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Abstract

Consider a Riemannian manifold in dimension n > 3 with a strictly convex
boundary. We prove the local invertibility, up to potential fields, of the
geodesic ray transform on tensor fields of rank four near a boundary point.
This problem is closely related to elastic gP-wave tomography. Under the
condition that the manifold can be foliated with a continuous family of strictly
convex hypersurfaces, the local invertibility implies a global result. One can
straightforwardedly adapt the proof to show similar results for tensor fields of
arbitrary rank.

Keywords: tensor tomography, elastic-wave travel-time tomography,
scattering calculus

1. Introduction

We let M C R? be a bounded domain with a smooth boundary OM and x = (x!,x?, x*) be the
Cartesian coordinates. The system of equations describing elastic waves reads

pOu = div(Ce(u)). (1.1

Here, u denotes the displacement vector and

() = (Vu+ (V) /2 = () = 5 (g + o )

4 Author to whom any correspondence should be addressed.
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the linear strain tensor which is the symmetric part of Vu. Furthermore, C = (Cjjir) = (Cyu(x))
is the stiffness tensor and p = p(x) is the density of mass.
The stiffness tensor is assumed to have the symmetries

Ciiit = Cjit = Cyjj-

The operator div(Ce(-)) is elliptic if we additionally assume that there exists a ¢ > 0 such that
for any 3 x 3 real-valued symmetric matrix (g;),

3

3
2 : § : 2
Cijklsijekl 2 1) 81:1"

ijk,l=1 ij=1
If the stiffness tensor C is isotropic, we have
Ciji = Nijou + p(0iwdjr + udjn), (1.2)
where )\, p1 are referred to as the Lamé parameters. For isotropic elasticity there are two differ-
ent wave-speeds, namely, P-wave (longitudinal wave) speed cp = /(X + 21)/p and S-wave
(transverse wave) speed ¢s = v/ p/p. Then we can consider M as a manifold with metric
C;stz or cgzdsz. Correspondingly, we can view P waves traveling along geodesics in the
Riemannian manifold (M, C;stz), and S waves traveling along geodesics in the Riemannian
manifold (M, cg *ds?).
If there is an anisotropic perturbation a;j; around isotropy, that is,

Cijt = Noyjow + (S + 6udjx) + ajjua,

the perturbation in the travel time of P-waves along a geodesic -y gives the following quantity

[2]:

ikl i<kl
— 7Yy yde 1.3
[/ pep 43
Here, « is a geodesic in (M, c,?zdsz). The same quantity has been derived by a different per-
turbation analysis [13]. Equation (1.3) represents a geodesic ray transform of a four-tensor
bijkl = “‘—C’ké’ in (M, c;zdsz).
Let (M, g) be a compact Riemannian manifold with boundary OM. The geodesic ray trans-
form of a symmetric tensor field f of order m is given by

I () = / ), 37 (1)) (1.4)

where, in local coordinates, {f,v"(t)) = f;,.... ;. 0" - - - v, and ~y runs over all geodesics with
endpoints on OM. We note, here, that the tensor b in (1.3) is not fully symmetric. Thus, we
introduce f as the symmetrization of b, and study the geodesic x-ray transform I4f. A general
tensor with symmetry (1.2) has 21 unknowns, while a symmetric four-tensor has 15 unknowns.
Therefore, we have already lost six components of C in the formulation of the problem.

It is known that potential tensor fields, i.e. f = d'v with v a symmetric field of order
m — 1 vanishing on OM (m > 1), are in the kernel of I,,. Here, d* is the symmetric part of the
covariant derivative V, which will be explicitly defined in (2.6). We say that I, is s-injective
if I;f = 0 implies f = d*v with v|sy = 0. The s-injectivity of I,, has been extensively inves-
tigated, and we refer to [5, 17] for detailed reviews.

Assuming that M is simple, when OM is strictly convex and any two points in M are con-
nected by a unique minimizing geodesic smoothly depending on the endpoints, it has been
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proved that I is injective [7, 8], and I, is s-injective [1]. In dimension two, the s-injectivity of
I, for arbitrary m is proved in [9]. In dimension three or higher, the s-injectivity of I,,,m > 2
is still open. When (M, g) has negative sectional curvature [12], or is under certain other curva-
ture conditions [3, 11, 13], the s-injectivity has been established. Without any curvature con-
dition, it has been proved that the problem is Fredholm [15] (modulo potential fields) with a
finite-dimensional smooth kernel. For analytic simple metrics, the uniqueness is proved using
microlocal analytic continuation. With the Fredholm property, the uniqueness can be extended
to an open and dense set of simple metrics in C¥, k > 1 containing analytic simple metrics.

In [18], Uhlmann and Vasy proved that, if OM is strictly convex at p € OM in dimension
three or higher, Iof (y), for all geodesics localized in some suitable {2 near p, determines f near
p. Furthermore, under some global convex ‘foliation condition’, it gives a global result via
layer stripping techniques. Then, Stefanov et al gave corresponding results for /; and I, [16].
The key point is to show the ellipticity (under a suitable gauge condition) of a different version
of the normal operator 1[I, as a scattering pseudodifferential operator. The calculation for /;,
I, which is already massive, is not observed to have an easy extension to [,,, m > 3. In this
paper, we will prove the parallel results for /4 occur for two main reasons: (1) the calculation
arises naturally from elastic gP-wave tomography; (2) the scheme of the calculation needs to
be general enough so that one can easily adapt the procedure to prove similar results for 7,,
with arbitrary m.

For an open set O C M, O N OM # (), we call v an O-local geodesic if v is a geodesic
contained in O with endpoints in M. We denote the set of O-local geodesics by M. Note
that M is an open subset of the set of all geodesics M. The introduction of M and M, can
be found in [18]. We define the local geodesic ray transform of f as the collection (1,.f)(7)
along all geodesics v € My, that is, as the restriction of the geodesic ray transform to M.
We restrict ourselves to problem (1.4) with m = 4 from now on.

First, we consider M as a strictly convex domain in a Riemannian manifold (M , g) (without
boundary), with a boundary defining function p, such that p > 0 on M. Asin [16, 18], we first
study the invertibility of I, in a neighborhood of a point p € OM of the form {X > —c}, ¢ > 0.
Here, X is a function with X(p) = 0, dx(p) = —dp(p). We denote Q = Q. = {x > 0,p > 0},
x = x. = X + ¢. Using the local geodesic ray transform with Q-local geodesics, we have the
local injectivity result:

Theorem 1.1.  With Q = Q. as above, there is ¢y > 0 such that for ¢ € (0,co) if f € L*(2)
is a symmetric four-tensor. Then f=u+d*v, where v € HL.(Q\ {x=0}), while
u € L2 (Q\ {x = 0}) can be stably determined from If restricted to Q-local geodesics in the
following sense. There is a continuous map Lif +— u, where for s > 0, f € H*(Q), the H*~!
norm of u restricted to any compact subset of Q0 \ {x = 0} is controlled by the H* norm of Lf
restricted to the set of Q)-local geodesics.

Replacing Q. = {x > —c} "M by Q. ={7 >X> —c+ 7} N M, c can be taken to be
uniform in T for T in a compact set on which the strict concavity assumption on level sets of
X holds.

The Sobolev spaces Hlloc will be defined in section 3. As in [16, 18], the above theorem
can be applied to obtain the following global result. Assume that X is a globally defined func-
tion with level sets X, = {X = t} strictly concave (viewed from x¥~!(0,¢)) for t € (—T,0],
with ¥ < 0 on the manifold M with the boundary. Assume, furthermore, that 3y = OM and
M \ Ue(—1,01%: has measure 0 or has an empty interior. We say that such an M satisfies the

foliation condition.
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Theorem 1.2. Suppose M is compact. The geodesic ray transform is injective and has stable
modulo potentials on the restriction of symmetric four-tensors f to ¥~ ((—T, 0]) in the follow-

ing sense. For all T > =T there isv € HL (¥~ '((,0])) such that f — d&*v € L2 (x~'((7,0]))
can be stably recovered from Lif. Here, for stability, we assume that s > 0, f is in an H*-space,

the norm on Lf is an H*-norm, while the norm for v is an H*~'-norm.

The foliation condition can be satisfied even in the presence of caustics. A Riemannian

manifold (M, c~2(|x|)ds?) satisfying the Herglotz [4] and Wiechert and Zoeppritz [19] condi-

tion % ﬁ > 0 satisfies the foliation condition. The Euclidean spheres |x| = r form a strictly
convex foliation. In PREM (the preliminary reference earth model), this condition is essen-
tially satisfied, but it might well be violated in other terrestrial planets. We note, here, that
the condition does not exclude the existence of conjugate points. Further discussions on the

foliation condition can be found in [10] and the references therein.

2. Pseudodifferential property

In €2, we can use local coordinates (x, y), with x introduced above. We are interested in geode-
sics ‘almost tangent’ to level sets of x. Let 7y, be a geodesic in M such that

%c,y,)\,w(()) = (x»)’)’ '.Yx,y,/\,w(o) = ()"w)’

with (x,y,A\,w) € R x R"~! x R x §"~2. In order for x > 0 and X to be sufficiently small,
we need the geodesic vy y . (7) to stay in x > 0 as long as it is in M. Thus for x = 0, A can only
be 0. This is guaranteed if |A| < C;+/x, for sufficiently small C;. For convenience, we use a
smaller range |A| < Cox. We take x to be a smooth, even, non-negative function with compact
support (to be specified).

We denote

(If) (2. y. A ) = / Fpnes (0): 42 (0 @1

We note here that we are only interested in f supported in M, hence the above integration is
actually along the segment of Yy x ., in M. On u(x, y, A\, w), we define

(L4u)(x, y) =x° / X(/\/x)u(x’ A w)gsc()\ax + way) Y gsc()\ax + way)
® &sc( A0y + wdy) ® s (AOy + wdy)dAdw. (2.2)

We carry out the calculation on X = {x > 0}. Here, u is a (locally defined in the support of x)
function on the space of geodesics parametrized by (x, y, A, w), and g maps vectors to covec-
tors; g is the scattering metric of the form

8sc = x~4dx? + xizh, (2.3)

where h(x, y) is a standard two-cotensor on X.

As in [16], we will show that L4/4, conjugated by an exponential weight, is in Melrose’s
scattering pseudodifferential algebra (see [6] for an introduction). The ellipticity of the scat-
tering pseudodifferential operator will be the main subject of this section. In local coordinates

(x,y',-++,y""), the scattering tangent bundle **7X has a local basis x?0x,x8y1, - -+ ,x0p-1,
and the dual bundle **7T*X correspondingly has a local basis %, d){ l N dV:;I. We adopt the

notation U (X) for the scattering pseudodifferential algebra introduced in [16]. We also use
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the notation *°TX, **T*X and Sym™**T*X defined there in the following analogue of [16,
proposition 3.1]

Proposition 2.1.  On symmetric four-tensors, the operator Ng = e~ /*Lyl4e™/* lies in

\Ijs_c 1,0 (X, Sym4sc T*X, Sym4sc T*X),

for F > 0.
We will, in fact, be working with e~ F/ *f from now on.

Proof. We employ the map introduced in [18],

[y 0 SM x [0,00) — [M x M;diag], T4 (x,y, A\, w, 1) = (X, 3, Yeyrw (1)),

and similarly I'_ while replacing [0, c0) by (—o0,0]. We note, here, that I'+ are local dif-
feomorphisms [18, section 3.3]. We take the local coordinates from the two factors of M as
(x,y,x’,y"). In the above, [1\71 x M: diag] is the blow-up of M at the diagonal (x,y) = (X, ),
which essentially involves introducing polar coordinates around the diagonal. We write

(Frgores (1) Frgneo (1) = Kginao (1) Yo (02 A7 5 0 (0, 205 ().

in coordinates (x,y,A,w) for the lifted geodesic 7yyxw(f). We use the coordinates on
Melrose’s scattering double space near the lifted scattering diagonal,
X¥—x Y-y

Y
x2 X

x, y, X =

as in [18]. Then we use the coordinates on [M x M;diag] in the region of interest
(=] <Cly=yD

g X =x Y-y
x ¥ |y =Y T T
y=Y1" ly—=I
Note that these are x,y,x|Y]|, ‘x—ffl, Y , Where V= I Here, the norms are Euclidean norms. In

these coordinates, we have the representation

X—x y -y
F (x7y9A’w9t): <x7y9 yl_)’|’ T, > ’
! | Y = =y

/

X —x Y-y
F_(x,y,)\,w,t):(x,y,b’/—y’_ / Ty )
Iy =yl Y =l

As in [16], A\, w are given in terms of x,x’,y,y’ as

xX 1?) :fo oz(x,y,x|Y|,%,Y)|Y|2

_ ~ xX .
(AoTZ") <x,y,XIY|, v ¥ + Ay (x,y,XIYI,f Y),

|r|’
and

X - A ~ X .
(QOF;I) (x,y,x|Y|,xy|,Y) =Y +x|Y|Qy (x,y,x|Y|,xy|,Y) ,
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where A and € are smooth. Evaluating (Aiy GE sz aw(?)) at (¥, y") gives us the tan-
gent vector A0y + w'dy = Ay xw(f), where X is given in terms of x,x’,y,y’ by

X+ a(x,y.x|Y], . 7|y . X .
A OF;I =x V] 7] —|—x2|Y|2A’ (x,y,x|Y|, TY|’Y> ,

and w’ is given by
Qolz! =7+ (x y,x|Y\ ik )

Here, I”, Q' are also smooth.
Then we can express gs (A0y + wdy) and Ay x ., (7) in terms of x,x’,y,y" as in the proof of
[16, proposition 3.1]. Finally, we obtain the Schwartz kernel of Ng on symmetric four-tensors:

(x,y. 2, 55, V)Y

- N —alx, Y x| X|
K’ (x,y,X,Y) = Ze FX/(1+xX) ( V] L1 +xA s <xy, Y], ik Y

4
{x’l(A o r;‘)% +(Qo r;l)@} XN (A o TENx%0, + (' o r;l)xay]“

X ~
|Y|_n+l‘li <x’ya m’ |Y|’ Y) N
2.4)
The density factor J+ is smooth and positive, and J+ = 1 at x = 0. Due to the order x vanish-

ing of A (and A’), the smoothness properties as a bundle endomorphism are similar to [16,
proposition 3.1]. This proves the proposition. O

We denote 7'M to be the space of m-tensors and S”M the space of symmetric m-tensors.
Then the connection

V:iT"M — T"'M
is defined component-wisely as
Villj, .. jy = Wy ik
a m
= —Uj .. j, — D Wi i i s
ﬁx" Jisttt Jm ka J1 dp—14p+15""" Jm

p=1

2.5)

where I is the Christoffel symbol with respect to the metric g. For u € T"M, we define its
symmetrization as

S T"M — S"M

U w,
with
W(Ul"" 5 m m' Z 1),"' ’Uo'(m))’
where o runs over all permutation groups of (1,--- ,m), and v; € C*°(TM), j=1,--- ,m.
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The symmetric differential d* € S"M — S"*!M is defined as
d=7V. (2.6)
Here, d* is different from the exterior differential d defined on the bundle of k-forms A*M.
(For its properties, see [13].) We also define di = e~F/*d’e"/* and denote its adjoint with
respect to the scattering metric gy (not g) as 6¢.

Now we turn our attention to Sym™*T*X. For convenience of calculation, we will use the
basis

dcx dx dx

202

dr dx dy dr dy drx dy dxr dx
2P Ry ¥ ef e
dx d dy d dx dy d d dx
222, 2eZe, e,
X X X X X X X X

d d d

bbb

X X X

for three-tensors, and the basis

GG G Qb e ded dy b b dy g de
x2 x2 2 ) 2 x 2’x2 2 27 2 xz xz’
dv _dv_dy dy dr_dy dr _dy dx_dy dy dx
RS20, oS0 S0202e S,
X X X X X X X X X X X

dy dv_dx dy dy drx_dy dv dy dy dv_ dx

Yoo e50Y, 2ot 20200 @,

X X X X X X
dy dy dc_dy dy dy dy dv dy dv_dy dy dv_dy dy d
G b b by by b bbb ey dy
X X X X X X X X X X
dy _dy dy d
Y9 2o X2,

x O x x  x
for four-tensors. Thus for Sym35C T*X, we use the basis

dx _ dx _ dx dx dx _d dx _d dy d d d
7@57@3772X7®57®s*y,2><*2®s*y®37y,l@sl®sl
X X X X X X X X X X

and for Sym4SCT*X , we use the basis

dxr  dx  dx  dx dr  dx  dx  dy de  dx dy dy
®s*2®s*2®s*274><*2®:72®5*2®s*,6X72®572®s*®s*7
X X X X X X X X X X X

dr _dy dy dy dy _dy dy d
axZ e, 2o 2oL, Lo, 2o, Te, 2.
X X X X X X X

2
x
In the above, ®, denotes the symmetric product, for example, a ®, b = ¥ (a ® b). With this
convention, a symmetric four-tensor, f, that can be represented under the above basis as

f;CX)C)C
Jevy
f=|feoy
Syyy

yyyy
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is the tensor

dx  dx _ dx _ dx dve  dx _ dx _ dy
f —fxxxxxiz Qs x72 Qs x7 ®Rs X7 +4 Xfxxxy'xiz Ry X7 Qs .X7 Qs 7
dx  dy!  dy/ dx dyl  dyl  dyF

dx
+6 Xfxxylijfz ®s x7 s 7

dyt dy/  dyf dy
—Q—fv;yjykyll R L Ry l R l
- X X X X

s T 4><x"' 5 Ws T Wy s T
D~ + 4 X friyip 3 O — @ — B —

Lemma 2.2. On symmetric four-tensors, di6¢ € Diff2(X; Sym*T*X, Sym***T*X) has
the principal symbol

iF 0 0 0
£1+1 3 . ¢ —iF Ly 6(a’,-) 0 0
177® Z(f + IF) 0 0 . s 41h
b 1 1 . 0 (& —iF) Ly (0, -) 0
D(xy&n)=| a in®,  (E+iF) 0 _ } o
b 3 I . 0 0 (£ —iF) [ 3(c”)
0 b mes (€ +iF) 0 0 0 (€ JiF) B
0 0 ¢ N®y n
|€]* + F? (€ +iF)t, 6(¢+iF) @,y 0 0
€ —iFm@ (@), + (1€ +F?) Da3 Dy 0
=| (¢-iFe @iy + 3(€ — iF)ne, D33 D3 Dss
0 (€ —iF)p’ D3 Dy Dys
0 0 Ds3 Dss Dss

with
3 b 3 . s . b

Doz = 577®<a ">+Z(£+1F)Ln’ Dy = ((+iF) @@, ),

1

@33 = 6(lb<ab, > + E

1 . o3 .
D35 = 6(5 +iF) ® ("), Dyz = bbbj, + 1(5 —iF)n®,

1 2 1 )
(n®)en + 5 (€7 +F).  Da=zn@ (') +5(E+iF) e,

4 3 1 1 1. s
Doy = B0, ) + 500005 + P+ P, Dus= @ (@) + 4+ @,

, . 1
D =(E—iF),  Dsy=cu +(E—iFm@,  Dss= () + 0@ty
The terms ab, b, & are defined below in (2.7).
Proof. We can assume g to be of the form x~*dx?> + x~2dy? to perform the calculation,

where dy? is the flat metric. See the discussion in the proof of lemma 3.2 in [16] for more
details. Assume that a symmetric three-tensor f can be written as

de  dx dx e dx dy
x5 Ws —5 Ws —5 3 x i— Wy — Wy —
ffx2®x2®x2+ fmx2®x2®x

de  dy  dyl dy  dyl  dy

+3 X fiyi o @5 — By - + fipit - O o @ .

x X X X X X
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By calculation

(V) wee = x_ﬁaxfxxx + 0(x_7)’

(VS eyt = X °0yifia + O(x°),

(Vf)mx = x 2 fey + O(x°),

(Vi eniys = X Oyifuays + 31 (fre) + O ),
(vf)X)’fyfx = x_4axfxy"yf + O(X_S)’

(Vf ayiyiyt = X Oyefagiys + 1 b1 (frg) + O™,
(Vf )yiyipis = X Oufyiyie + O™,

(Vs =5y + 51 (o) + O™

Here ay, by, c; come from the contributions of the Christoffel symbol I" in equation (2.5).
Then, we derive

dr _ dx _ dx _ dx
&f =*0fre— i s

+4><( —xOyifxxx + xzc‘)xfm)f(&xfz@ 7®v7

1 dx de &y dy/
+6 % (ZSym (Dfay) + 50l + <fm>) e @.7)

1, b dx dy’ dy/ dyk
—X"Oufyiyiye + b (f)cxy)) 28 O T T8 T

3
+4 % (ZSymy(xaykfxyiyj) t3

dy’ dy’ dy dy!
+ (Symy(xayffyiy;y )+c (f;cy))) . Qs o ®y — ®y — + Lo.t..

In the above, Symy is defined as

1
Symy(vykl,...,ykm) - E Uk .. yfotm -
g

It follows that d* has the principal symbol

13 0 0 0
me 3¢ 0 0
a@  Inw, L€ 0
0 b dnw, 1€
0 0 ¢ NRy
The term n®; in the (32)-block has (iji’)-entry (corresponding to the (ij) entry of the sym-
metric two-tensor on Y and the i’ entry of the one-tensor)

1
5 (mdjir +10i).

The term 7n®; in the (43)-block has (ijki’j’)-entry (corresponding to the (ijk) entry of the sym-
metric three-tensor and the //j’ entry of the three-tensor)

1
5 (i6jir Ojr ~+ Milkir &jjr ~+ MjGiir g + MiSkir Ojp + M Oy ~+ M jir Sy ).
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The term n®; in the (54)-block has (ijkli’j’k’)-entry (corresponding to the (ijkl) entry of the
symmetric 4-tensor and the i’j'k’ entry of the three-tensor)

1
ﬁ(z Ni0ir(o(1)) Ok (0 (2)) Ot (0 (3)) + Z Nj0ir(o(1)) Ok (0(2)) Ot (0 (3))

+ > ir(0(1)0ir(0@) S0 + P Mir(o(1)jr(02) Sir(o3)))-

Here, o runs over all permutations of (123), and 7(1) =i, 7(2) =/, 7(3) = k.

We note that a” maps a O-tensor (smooth function) to a symmetric two-tensor, > maps a
symmetric one-tensor to a symmetric three-tensor, and ¢ maps a symmetric two-tensor to a
symmetric four-tensor. They are symmetrizations of a, b, ¢ respectively. We note here that they
only play a role in the principal symbol at the boundary. Then the symbol of di: = e~F/*d’e"/*
is given by

€ +iF 0 0 0
me  3(E+iF) 0 0
’ n®s 56 +iF) 0
0 b In®,  F(E+IF)
0 0 ¢ Ny

With our basis for symmetric tensors, the inner product with respect to g, on four-tensors is
given by the (block-)matrix

1
4 x1d
M(4) = 6% 1d 238)
4 x1Id
Id
and for three-tensors
1
3 x1Id
M(3) = 3% 1d . 2.9)
Id

If A maps a symmetric m;-tensor to a symmetric m,-tensor, we call B the (m,, m;)-adjoint of
Aif

(Bfosfi)mm) = (fos Af1) M (oms) -

It is easy to check that

B = M(m)"'A*M(my).

If my = mp = m, we say that A is (m, m)-self-adjoint if B = A.

10
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It follows that ¢ has a symbol given by the (3, 4)-adjoint of that of d,

£ —iF Ly 6(a’, ) 0 0
0 (€—iF) & AP 0
0 0 €—iF) 4 3.
0 0 0 (& —iF) ty
Remaining tedious calculations complete the proof. O

Next, we show that N is elliptic as a scattering pseudodifferential operator, for which we
need to show that the principal symbol is positive definite at both the fiber infinity of *T*X
(when || is sufficiently large, where { = (£, ) is the Fourier dual variable of (X, Y)) and finite
points of T*X (when x is sufficiently close to 0 and || is relatively small to x~!). By smooth-
ness of the Schwartz kernel, we only need to investigate the principal symbol at x = 0. See the
discussion before lemma 4.1 in [10] for more details.

Lemma 2.3. On symmetric four-tensors, Ng is elliptic at fiber infinity in **T*X when re-
stricted to the kernel of the principal symbol of 6f.

Proof. With the notation,

X—a|Y? . Y
S a(ﬂl’yzgi
Y| Y|

by (2.4), the Schwartz kernel of Nf at the scattering front face x = 0 is given by

—FX|y|—n+l de o dy ! ) - 4
e Y| X“)Fﬁ%y' ][@+2Mnxx@3+y.@@ﬂ. (2.10)

X
On a symmetric four-tensor of the form

dx dx dx dx dx dx dx dy
f:fxxxxxﬁ Qs )72 Qs )Tz Ry )72 +4fxxxy' )72 ®s )72 &y )TZ Qs ;
dx dx dy dy dx dy dy
+6fxxyy‘ xiz ®S x7 ®S ; ®s ; +4f;cyyy' x7 ®S ; X

dy ~dy dy dy
+ fowy P s . ®s . s Py

d
e, 2 21
X X

we have

4

(S +2a|Y))(x*0,) + ¥ - (xd))| f
=(8 4 20[Y ) frawe + 4(S + 20|V ) (V. fray) +6(S + 20|V )* (¥ © V. frayy)
HAS+ 2 Y)Y @Y @ V. fo) + (Y QY @V @V, fiy)-

1
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On a scalar a,

. dy Jdedr dx

4
dx dx ~dx dx dx d
SEL 7 Y =T 0, L, C 0, T 1 4asY L9, D 0, D, 2
X2 X x2 X2 X2 x2

2 & Qs —
X2 TN T T x

oo dr _dx_dy d S oodr dy dy  d
+6aSPT Y- S 0, S @, 2 @, 2+ 4aST RV R S @, 2 @, 2 0, >
X X X X X X X X

dy ~dy ~dy dy

© o o o d
+alY Y @YQ®Y- Qs — Qs — Qs —-
x x x x

Thus, under the basis of symmetric four-tensors, we write

- 4
S$+iﬂ?][@+hm®@%a+?mﬁmr
54 (S + 2a|Y|)* !
% 4(S + 2a|Y])*(Y, )
= SPYeY @ 6(S+2aY)(YaV,-)
SYeYey 4S+2aY)YRY®Y,)
reyerey Yeoyerev,.)

One can easily verify that the above matrix is (4,4)-self-adjoint. We note that there are no
coefficients (1,4,6,4, 1) for the column vector. In coordinates on the support of x,

X .
x’y, |Y|9 m’ Y7

we can rewrite the kernel as

s (S + 2a|Y|)* !
3y 4(S + 2a|Y])*(Y, )
e Xy 7"y (S) SPYeY @| 6+ 2aY) YV,
SYevey MS+2aY)YRY®Y,)
reyerey YeYerev,.)

We use the change of coordinates (X, Y) — (|Y|, S, ¥). To analyze the principal symbol at
fiber infinity, we need to evaluate the (X, Y)-Fourier transform as || — 4o00. As discussed in
the proof of [16, lemma 3.4], the leading order behavior of the Fourier transform as || — 400
can be obtained by integrating the restriction of the Schwartz kernel to the front face |¥| = 0,
dropping the singular factor [YI~"*!, along the equatorial sphere:

S¢E+Y-n=0. (2.12)

Following the discussion around (3.8) in [18], we need to integrate

54 54 ’
Sy 483(v,")
x(S) SYeY ® 6S2(Y @7, (2.13)

SYevYeY 48(Y @ Y ®
Yorerey YRYQYe
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on this sphere.
For a symmetric four-tensor of the form (2.11) in the kernel of the principal symbol of 6§,

we have by lemma 2.2 that

e + <77 Srxry

>

) =0

XXX X. 0’
rexry + (n, nyy> 2.14)

ooy + (M fayy) = 0,

oy + (M Sfyyyy) = 0.

Moreover, f is in the kernel of (2.13) if and only if
S4fxxxx + 45‘3 ?,fxxxv + 632 ? ® ?,fm

i)+ 651 ) (2.15)

HASY DY @Y, fryy) + (Y @Y @Y ® Y, fy,,) = 0.

Suppose a symmetric four-tensor f satisfies (2.14) and (2.15) for (S‘ Y ) such that (2.12)
holds. We will consider two cases, £ = 0 and £ # 0.
Case 1 : ¢ +#0.1f n =0, we have directly from (2.14) that

f;cxxx,f XXXy fxxyys fxyyy
all vanish. Then from (2.15), we have
<?®?®y®?’fyyyy> =0.

Therefore, f,,,, = 0, since Yererey spans the space of all symmetric four-tensors
with n = 0. If  # 0, we calculate successively,

Fow = =g

(Y@@ Y, foy) = <g RY @ V. fyy)
Feoy = = (o) = (3 ® Fofom):

(V& V. foyy) = <g ® g @V @ V. fopy)

fiwy = ~(Gfeon) =~ © £ ® L. o)
(o) = =(5 © g g DY, fvm)

e = = {fofeem) = (£ 8 4 © L © Liym)

With § = — 12 (2.15) gives

~ 4 ~ 3
) Dglhglgl 2n
<<€ £®§®§®£+4< )

13



Inverse Problems 35 (2019) 115009 MV de Hoop et al

Now we take ¥ = e} + (1—ex)!/? Y+, where Y is a unit vector orthogonal to ). Substituting
Y into (2.16), we find that

8 6 4 2
n 4ln 6|n 4|n R
<e4<|€l 1 |§6| + |§4| + |§2| +1)n®n®n®n

o 3lp[*  3n)? .
"1‘463(1—62)]/2(@4— 571' + |£72| +1>ﬁ®ﬁ®ﬁ®Yl
422 .
+6(1— &) (|Z‘|‘+ ';' +1)ﬁ®ﬁ®yL®yL 2.17)
2
+ 4e(1 — €2)3/? (@H)ﬁ@ﬂ@yl@ffl

+(1-Yterteorte f’{fyyyy> =0.
Taking € = 0 in (2.17), we have
Yreotvtovt ot f,,) =0.

Since Y+ @Vt @Yt @Yt spans nt @nt @yt @nt, we conclude that f,,, is
orthogonal to every element of - ® n' ® n* ® nt. Taking lst, 2nd, 3rd and 4th order
derivatives of (2.17) at e = 0, it follows that f,,,, is orthogonal to

AR @0t @0, AR @0,
ARNDN@A, AN NN,
respectively. We then finally conclude that fy,,, vanishes, and then the whole tensor f

vanishes by (2.14).
Case2 :£ =0 (andson # 0). Now (2.12) is equivalent to ) - ¥ = 0, and (2.14) reduces to

<ﬁ’fxxxy> =Y,
7 fey) = 0,
<A exyy) 2.18)
(M fay) =0,
<77’fyyyy> =0.
We differentiate (2.15) with respect to S up to four times, evaluated at S = 0, and find that
ﬁrxxx = 0’
<i/’fxxxy> = O,
(Y ® Y, frgy) =0, (2.19)

(YRY®Y,fryy) =0,

ToVeY®Tl fi,) =0.
Combining the identities in (2.18) and (2.19), we conclude that f = 0. O
Lemma 2.4. There exists Fo > 0 such that on symmetric four-tensors Ng is elliptic at a

finite set of points in **T*X when restricted to the kernel of the principal symbol of §¢ for any
F > Fo.

14
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Proof. Taking x(s) = e=*/@®) 5o R(-) = cy/ve*I""/2. We get the X-Fourier transform
of the Schwartz kernel at the front face x = 0O:

Fak? (0.3, 17]. % )

D (=Dy + 2a|Y|)* !
-D}Y 4(=Dy +2a|Y])3(Y,-)
=[yPremi P 2y ey (@] 6(=D,+2aY)2 Y@V, | (=€ —iF)|Y])
D, YoY®Y 4(=D, +20YN Y@ Y®7Y,")
Yererey Yorereyv,.)
D}, (~Do + 2alY))* !
-D}Y 4(=D, 4 2a|Y])3(Y, )
:C\/ElylZ—neia(ﬁHFHY\z Df,A % ® 6(—Dy + 2a|Y\)2<f/® v, ) eV (EHF)? Y 2.
D, YeYe¥ 4(=Dy +2a|YNY @ VY @ ¥,
reyevrey Yoryerey,.)

Here D, denotes the differentiation of the argument of x. Then we compute the Y-Fourier
transform, which in polar coordinates takes the form,

s e . .
/ / e—i|Y\Y-77|Y|2—nelo¢(5+1F)|Y\z
S/I—Z 0
D

: (~Ds + 2alY])* !
-D}Y 4(—=D, +2a|Y|)3(Y, )
DYy ® | 6(=Dy+2alY|2(Y@7¥,:) | e vEHIF/2yp—2q)y|dy.
D, Y@Y®Y 4(—Dy +20|YNY R Y Y,
Yererey Yorereyv,.)

We denote
B(&,Y) = v(Y)(& +iF)? — 2ia(é +iF).

By explicitly evaluating the derivatives, the above integral yields

A (¢ + P4 Y (iv(€ +iF) + 2a)4Y* !
- B3 +iF)|YPY 4(iv(€ +iF) + 2a)*|Y]3(Y, )
/ / e P | 226 LiF2)YPY @V | ® | 6(iv(€ +iF) + 202 YP(Y ® 7. )
g0 WE+iR|YYere? 4iv(E+iF) +2) YT @Y 0 ¥,
reyeyey Yeyeyelv,)

xe"b‘y‘2/2d|Y|df’.

We extend the integral in |Y|to R, replacing it by a variable 7, and using the fact that the inte-
grand is invariant under the joint change of variables t — —¢ and Y — —Y. This gives

15
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YAE iR (iv(€ + iF) + 20)* !
- A€ +iF)PPY 4(iv(€ +iF) +2a)3P (Y, ")
/ / e | 226 L iFPRY o ¥ | © | 6(iv(e +iF) + 20220 @ 7, )
g oo wE+iRrerel 4(iv(E+iF) +20)(Y 0 Y © 1,-)
Yereyey (Yoryere?y,.)

xe 9" /2drdY.

Now the 7 integral is a Fourier transform evaluated at —Y - 7, under which multiplication by ¢
becomes Dy, . We also note that the Fourier transform of e ~$(&N7/2 5 a constant multiple of

b(&, y)*l/Ze*(Y-n) /(&) (2.20)

Thus we are left with

i+ 4(5 +iF)*D} | (iv( +iF) +20)*D} !
e+ 1F)3D I? 4(iv(€ +iF) + 2a)3(Y, )Dz
/H )2 2 (5 +iF)’D} Y @Y [®]| 6(ivE+iF) +20)2(Y @7, >D2Y_n
iv(€ +iF)Dy., ¥ ® reyv Aiv(E +iF) +20) (Y @ Y @ ¥, )Dy.,
Yorevyey YRYRY®Y,.)

e (P2 /CoEN) g

We now take a semiclassical point of view setting & = F~" as a small parameter and rescaling
G —F 6 e —F
We let v = F~'a, with
V(€ +iF) — 2ia = v(¢ — iF)
and
= (£ +iF)(v(¢ +iF) — 2ia) = v(& + F?).
Then
Von=h"'Yne Dy, =hDy, . $(6,F) = (£%+1)’y

As h — 0, leading order terms of the above operator give

T

4 4
(6 +1)* (225) (& —i)* (&)
3, 3
(e i) (&) 7 (e -0 (&) (1)
hl/2a—1/2 2+1 —1/2 . o 2, R ® . 2, .
L. DT (e rip (3m) vor ot — i (L) (e b,
*(&H)(éﬂi)f/@f/@? —4(&r — 1) (”j?r) Yore?t,.)
Yyerey (Yeyerev,:)
¥

s~ (Tne)/ (& +Da) g

16
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which is a superposition of nonnegative operators. Hence, if a vector is in the kernel of the
above operator, it must be in the kernel of

4 T
v () 6 =" (35)
N 3
>(§ﬁ) ~aler 1) (225) (1)
2, . 5 2 . N
(6 +1)2 Qg4 ver |9 e -2 (k) (tet.)
~G i) () vever| |- (F5)Teter.)
forerer Yoyeyev,.)
(2.21)

for any Y. We note, here, that (2.21) is a multiple of a projection and is (4, 4)-self-adjoint. We

then denote
i 4
N4 - MF
N 3
. Y.
C3:_(&:_1)3 (5'2:_’7_7Fl> s
i 2
_ 2 " MF
Q= 0<&+J’

Y
¢ =- .
1 <é+1>

For a symmetric 4-tensor of the form (2.11) in the kernel of the principal symbol of 6% (also
considered semiclassically), we have by lemma 2.2 that

(&F — 1) feor + (MF-frony) = 0,
(&F — i)fxxxy + <77Fafxxyy> =0
(&F — 1) feay + (MR- fayy) =0,
(&F = 1) fowy + (MR- Fryyy) =

¢4

)

(2.22)

if we let & — 0. Moreover, f is in the kernel of (2.21) if and only if

ol — i (Zm) (rev,y | /70
4 i) (§5) (Yo vet.)
YRYQY®Y,.)

17
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or, equivalently,

Coaforer + 4 (Y, fry) + 6€2(Y @ Y, frnyy)

. S (2.23)
F4C (Y RY QY fiyyy) + (Y Q@Y @Y ® Y, fyyyy) = 0.

Then we calculate, successively,
Joy = —(&F — i)~ (M Sfiyyy)
<f/ QY ® f/’fxyyy> =—(§ — i)_l (nF ® Yore f’?fyyyy>»
feoy = =& = )7 (R Lamy) = (& — 1) 72 (0F © RSy )
(Y OV, fay) = (& —1) 2 (F @ @V @ Y, fiyy),
feoy = = (& = 1) 0 feny) = = (& — 1) 7 (F @ 1F @ 1F. finpy)»
(V. fooy) = = (& — 1) 7 (F @ F @ e @ V. fiyyy),
feee = = (& = 1) (R frry) = (& — 1) (0 @ 1F @ 1F @ 1F. fryyy)-

We observe that

¢ = (—1)/(G+1)7(& —i)/p/ withp=7 7.
Hence, using (2.22),

(G (G + 1) one + ), fryyy) = 0.
If n = 0, then

(YRY®Y®Y.fy,) =0.

SinceY @ Y@ Y @Y spans the space of all symmetric four-tensors, we conclude that fy,,, = 0
and, hence, f = 0.

If e #£ 0, we take ¥ = efie + (1 — €2)!/2¥+, where Y is orthogonal to 7j. Then by (2.22),
we have

2 4
(¢ <1+£'2”F+'1> i @ e i © i
F

N
+4e(1—-€e)'/? (1 + €|£7F+| 1) fiE @ i @ fF @ ¥
(2.24)

2 2
+662(1 — €2) (1+§|£7F+1) TR D Gl

2

+4e(1 — 2)3/? (1 + §|277F+|1> FRYteYtert
F

(=Pt e vt e it @ It fy,) =o.

Similar to the proof of lemma 2.3, we take derivatives of (2.24) up to order four at € = 0; it
follows that f,,,, is orthogonal to

18
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Vrortertelt, retteltelt, jFogoltert,
F @ @ @Y, e ® iF ® iF @ .
Then, f = 0.
We conclude that for sufficiently large F > 0, one has ellipticity at all finite points. O

With lemmas 2.3 and 2.4, we obtain the following proposition by similar arguments as in
the proof of [16, proposition 3.3]

Proposition 2.5. There exists Fo > 0 such that for F > Fy the following holds. Given Q, a
neighborhood of X "M = {x > 0, p > 0} in X; for a suitable choice of the cutoff x € C>°(R)

and of M € U 30(X; SymSSCT*X, SymSSCT*X), the operator
Af = N + &EMSE, Ne = e F/iLpe™™, dp = e F/rdvef /7,

is elliptic in U0 (X; Sym*T*X, Sym*T*X) in Q.

3. Proofs of the main results

We prove the injectivity of I, with the gauge condition 6%ff = 0in Q = (2., where fr = e F/xf.
Based on the discussion in [16, section 4], we first need to check the invertibility of A ;. Here,
Af, = dfdg is the ‘solenoidal Witten Laplacian’ which we will show as invertible with the
desired boundary condition. Similar results for /; and /I, are provided in section 4 of [16].

Lemma 3.1. There exists Fo > 0 such that for F > Fq the operator Ay, = d¢dg is (joint) el-
liptic in Diffgéo X; Sym3S°T*X , SymSSCT*X ) on symmetric three-tensors. In fact, on symmetric
three-tensors

1 3
OfdE = ZVFVF + de:é} +A+R, 3.1
where R € xDiff! (X; Sym***T*X, Sym***T*X), A € Diff!,(X; Sym*>*T*X, Sym**T*X) and
Ve = e F/Avef/* with the V gradient relative to gy (not g), dp = e~ F/*deF/* the exterior

derivative on symmetric three-tensors, while O is its adjoint on symmetric three-tensors.

Proof. By calculation and lemma 2.2, Af has the symbol

E+F+ 4P 2(E+iF)u, 0 0
1E—iFne (€ +F) + 3une; HE+iF) 0
0 5(& —iF)ne, 5(E 4+ F) + 3@, 1E+iF)
0 0 2(& — iF)n®; 1+ F) + 8ne,
6(a’,)a’  3(a, )@, 3(E+iF) ") 0
. La 2o, b O, m@,  HE+IF) P, )
(€ —iF)ad’ Lilbb (c*, )b %(cb, INRs
0 (€ —iF)b e 0

19
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Here, 13 n® at (2,2)-block has the (i}, i )-entry
1
§(|77|25i;,i; + ity )-

tyn®s at (3,3)-block has (i}, i, i3, j;)-entry

1 2 2
g 710 O gy = 1170 i, 00 Oy gy Oty 4 iy O+ 1050 0)

and ¢;n®; at (4,4)-block has (1,7, k}, &5, j, ky)-entry
% (In|2(5i{i45j;f; O+ i Oy Oy + Oy Oy Oy

+ 0ty Ok Okqzg + Oty Oyiag Gy + Oty Oy 9wy )

+ 70y (01 Ok + Gjpas Ongg) + iy (G O, + O Oy )

100 (030, + Oyt Ony ) + 10y (G Oy + Oy Ou)

70 Oy O+ O Gy ) + g g (OO + O i)

+ i (B3 Oy + iy Ok + 70k (Bt Bk, + Sja Oy )
g Ogagdig -+ D))

We note that the gradient V maps a symmetric three-tensor to a (non-symmetric) four-tensor.
We introduce some further notation. We let A be a matrix of blocks, with

Ak
representing
A
k — tuple.
A
Also, we write
A—) xk
representing
(A e A) .

Then we use the basis for four-tensors (not the symmetric ones) and symmetric three-tensors,
under which the principal symbol of V¢ relative to gy (not g) is

E+iF
(%)
(£+iF )
77® Ix3

( E+iF )
n® 1x3

(§+iF)
N

20
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The number of rows is 16. Thus V¢ has the principal symbol,
(&€—iF ;)

%( §—iF 2 )—>><3

(&€—iF ;)
Then VEVE has the symbol
&+ F2 + [n? 0 0 0
0 E+F2 4|y 0 0
0 0 E+F+nf 0 6:2)
0 0 0 € +F2 + |n)?

Similar to our calculation in the proof of lemma 2.2, we obtain the principal symbol of di 6§
on symmetric three-tensors,

&+ F? (& +iF)uy 0 0
JE—iFm® F(E+F)+ ey, $(E+iF), 0
0 (& = iF)ne, FE+P)+ 5@ 3(E+F)g,
0 0 (€ —iF)n®; n @y Ly
0 0 3(¢ +iF)(d,-) 0
N 0 0 n{d,-) HE+iF)(e", )
E—iF)d  du, 3d(d”, ) e (e)
0 (€ +iF)e e"Lf7 le (e, )

Here, n ® ¢, at the (2, 2)-block has (i}, i, )-entry
Nit i} »

71 ®s Ly at the (3,3)-block has (i}, ], i3, j5)-entry

1
1(771'; 77i;5j; 7 iy 51'; 4 MMy 51‘;;‘; + Ny, 5;‘;;’;)

and 7 ®; 1y at the (4,4)-block has (i1, ], k], i, j5, k})-entry
1
15 (B + Gaadug) + s B + Gesdies) + gy (GO + Gcdi)
+ 10 (Ot Oy + Oty Oy ) + 7y (O O, + Ot Oigng ) + 70y g (O Oy, + O Oy )

2 12

+ iy (i3 gy + Ot iy ) =+ Mg Mg (O3 Oy, + Oy Sy ) =+ My iy (Sigag Oy + 5;;[;5,‘;@))-

20

We note that the principal symbol of §¢df is the same as that of 1 VEVE + 2d56%, which is
positive definite with a lower bound 1 (£2 + F2 + ||?). Suppose a”, ", ”,d”, d” have a com-
mon bound C, then A has a bound C? + C|n| + CF + C£ < C'(1 + €7 1) + €(&% + F* + |n]?).
Then we can choose F > 0 large enough, and complete the proof. O
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We need to consider the operator properties in several larger domains €); containing €. Let
; be a domain in M with boundary 0, transversal to 0X. Let H"/(();) be the subspace of
H™!(X) consisting of distributions supported in €;, and let H™/(£);) be the space of restric-
tions of elements of H"/(X) to Q;. Thus, H™!(Q;)* = HZ"™ ().

Lemma 3.2. There exists Fo > 0 such that for F > Fq, the operator Ag; = 6¢df, consid-
ered as a map HYY — (H0)* = H'O, is invertible.
Proof. Since 6} is defined as the adjoint of df relative to the scattering metric, we have

Il = (A, d) = (A )

_ 3.3)
< N Arsullgrolluell o < € I ARulF 10 + €llullFo-
By (3.1) and (3.2), we have
s 38 1 * 1 2 3 s £s D

where A € Diff!, (X) with

(A, u)| < Cllul|jro|u

2
2+ CFllulzz,

and R € xDiffl (X). This follows by rewriting V£V using (3.2), which modifies R in (3.1).
Thus, we have

1 1 3 -
ldpullzz = ZIVulliz + Pl + ZI0Ful + (Aw,u) + (Ru,u).

This gives us

IVul, + Pl < Clldgul: + Clle2uls + Clul guo ullz + CFlul:

(3.5)
Then for sufficiently large F,
IVullf, + F?lulz, < Clidpullz; + Cllx'2ul, . (3.6)
where C is a constant depending on F, and thus
Va7 + (1 — Cx)u, ) < Clldpul|; -
Now suppose that €2; is contained in {x < xo}. If xo is sufficiently small, this gives
IVullzz, + [|ull 2, < ClldEulzz - (3.7)

If xo is larger, we can still have

IVullz, + [Jull 2, < Clldrullz, + Cllullzz, ({4 <x<o))

with x; small, and thus have (3.7) by the standard Poincaré inequality (see [14, equation (28)]
for one forms). Then, with (3.3), and choosing € > 0 small, we find that
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lulljss < Cll ARl 10-

Therefore, we have proved the invertibility of Ag . O
Using lemma 4.4 in [16], in parallel with the above lemmas, we obtain:

Lemma 3.3. There exists Fo > 0 such that for F > Fq, the operator Ag; = 6¢df on sym-
metric three-tensors is invertible as a map HY" — HZ' for all r € R.

Lemma 3.4. Let Q; be a domain contained in X as above. For F > 0 and r € R,

—rgs

||”||F1;C~’(Qj) < C([lr™"dpul

ey + lll-zz):
for symmetric three-tensors u € HL ().

Proof. By the proof of lemma 4.5 in [16], we only need to consider the case » = 0. Let Qj be
a domain in X with C* boundary, transversal to X, containing ﬁ, ‘We show that there exists
a continuous extension map E : HL2(€;) — HL2(;) such that

[deEull, o) + I1EUll 12 0,y < C(lldFu

12(0))s u € HL ().
(3.8)

() T llu

Once (3.8) is proved, by lemma 3.1, with v = Eu, we have
1901z @) + 1217 0 < CUERIE () + 101 q)
< C(lldtull? ) + 10172 )-
This finally gives
lull gro ey < CUIARUNT: (@) + 101172 0y))-

It only remains to construct E. By a partition of unity, this can be reduced to the situation
where locally X = R”, €; = R, ; see the proof of lemma 4.5 in [16]. We only need to analyze
the extension of a symmetric 3-tensor on R’ to R”.

We let @,(x',x],) = (x', —gx,) for x, < 0 be a diffeomorphism from {x, < 0} to {x, > 0}.
For fixdx' @ dx/ @ dx* on {xo > 0}, we define E| to be the extension to R”,

5
Ey(fipd' @ de/ @ ) (', x) = D €@ (fipd' @ de/ @ drt), x, < 0
q=1

and

E(fidx' © dv/ @ ) (¢, x,) = fipdx' © dx/ @ dx¥, x, > 0,
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with C, chosen so that E; : C'(R".) — C'(R"). By calculation
Opfirdy’ @ del @ ddt = fix (¢, =g, )’ @ e/ @ d, i, j k # n,
O} findx' @ dx/ @ dx" = —gfyju (¥, —gu,)dx' @ dx’ @ dx”, i, j # n,
D findr' @ A @ A" = @ fin (¥, —gx,)dX' @ dx" @ A", i # n,
O frmn " © " © dX" = = fon (', =g, )" @ di" © i,
A0 fdy' @ de/ @ dxk = Iifyu(x', —q,)dx' @ de! @ A, i, jok, L # n,
O findx' @ d! @ A" = —qOifyin (¥, —gx,)dx’ @ dx/ @ A", i, j, 1 # n,
al‘I’;finndxi @ A" @ A" = @ Ofiun (¥, —qx,)dX' @ A" @ dx”, i,1 # n,
NP frmndx" ® A" @ A" = — Oifyyun (x', — g )dx" @ dx”" @ dx”, [ # 0
Ou®fiadr’ ® d/ @ Ak = —gd,fin (¥, —qn) A’ @ dx! @ A, i, j k # n,
On®findx’ @ dx/ @ A" = ¢ Opfijn (X', —qn)dx' @ A/ @ A", i, j # n,
On®fimnd ® dx" ® d¥" = — Oyfimn (¥, —q,) A’ ® dx" @ A", i # 1,
0n® fon ¥ @ A" © X" = G Ofon (', — g ) X" @ A" @ .

The matching of the derivatives at x,, = 0, which gives the C' property, yields
Ci+GC+CG+Ci+Cs =1,
Ci +2Cy+3C34+4C4 +5C5 = —1,
C1 +4C,4+9C5 4+ 16C4 +25C5 =1,
C1 +8Cy+27C5; + 64C4 + 125Cs = —1,
Ci +16C; + 81C5 4+ 256C4 + 625Cs = 1.

The linear system, with a Vandermonde matrix, is solvable. With the C,,g = 1,2, - - - , 5, satis-
fying the linear system above, we obtain the property E; : C}(R”.) — C!(R") and

1E ullg ey < Cllulla (e )-

With @7 acting on four-tensors as usual, we have

¢ = 0,

and thus
[ d* g ul 2wy < C||dS”HL2(R"+)~
Then
[d°Eu| 2wy < Clldul|p2 e )
which completes the proof. O
We define

Sk, =1d — dr A7) 6,
Pro, = diQr.q. Oro, = A, 0
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We have the following corollaries for the properties of Dirichlet Laplacian Ag in parallel
with corollaries 4.6—4.8 in [16]:

Corollary 3.5. Let ¢ on C°(Q; \ On;). Then on symmetric three-tensors, there exists
Fo > 0 such that for any F > Fo, Af )¢ HS™ — HYF is in U 20(X).

Corollary 3.6. Let ¢ € C°(Q; \ Oin&Y), x € C(8Y;) with disjoint support and with x con-
stant near O 8. Let F, Fo as in corollary . Then the operator XAF_; ¢+ HZ () — HLH ()
in fact maps H%'(X) — HK () for all s, r, k.

Similarly, ¢>A;’slx D HZK(Q) — HYK(Q,) in fact maps HZ () — HE (X) for all s, r, k.

Corollary 3.7. Let ¢ € C°( \ 9nkY), x € C(SY) with disjoint support and with x con-
stant near Oin§2;. Let F,Fq as in corollary .

Then ¢Se.,¢ € WO (X), while xSr,¢ : HY (X) — 2L () and ¢Sr.o,x : XL, () — HY (X)
forall s,r, k.

Then we can proceed as follows. Let €2, be a larger neighborhood of 2. Let G be a parame-
trix of Ag in €),, and it is a scattering pseudodifferential operator. Then GAF = I + E, where
WF. (E) is disjoint from a neighborhood Q; CC €, of Q, and E = —Id near 9;,{22. Now we
have

G(Ne + d:M62) = I+ E.
This yields

SF.0,G(NF 4 diMOE ) Sk 0, = Sk, + SF.a,ESFa,.
Notice that

NeSr g, = Nr
and

N = 0,

and we then obtain

Sr0,GNE = Sk, + SF0,ESF0,.

In parallel with [16, lemma 4.10], we have the smallness of K; = Sr ., ESF.q,. Denote r;; as
the restriction map from €25 to €2, and e, as the extension map from €2; to €2,. Similar to [16,
lemma 4.11], we can show the smallness of

Sk, — niSFo.e12.
Then similar to [16, (4.12)], we have
SF.0,7215F,0,GNF = Sr0,e01 + Ka,

where K; is smoothing and small in Q C {x < 6} with ¢ sufficiently small. Here e is the
extension map from €2 to 2y, and rg is the restriction map from €2, to €. Restricting to €2 from
the left, we get

r10SF,0,721S5F,0, GNF = r10SF.0, €01 + r10Ko.

Proceeding as [16], we can analyze r10Sr 0,01 — Sk, and arrive at the main, local, result.
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Theorem 3.8. For Q = Q. ¢ > 0 small, there exists Fo > 0 large enough, such that for
F > Fo, the geodesic ray transform on symmetric four-tensors f € e/ *L2.(Q) satisfying
0° (e_ZF/ *f) = 0 is injective with a stability estimate. Here the stability is in the sense that for
s > 0, there exists R, R’ such that for any sufficiently negative r, the e/ YHSTV norm of f on §
is controlled by the eF/ YHS R norm of Lyf, provided that f is a priori in ef/ ngé’JrRl.

A version of the above theorem using local Sobolev spaces is stated in theorem 1.1. The
theorem also leads to the global result, by a layer stripping scheme, theorem 1.2 similar to
[16, theorem 4.19].
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