)) ' δ(φ(y)− φ(x)). (87)

Due to the point symmetry of the slowness surface at the image pointy, we can replace
the summation

∑
ν0=±νφ

1
2 by the substitutionν0 = νφ .

8. GRT inversion of Kirchhoff data

Now, we will analyse the resolution operator from a different perspective. To accommodate
for the ‘nonlinear’ reflection/transmission coefficients, we substitute our Kirchhoff-like
approximation, a mixture of equations (37) and (45), into the inversion formula (62). The
result is an equation very similar to (86). We obtain

〈(c(1))′(φ(y))|∇xφ|y〉 '
∑

ν0=±νφ

1

2

∫
Eθ×Eψ

∫
R
r(ÑM̂)L dL dθ dψ (88)

where

r(ÑM̂)L =
∑
J

ReI1,J (ν
0 · (y − x)) 1

|∇xφ|
∣∣∣∣
x(σ 0

µ,L)

×aR(y, L, η
0, k0, θ, ψ)R

(ÑM̂)
L (η0, k0, θ, ψ)h(y,ν

0)

|Γ(y)|0√| det(∇η∇η8′)0|
|∂σ1x ∧ ∂σ2x|x(σ 0

µ,L)
.

(89)

Componentwise, the reflection/transmission coefficients can be identified, namely, by
undoing the multiplications byaR.

9. Imaging reflectivity

9.1. The Hessian

In this section we will evaluate the Hessian of8′ at a stationary point. First, note that
∂νµ∂νν8

′ = 0 at the stationary pointx = y (then8 ≡ 0). Hence,

det(∇η∇η8′)0 = [det(∇ν∇σ8′)0]2. (90)
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On the other hand, note that

(∂νµ∂σν8
′) = (∂νµΓ) · (∂σνx). (91)

This matrix can be written in the form(− ∂ν1Γ −
− ∂ν2Γ −

) | |
∂σ1x ∂σ2x

| |


hence, also,

|Γ| det[(∂νΓ) · (∂σx)] = det

− ∂ν1Γ −
− ∂ν2Γ −
− Γ −

 | | |
∂σ1x ∂σ2x νφ

| | |

 . (92)

In this expression, the first matrix on the right-hand side can be identified ash (see
equation (74)) and the second one with the Jacobian of the coordinate transformation (32).
Hence, using equation (90), we arrive at the identity

|Γ|0
√

det
(∇η∇η8′)0 = h(.,ν0)|∂σ1x ∧ ∂σ2x|x(σ 0

µ,L)
. (93)

In view of equation (90), the positive and negative eigenvalues must come in pairs, so that
sig(∇η∇η8′)0 must be equal to 0 or 4. On the other hand, we have intrinsically assumed
that the gradient of two-way travel does not vanish, so thath 6≡ 0. In accordance with
equation (93), hence, the determinant cannot vanish. This implies that under continuous
deformations of the interface and ray geometries, the signature of the Hessian cannot change
from 0 to 4 orvice versa(this would require an eigenvalue to become zero). In the case of
flat level surfaces, it can be shown that the signature equals zero, which now implies that

sig(∇η∇η8′)0 = 0

for anyφ.

9.2. The modified GRT inversion

Substituting equation (93) into (89) now yields

r(ÑM̂)L =
∑
J

ReI1,J (ν
0 · (y − x)) 1

|∇xφ|
∣∣∣∣
x(σ 0

µ,L)

aR(y, L, η
0, k0, θ, ψ)R

(ÑM̂)
L (η0, k0, θ, ψ)

(94)

which is the proper interpretation of the set of images created by the GRT inversion formula
(62). To arrive at this expression, we could use that at the stationary dipν0 = νφ , and we
could set(ν · νφ) = 1 in equation (62) to begin with. Thus,a priori knowledge about the
geological dip is not required.

In the stationary phase approximation, we can rewrite inversion formula (62) with (88)
as∫
R
r(ÑM̂)L dL ' 1

8π2

∫
S2
3−1
y w

(ÑM̂)(y, α̃(Ñ)(y), α̂(M̂)(y))∂tu
(ÑM̂)(r, s,y)

×|Γ|4 ∂(α̃, α̂)

∂(ν, θ, ψ)

∣∣∣∣
y

dν. (95)

Here, we employ the mappings defined in equation (70).
To extract the reflection coefficient fromr(ÑM̂), one has to estimate theaR, which are

functions of the stationary dip, scattering angle and azimuth. In the inversion procedure, we
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control the scattering angle and azimuth; in principle, we can estimate the geological dip
from any of the images. With this estimate, theaR can be evaluated. Now, note that (94)
comprises a system of equations; from each equation, in principle, the reflection coefficient
at specular can be determined. This redundancy can be employed to verify or improve
the estimate of the stationary dip. The stationary dip also appears in the spectrum of the
medium’s perturbation; this is discussed in the appendix.

On the other hand, by virtue of the stationary phase approximation, we can remove the
AVA inversion nested in formula (62): consider the procedure∫

R
r(ÑM̂)L dL ' 1

8π2

∫
S2

|Γ(y)|m∂tu(ÑM̂)(r, s,y)
[Ṽ (Ñ)(y)(V̂ (M̂)(y))3]1/2

dν. (96)

ThenaR must be replaced by the scalar quantity

aR(y,x,2)→ Au(x)

Au(y)
ξ̂ (M̂)p (r,y)ξ̂ (M̂)p (r,x)ξ̃ (Ñ)q (s,y)ξ̃ (Ñ)q (s,x)

×|Γ(y)|m−3|Γ(x)| (ν · νφ)x
(ν · νφ)y

. (97)

Its diagonal is given by

aR(y,y,2)→ |Γ(y)|m−2. (98)

By producing images both withm = 4 andm = 3, |Γ(y)| at stationary can be imaged as
well, namely, from the ratio of the images. Then the stationary dip is not required to find
the reflection coefficient.

10. Discussion

We have shown, by carrying out a stationary phase resolution analysis, that it is feasible to
extract information about the angular dependent reflection coefficients from a GRT-based
migration/inversion. We did not have to linearize nor expand the coefficients. In fact, the
outcome of the resolution analysis is a multiple set of images for the reflection coefficients
for the available range of specular scattering angles. Any type of AVA analysis can then
be applied to interpret those images. In the derivation we have made use of the fact that
the surface integral representations are linear in the scattering coefficients; these coefficients
reduce, at specular, to the reflection coefficients.

The GRT approach employs a somewhat unusual input of data, namely, via common
(θ, ψ) gathers. The inversion formula reduces to a two-dimensional integration over
migration dip. The(θ, ψ) sorting, however, varies with the image point. It bears
resemblance with the sorting in common offset, though. The use of such a sorting, however,
necessitates the calculation of an additional Jacobian. Note that in the actual inversion
procedure, the sorting does not have to be carried out.
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Appendix. The spectrum of the medium perturbation

In principle, the geological dip can be directly estimated from an image. However, the
geological dip is also hidden in the spectrum of the medium perturbation equation (33).

Setting (cf equation (46))

z ‖ νφ {xµ} ⊥ νφ
at y ∈ D, the medium perturbation spectrum is of the form (cf equation (33))

∂φ̃c(1)(k) =
∫
R

dL(c(1))′(L)
∫
D
δ(φ(x)− L) exp[−i(kµxµ + kz(zy(L)+ z))] dx (A.1)

where in factk = 2′ = k0ν. Near the level surfaceφ = L, we employ the expansion

φ(x) = L+ |∇xφ|z + 1
2xµφµνxν. (A.2)

We implicitly assume that the integral overL is windowed aroundy such that in the window
or neighbourhoodφµν may depend onL but νφ does not. At the level surface on whichy
lies, we havezy = 0. Then,

∂φ̃c(1)(k) '
∫
R

dL(c(1))′(L) exp[−ikzzy(L)]

×
∫
D
δ

(
|∇xφ|z + 1

2
xµφµνxν

)
exp[−i(kµxµ + kzz)] dx1 dx2 dz

=
∫
R

dL(c(1))′(L) exp[−ikzzy(L)]

×
∫
R2

exp

[
−i

(
kµxµ − kz xµφµνxν

2|∇xφ|
)]

dx1dx2

|∇xφ|

=
∫
R

2π exp[π i sig(kzφµν)/4]

|kz|
√| det(φµν |

exp

[
ikµ
|∇xφ|
kz

φ−1
µν kν

]
×(c(1))′(L) exp[−ikzzy(L)] dL (A.3)

where sig, as in the main text, represents the sum of signs (±1) of eigenvalues ofkzφµν .
Note thatkµ = 0 corresponds with the geological dip direction.

If the level surfaces ofφ wereflat andνφ = ν1 fixed, we would get

∂φ̃c(1)(k) = δ(k − (k · ν1)ν1)(̃c(1))′(k · ν1)

= 1

k2
0

δ(ν − (ν · ν1)ν1)(̃c(1))′(k0(ν · ν1))

which, in the Radon domain, implies∫
D
∂φc

(1)(φ(x))δ′′(y · ν − x · ν) dx

= − 1

π
δ(ν − (ν · ν1)ν1)Re

∫
R+
(̃c(1))′(k0(ν · ν1)) exp(ik0ϕ) dk0

∣∣∣∣
ϕ=y·ν

= − 1

π
δ(ν − (ν · ν1)ν1)Re

∫
R+
(̃c(1))′(k0) exp(ik0ϕ) dk0

∣∣∣∣
ϕ=y·ν1

. (A.4)

This formula shows that the GRT algorithm can reveal the geological dip explicitly. We
assumed a proper coordinate system onS2, such that∫

S2
δ(ν − (ν · ν1)ν1) dν = 1.
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