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ABSTRACT

The quantitative reconstruction of subsurface earth properties
from the propagation of waves follows an iterative minimization
of a misfit functional. In marine seismic exploration, the observed
data usually consist of measurements of the pressure field,
but dual-sensor devices also provide the normal velocity. Conse-
quently, a reciprocity-based misfit functional is specifically
designed, and it defines the full reciprocity-gap waveform inver-
sion (FRgWI) method. This misfit functional provides additional
features compared to the more traditional least-squares ap-
proaches, in particular, in that the observational and computational
acquisitions can be different. Therefore, the positions and wavelets

of the sources from which the measurements are acquired are not
needed in the reconstruction procedure and, in fact, the numerical
acquisition (for the simulations) can be chosen arbitrarily. Based
on 3D experiments, FRgWI is shown to behave better than full-
waveform inversion in the same context. It allows for arbitrary
numerical acquisitions in two ways: when few measurements
are given, a dense numerical acquisition (compared to the obser-
vational one) can be used to compensate. However, with a dense
observational acquisition, a sparse computational one is shown to
be sufficient, for instance, with multiple-point sources, hence
reducing the numerical cost. FRgWI displays accurate reconstruc-
tions in both situations and appears more robust with respect to
crosstalk than least-squares shot stacking.

INTRODUCTION

The full-waveform inversion (FWI) method has been developed
extensively in the past few decades for quantitative recovery of sub-
surface earth media in seismic exploration. The concept of FWI is to
minimize, with respect to the earth parameters, a misfit criterion de-
fined from the simulations of wave propagation and the measured
seismograms (i.e., the “full waveform”). The method was introduced
originally by Bamberger et al. (1977, 1979) for the 1D wave equa-
tion, and was extended by Lailly (1983) and Tarantola (1984, 1987b).
The method first was used with time-domain wave propagation, and

the frequency-domain formulation of FWI, which requires a Fourier
transform of the original time-dependent seismic traces, was estab-
lished by Pratt et al. (1996, 1998).
In marine seismic, the data usually consist of measurements of

the pressure field from hydrophones, but new devices, dual sensors,
have been deployed recently and also give access to the vertical
velocity (Carlson et al., 2007; Tenghamn et al., 2007). This addi-
tional information has shown advantages of reducing noise for im-
age processing (see Whitmore et al., 2010; Rønholt et al., 2015),
and it has motivated new analysis, such as in the work of Alessan-
drini et al. (2018, 2019), and a specific numerical methodology by
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Faucher (2017) and Zhong and Liu (2018) for the seismic inverse
problem. In our work, we implement a misfit functional dedicated to
dual-sensor data and demonstrate its efficiency for the recovery of
subsurface physical parameters.
FWI relies on an iterative minimization of the misfit functional,

which, in the traditional least-squares approach, is the L2 difference
between the observations and the simulations. In addition to the
numerical challenges induced by the large-scale domain, one main
difficulty of FWI (which is a nonlinear and ill-posed inverse prob-
lem) is that the misfit functional suffers from local minima, in par-
ticular when low-frequency data are missing and/or in the absence
of a priori information, as has been observed by, for example,
Gauthier et al. (1986), Luo and Schuster (1991), Bunks et al.
(1995), and Faucher et al. (2020a). To mitigate the “cycle-skipping”
effect, selection of increasing frequency content in the data is com-
monly used (Bunks et al., 1995; Sirgue and Pratt, 2004). In our
work, we follow the frequency-domain formulation, in which this
approach is natural, and we further use increasing sequential fre-
quency, as advocated by Faucher et al. (2020a).
Several alternatives to least-squares have been studied to enhance

the convexity of the misfit functional, such as logarithmic function,
mentioned by Tarantola (1987a), that is particularly appropriate in
complex-frequency FWI (Shin and Min, 2006; Shin and Cha, 2008;
Faucher, 2017). Comparisons of misfit using the phase and ampli-
tude of signals are carried out in the work of Shin et al. (2007),
Bednar et al. (2007), and Pyun et al. (2007). Fichtner et al. (2008)
study the use of a misfit based upon the phase, correlation, or the
envelope; the latter also is advocated by Bozdağ et al. (2011), and it
is shown to be efficient for the reconstruction of attenuation proper-
ties in global earth seismology by Karaoğlu and Romanowicz
(2017). Brossier et al. (2010) study the use of the L1 criterion.
The optimal transport distance is considered in the work of Métivier
et al. (2016) and Yang et al. (2018) and is shown to improve the
misfit functional convexity. To avoid the local minima, one also
can rely on a specific model parameterization such as the migration-
based traveltime method that decomposes the velocity model into a
(smooth) background profile and a reflectivity in the data space
(Clément et al., 2001; Barucq et al., 2019). This approach is shown
to increase the size of the attraction basins for background velocity
reconstruction by Barucq et al. (2019).
In the case in which Cauchy data are available on the boundary,

that is, a field and its normal derivative (e.g., the pressure and the
normal derivative of the pressure, which actually relates to the nor-
mal velocity; see Appendix A) the reconstruction can use a combi-
nation of the Dirichlet and Neumann traces, as in the work of Kohn
and Vogelius (1985) and Colton and Haddar (2005) in inverse scat-
tering, or Alessandrini et al. (2018) for seismic. This approach is
labeled as the “reciprocity-gap” in the literature (de Hoop and de
Hoop, 2000; Colton and Haddar, 2005). Lipschitz stability can
be obtained for the partial Cauchy data inverse problem, in particu-
lar in the seismic context with surface measurements, as proved by
Alessandrini et al. (2018, 2019). This result further holds for piece-
wise-linear parameters, used for the numerical experiments of
Faucher (2017) and Alessandrini et al. (2019). In the context of
acoustic waves governed by the Euler’s equations, we shall see that
Cauchy data are in fact equivalent to the pressure field and the nor-
mal velocity, that is, dual-sensor data. In Appendix A, we further
connect the boundary measurements to the volume properties of the
media. Hence, the minimization of the misfit functional defined

from surface data is connected to the recovery of the volume
medium parameters. In our work, we use the reciprocity-gap formu-
lation and further combine all sources, defining the full reciprocity-
gap waveform inversion (FRgWI) framework for seismic imaging
using dual-sensor data.
In the time-harmonic formulation, the reciprocity-gap results in a

misfit functional in which the observations and simulations are
multiplied. Although our work is conducted in the frequency do-
main, it can similarly be carried out in the time domain where it
relates to the family of correlation misfits. Correlation-based misfit
functionals have been studied in seismic tomography, for instance,
by Van Leeuwen and Mulder (2010) and in the work of Choi and
Alkhalifah (2011) and Zhang et al. (2016), although using a single
type of measurements (i.e., the acoustic pressure fields). The use of
the velocity fields is studied in the time domain by Zhong and Liu
(2019), assuming that all directional velocities are available and
convolving the same fields. A fundamental difference with these
earlier studies, and in particular with Zhong and Liu (2019), is that
in our work, we correlate different fields (i.e., pressure with veloc-
ity). This is the essence of the reciprocity gap, and it is crucial for
relating surface measurements to global model reconstruction using
Green’s identity (Appendix A). In addition, our framework is nat-
urally designed for the normal velocity, in accordance with the dual-
sensor devices. The works of Menke and Levin (2003) and Bodin
et al. (2014) in seismology also combine observations and simula-
tions, but using a cross-convolution formula made of the vertical
and horizontal components of the waves. More generally, ap-
proaches based upon a specific filtering of the data, such as in the
work of Warner and Guasch (2016) and Guasch et al. (2019), also
rely on a minimization in which the fields are not directly the quan-
tities compared.
The main feature of FRgWI is to allow different observational

and numerical acquisitions (Faucher, 2017; Alessandrini et al.,
2019; Zhong and Liu, 2019). Minimal information regarding the
observational sources is required: the source function and the source
positions are not needed to conduct the reconstruction. This is due
to the definition of the misfit functional, which does not compare an
observation with a simulation directly, but products of an observa-
tion with a simulation. This flexibility in the choice of numerical
probing sources opens up many perspectives and, in particular,
to use denser or sparser computational acquisitions than the given
observational one. The use of sparse acquisition relates to the shot-
stacking approach for data decimation, which sums several single
point-source data using the linearity of the wave equation. It has
been used early in seismic applications to reduce the computational
cost byMora (1987). It is based upon the redundancy of information
in the data, but it has a major drawback in that it is difficult to avoid
crosstalk between the encoded sources (Krebs et al., 2009; Zhang
et al., 2018). It has motivated several works to efficiently assemble
the encoded sources in seismic, that is, source blending (Berkhout,
2008). We mention, for instance, the random combination of
sources changing with iteration by Krebs et al. (2009), the approach
based upon compressive sensing by Li et al. (2012), while wavelet
encoding is used by Zhang et al. (2018). In our applications, we will
see that FRgWI, by using arbitrary numerical sources, can work
with multiple-point sources (for computational or observational
acquisition) while being naturally robust to crosstalk. In fact, it
is not exactly crosstalk in this context because the key of FRgWI
is that the measurements are not modified; that is, they still are

R462 Faucher et al.

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/doi/10.1190/geo2019-0527.1/5166293/geo-2019-0527.1.pdf
by Rice University user
on 18 December 2020



tested independently, one by one, with respect to the numerical
simulations.
In this paper, we study the seismic inverse problem associated

with time-harmonic waves using dual-sensor data. We first state
the mathematical problem and define the two misfit functionals that
we analyze for the iterative reconstruction: the traditional least-
squares difference and the reciprocity-based functional. Next, we
detail the features provided by the reciprocity-gap formulation.
We carry out 3D reconstruction experiments: first with a layered
medium, in which we compare the performance of reciprocity-
gap and FWI. We further demonstrate the efficiency of FRgWI with
simultaneous point sources to reduce the computational cost and its
robustness compared to traditional shot stacking. Finally, we carry
out a larger scale experiment including salt domes using the SEG
Advanced Modeling Corporation (SEAM) benchmark. In particu-
lar, we highlight that FRgWI performs equally well in the case of
acquisitions that are sparse for observations/dense for simulations
and when acquisitions are dense for observations/sparse for simu-
lations. Our experiments are carried out using data acquired in the
time domain, and, even though our reconstruction algorithm is con-
ducted in the frequency domain, which might present some scale
limitations for field configurations, we believe that our method can
be implemented with the time-domain wave equation. This can be
more appropriate for larger scales, and it requires only a slight
modification to our model. A discussion about it is carried out
in the “Conclusion” section.

TIME-HARMONIC SEISMIC INVERSE PROBLEM
WITH DUAL-SENSOR DATA

We work with time-harmonic wave propagation for the identifi-
cation of the physical parameters in a seismic context. The quanti-
tative reconstruction is conducted using an iterative minimization
of a misfit functional. We first give the misfit as the traditional L2

difference and further design the reciprocity-gap version of the
functional, which combines pressure and normal velocity data.

Acoustic wave equation, forward problem from dual
sensors

We consider a 3D domain Ω ⊂ R3 with boundary Γ. The propa-
gation of waves in acoustic media is represented with the scalar pres-
sure and vectorial velocity fields that satisfy Euler’s equations (Kirsch,
1996; Colton and Kress, 1998; de Hoop and de Hoop, 2000):

ðProblem1Þ8>><
>>:
−iωρðxÞvðxÞ¼−∇pðxÞ; inΩ; ð1aÞ
−iωκðxÞ−1pðxÞ¼−∇ ·vðxÞþfðxÞ; inΩ; ð1bÞ
pðxÞ¼0; onΓ1ðFreesurfaceÞ; ð1cÞ
∂vpðxÞ− iω

cðxÞpðxÞ¼0; onΓ2ðABCÞ: ð1dÞ

The frequency is denoted by ω, f is the (scalar) interior (harmonic)
source term, and ∂v denotes the normal derivative. The propagation is
characterized by the two physical parameters of the medium: density ρ
and bulk modulus κ. In addition, the velocity c is defined such that

cðxÞ ¼
ffiffiffiffiffiffiffiffiffi
κðxÞ
ρðxÞ

s
: (2)

For boundary conditions, we follow a geophysical context in
which the boundary is separated into two: Γ ¼ Γ1 ∪ Γ2. We denote
by Γ1 the interface between the air and the acoustic medium, in
which a free-surface boundary condition holds, equation 1c. On the
other part of the boundary Γ2, we implement an absorbing boundary
condition (ABC), Engquist and Majda (1977), equation 1d, to en-
sure that waves reaching the boundary are not reflected back into
the domain. It corresponds to the fact that the domainΩ is a numeri-
cal restriction of the earth.
The dual-sensor devices have been recently introduced in marine

seismic exploration, and they allow the recording of the pressure
field and the vertical velocity (Carlson et al., 2007; Tenghamn et al.,
2007). Consequently, we define the forward problem (which maps
the parameters to the data) F ðfÞ

ω at frequency ω for a source f such
that

F ðfÞ
ω ðmÞ ¼ fpðfÞ

ω jΣ; vðfÞν;ωjΣg: (3)

The model parameters are referred to by m ¼ ðκ; ρÞ, the normal
velocity by vν, and Σ corresponds with the (discrete) set of receiv-
ers’ location:

pjΣ ¼ fpðx1Þ; : : : ; pðxnrcvÞg; (4)

where xi is the position of the ith receiver for a total of nrcv receiv-
ers. For notation, we introduce the restriction operator R, which
reduces the fields to the set Σ, such that

RðpÞ ¼ pjΣ; RðvνÞ ¼ vνjΣ: (5)

Misfit functionals

The inverse problem aims the quantitative reconstruction of the
subsurface medium parameters (κ and ρ) from data measured at the
receivers’ location. Using the pressure and vertical velocity mea-
surements, we denote the data at frequency ω for a source f by

dðfÞω ¼ fdðfÞω;p; d
ðfÞ
ω;vg; (6)

where dðfÞω;p and dðfÞω;v are vectors of Cnrcv and they respectively refer
to the pressure and normal velocity records, following equation 3.
We further denote by dðfÞω ðxiÞ the data recorded for the source f at
the ith receiver.
In the following, we omit the frequency index and space depend-

ency for the sake of clarity (in the experiments, we use an increasing
sequential frequency as suggested by Faucher et al., 2020a). We
introduce two misfit functionals that evaluate the difference be-
tween the observations and simulations.
First, the functional J L2, which follows the traditional least

squares, is

J L2ðmÞ¼ 1

2

Xnsrc
i¼1

kRðpðfiÞÞ−dðfiÞp k22þ
η

2
kRðvðfiÞν Þ−dðfiÞv k22;

(7)

where η is a scaling factor to adjust between the amplitudes of the
pressure and velocity. In our applications, it is taken such that
kdpk ¼ ηkdvk.
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Second, we define an alternative misfit functional based upon the
reciprocity gap, motivated by Green’s identity:

J rðmÞ¼1

2

Xnobssrc

i¼1

Xnsimsrc
j¼1

kdðfiÞTv RðpðgjÞÞ−dðfiÞTp RðvðgjÞν Þk22;

¼1

2

Xnobssrc

i¼1

Xnsimsrc
j¼1

����X
nrcv

k¼1

ðdðfiÞv ðxkÞpðgjÞðxkÞ−dðfiÞp ðxkÞvðgjÞν ðxkÞÞ
����2
2

;

(8)

where T denotes the transpose. The misfit functional is motivated
by the Green’s identity and has been introduced in the context of
inverse scattering, from Cauchy data, as mentioned in the “Introduc-
tion” section (Kohn and Vogelius, 1985; Colton and Haddar, 2005)
and used with partial seismic data by Alessandrini et al. (2019). In
Appendix A, we justify the formulation of the misfit functional J r

using variational formulation of problem 1, and note that the math-
ematical foundation of the reciprocity-gap formulation relies natu-
rally on the normal velocity. Therefore, it perfectly matches the
dual-sensor data, and it does not necessitate the specific directional
components (vx, vy, or vz).

Iterative reconstruction procedure

The reconstruction procedure follows an iterative minimization of
the selected misfit functional. Least-squares formulations such as
equation 7 are traditionally referred to as the FWI method in seismic
(because one makes use of the full data seismograms); see the review
of Virieux and Operto (2009). Consequently, we shall refer to the min-
imization of equation 8 as FRgWI. In any case, the iterative minimi-
zation follows successive updates of the physical models, such that, at
iteration l, the new model is given by mlþ1 ¼ ml − αlsl, where α is

the scalar step size typically computed via a line-search method
(Nocedal and Wright, 2006) and s is the search direction.
The search direction depends on the gradient of the cost function,

which is computed using the adjoint-state method. The method has
its foundation in the body of work of Lions (1971) and is reviewed
for seismic application by Plessix (2006). Application with complex
fields is further described by Barucq et al. (2018, 2019). The
adjoint-state method for the reciprocity-gap functional is briefly re-
viewed in Appendix B (Alessandrini et al., 2019). In our implemen-
tation, the search direction depends only on the gradient of the
misfit functional, and we use the limited-BFGS algorithm (Nocedal,
1980; Nocedal and Wright, 2006). We review the steps for the iter-
ative minimization in Algorithm 1.

Discretization with the hybridizable discontinuous
Galerkin method

In the numerical implementation, the pressure and velocity
fields must be computed to feed the misfit functional. We discre-
tize problem 1 using the hybridizable discontinuous Galerkin
(HDG) method, which is specifically designed for first-order prob-
lems, and avoid oversize linear systems. Indeed, the global matrix
using HDG is composed only of the degrees of freedom associated
with the trace of the pressure field, that is, only the degrees of
freedom on the faces of the elements of the discretization mesh
(Cockburn et al., 2009; Griesmaier and Monk, 2011; Bonnasse-
Gahot et al., 2017). Then, local (small) systems are solved to cal-
culate the volume solutions of the pressure and the velocity fields,
computed with similar accuracy. We refer to Faucher and Scherzer
(2020) for the numerical implementation associated with prob-
lem 1.
With more traditional discretization methods such as continuous

Galerkin, finite differences of internal penalty discontinuous Galer-
kin methods, one has to create a linear system whose size is the total
number of degrees of freedom for all unknowns (i.e., the pressure
and the three components of the velocity), possibly leading to large
linear systems. Alternatively, one can solve only for the scalar pres-
sure field and postprocess the solution to obtain the velocity, but the
computed velocity loses one order of accuracy compared to the
discretized pressure field due to the derivative in equation 1a. In
the HDG method, we obtain the pressure and velocity fields with
the same accuracy, whereas the global linear system contains only
the degrees of freedom of a scalar unknown (Faucher and Scherzer,
2020). In addition, only the degrees of freedom on the faces of the
elements are taken into account, hence removing all interior ones.
Consequently, the HDG method has been shown to be more effi-
cient (i.e., less memory consumption for the matrix factorization
due to the smaller global matrix) compared to other approaches
by Kirby et al. (2012) and Bonnasse-Gahot et al. (2017), for dis-
cretization.
In the context of large-scale seismic applications, the use of HDG is

crucial (particularly in the frequency domain) to efficiently compute
the pressure and the velocity because it eventually leads to linear sys-
tems with sizes that are not larger than for second-order wave prob-
lems. For the resolution of the subsequent linear system, we use a
direct solver (Amestoy et al., 2001; Liu et al., 2020) for the multiple
right-sides feature, in particular, the solver MUMPS, designed for
sparse matrices (Amestoy et al., 2006). Therefore, the matrix factori-
zation of the forward problem is reused for the backward one that

Algorithm 1: Iterative reconstruction procedure: For the
minimization of equation 7, the computational acquisition
(source positions and wavelet) must follow the one used to
generate the measurements. For the minimization of
equation 8, the user can prescribe a computational
acquisition by means of the positions and wavelet of the
probing sources gj in equation 8.

Initialization: starting models m1 ¼ ðκ1; ρ1Þ and measurements
dp; dv.

for ωi ¼ ω1; : : : ;ωNω
do

for j ¼ 1; : : : ; niter do

set l :¼ ði − 1Þniter þ j;

solve problem 1 using current models mk and frequency ωi;

compute the misfit functional, equation 7 or equation 8;

compute the gradient of the misfit functional using the adjoint-
state method;

compute the search direction, sl, using limited-BFGS;

compute the step length, αl, using line-search method;

update the model: mlþ1 ¼ ml − αlsl.

end

end
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serves to compute the gradient of the misfit functional depicted in
Appendix B.

FEATURES OF FRgWI AND DATA ACQUISITION

Following Faucher (2017) and Alessandrini et al. (2019), the fun-
damental feature of the reciprocity-gap misfit functional equation 8
compared to equation 7 is that the set of computational sources is
separated from the observational ones (respectively, gj and fi in
equation 8). It implies that (1) we do not have to know the obser-
vational source positions (the location of the fi in equation 8) for
the reconstruction algorithm. (2) We do not have to know the ob-
servational source signatures (wavelet). Consequently, and contrary
to the least-squares misfit such as equation 7, minimal information
is required regarding the observational acquisition (only the posi-
tions of the receivers). The recovery of the source wavelet in parallel
to the iterative minimization procedure usually performs well in
seismic exploration, using the method prescribed by Pratt (1999);
see remark 1. However, incorrect knowledge of the position of
the sources is a strong difficulty, which can lead to the failure
of the reconstruction procedure. Namely, FRgWI increases robust-
ness by being free of such considerations. In addition, (3) the set
of computational sources can be arbitrarily taken; hence, they can
differ from the observational one (respectively, nobssrc and nsimsrc in
equation 8).
Therefore, it provides high flexibility regarding the choice of

computational sources. It is important to notice that whatever com-
putational sources are selected, the observed data still are independ-
ently tested one by one against the simulations; that is, the
measurements are not modified in any way.

Data acquisition

In our experiments, we consider the source term for the wave
propagation (f or g) to be a Ricker function in time and a delta-
Dirac function in space. In the frequency domain, it translates to
a delta-Dirac function δ (with value equal to the discrete Fourier
transform of the time-domain signal). We refer to a point source
when the source is localized at position xk:

fk ¼ δðx − xkÞ; point source in xk: (9)

We further refer to the multiple point source when it is composed of
npt point sources, such that

fj ¼
Xnpt
k¼1

δðx − xðfÞj;k Þ;

multiple point source:

(10)

The observational setup uses a fixed lattice of
receivers and sources located slightly above, as
illustrated in Figure 1a. Furthermore, the position
of the receivers remains the same for all sources.
This configuration is consistent with the TopSeis
acquisition system for marine seismic developed
by Compagnie Générale de Géophysique and
Lundin Norwary AS. This principle has been
recently deployed in the field, showing benefits
for near-offset coverage. Namely, it consists in

having two boats: one that moves and carries the sources and one
that carries the receivers and remains fixed. Similarly, the use of
ocean-bottom node networks is appropriate.
For the reconstruction using FRgWI, we can use arbitrary numeri-

cal sources, which do not have to coincide with the observational
acquisition. Here, we investigate the two following configurations.

Dense point-source computational acquisition for
sparse multiple-point measurements

In the case when the observational acquisition is composed of
few sources (e.g., to reduce the cost of field experiments), FRgWI
can use a dense coverage of computational point sources to enhance
the sensitivity. The sources for the measurements can be multiple
points, for example, if several air guns are excited at the same time.
In our experiments, the choice of positions for the multiple points
follows a structured decomposition: adjacent sources are grouped,
with a fixed distance in x and y between each (Figure 1b). It appears
more natural to use such a structured decision; for example, the boat
will carry the air-gun sources all together. In addition, we have ob-
served in our experiments that this structured partition gives better
performance than using a random combination of sources.

Sparse multiple-point computational acquisition for
dense point-source measurements

In the case when the observational acquisition is composed of
many (point) sources (as is routine in exploration seismic), FRgWI
can instead use multiple-point sources in the computational acquis-
ition to reduce the computational cost. It consists of a sparsification
of the observational acquisition.
To compare with the traditional FWI approach, one can use the

linearity of the wave equation and the multiple-point source can be
assimilated to the well-known shot-stacking approach, which re-
writes the misfit functional equation 7 such that

J stack
L2 ðmÞ ¼

Xnstack
j¼1

1

2

����X
npt

k¼1

Rðpðfj;kÞÞ −
Xnpt
k¼1

d
ðfj;kÞ
p

����2

þ η

2

����X
npt

k¼1

Rðvðfj;kÞν Þ −
Xnpt
k¼1

d
ðfj;kÞ
v

����2; (11)

where we have a total of nstack multiple-point sources, each com-
posed of npt points.

a) b)

Figure 1. (a) Domain of acquisition: all sources are positioned at the same depth (the
blue dashed line) and the receivers are slightly below (the black line, Σ). The receivers
remain fixed for all sources according to the Topseis acquisition. (b) The ðx; yÞ source
plane (all sources are at the same depth z): every black square corresponds to a point
source. The multiple-point sources are defined by taking all points in a specified sub-
domain, indicated with the dashed line, that is, using a structured decomposition.
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Therefore, we will investigate in the following numerical sections
different situations in which one of the acquisitions (observational
or computational) is composed of point sources whereas the other is
made of multiple-point sources. The main advantage of FRgWI is
that it does not require any modification of the data, which are tested
one by one against the computational acquisition in equation 8.
However, the shot-stacking version of FWI requires the summation
of data in equation 11, which results in the possible loss of infor-
mation, that is, crosstalk (Zhang et al., 2018).

NUMERICAL EXPERIMENT 1: LAYEREDMEDIUM

In this section and the next, we carry out 3D experiments of geo-
physical reconstruction to study the performance of FRgWI. In this
first test, we compare with the traditional least-squares functional,
and we use multiple-point sources to probe the robustness of arbi-
trary source positions; we also test the combination of sparse and
dense acquisitions.

Velocity model

We consider a 3D acoustic medium (provided by Statoil) of
2.55 × 1.45 × 1.22 km3 in the x-, y-, and z-axes, respectively,
(i.e., z is depth). We assume a constant density ρ ¼ 1000 kgm−3,
and the subsurface velocity is pictured in Figure 2. It consists of
different geophysical layers, with nonmonotone model variations,
from 1500 to 5200ms−1. The first 500 m are mostly constant with
a velocity of approximately 1600 m s−1.
For the iterative reconstruction, we start with a 1D velocity pro-

file pictured in Figure 3. This initial guess does not encode any a

priori information, and it has only an increasing velocity with the
depth. Moreover, the range of values is lower compared to the true
medium of Figure 2.

Time-domain data with noise

We work with time-harmonic wave propagation, but we follow a
seismic context where measurements are obtained in the time do-
main. Furthermore, we incorporate white Gaussian noise in the syn-
thetic seismograms to have a more realistic setup. The observational
acquisition consists of 160 point sources, excited one by one. They
are positioned at the depth of z ¼ 10 m, and form a regular array
such that sources are every 160 m along the x-axis and every 150 m
along the y-axis. There is a total of 1376 receivers, which are lo-
cated at a fixed depth of 100 m, every 60 m along the x-axis, and
every 50 m along the y-axis. Note that the receivers remain at the
same position for all sources (Figure 1).
We generate the time-domain seismograms (we have used the par-

allel time-domain code Hou10ni [see https://team.inria.fr/magique3d/
software/hou10ni/]; it relies on internal penalty discontinuous
Galerkin discretization [whereas we use HDG]. Also, the meshes
are different between the time-domain modeling and the harmonic
inversion) and incorporate noise with a signal-to-noise ratio (S/N)
of 10 dB. Then, we proceed with the discrete Fourier transform to
feed algorithm 1. In Figure 4, we picture the noisy time-domain pres-
sure trace for a single point source, and the corresponding Fourier-
transform that we use for the reconstruction. We respect the seismic
constraint that the low frequencies are not available from the time-
domain data (because these are not contained in the active source),
and we work only with data from 5 to 15 Hz frequency. In Figure 5,
we picture 2D time-space sections of the traces for the pressure and
normal velocity, and we illustrate the effect of the added noise (10 dB
S/N in our experiments).

Performance comparison of the mist functionals

We first compare the performance of both misfit functionals J L2

and J r in the same context: The numerical acquisition is taken to
be the same as the observational one (which is anyway mandatory
for J L2). Therefore, we take nsimsrc ¼ nobssrc and the same set for f and
g in equation 8. We use algorithm 1, using sequential frequency pro-
gression from 5 to 15 Hz; more precisely, we use f5; 6; 7; 8;
9; 10; 12; 15g Hz data and 30 minimization iterations per frequency.
In Figures 6 and 7, we show the final reconstruction after 15 Hz iter-
ations when minimizing J L2 and J r, respectively. For the discretiza-
tion, we use a mesh of approximately 75,000 tetrahedra and
polynomials of order three to five (depending on the frequency) for
accuracy (note that the mesh differs from the one used to generate
the time-domain data).

Remark 1

For the minimization of J L2 equation 7, one has to use the same
source wavelet for the observations and simulations. Because the
observational source wavelet is not precisely known, we need to
reconstruct the source during the iterative process as well. We
use the update formula given by Pratt (1999) for the iterative
point-source reconstruction. However, this can induce additional
difficulty in cases in which the source characteristic is not well re-

Figure 2. The velocity model with layers of 2.55 × 1.45 ×
1.22 km3. For visualization, we extract sections at a fixed depth of
z ¼ 800 m (bottom) and for y ¼ 1125 m (right).

Figure 3. Starting model for the reconstruction of the subsurface
velocity of Figure 2. It consists in a 1D profile of increasing speed
with depth, with values from 1500 to approximately 4000 m s−1.
The horizontal section is for y ¼ 1125 m (right).
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covered or, more important, when the source positions are not pre-
cisely known.
In this experiment, we use the same acquisition context for the

two choices of misfit functional, to observe the
intrinsic differences between the two methods.
We observe the following:

1) Both approaches provide a good reconstruc-
tion, where the layers of velocity appear (see
the vertical section), and the correct velocity
values are retrieved.

2) The FRgWI provides slightly better results,
in particular for the parts that are near the
boundaries (see the vertical and horizontal
sections of Figures 6 and 7). This can be ex-
plained as FRgWI formulation equation 8
tests every simulation source with each ob-
servational one (the two sums in equation 8),
and it somehow compensates for the limited
illumination of the boundary zones.

3) Regarding the computational time, both ap-
proaches are similar (the only difference is
the two sums in the misfit functional equa-
tion 8, which is a computationally efficient
operation compared to the matrix factoriza-
tion and linear system resolution).

Therefore, in this first test case, we have dem-
onstrated the efficiency of FRgWI, which produ-
ces a better reconstruction compared to the
traditional approach, without incurring any in-
crease of computational time. But more important,
the reciprocity-gap offers flexibility for the choice
of computational acquisition, which we now study.

Comparison of multiple-point sources
FRgWI with shot stacking

The main feature of FRgWI is to enable the use
of arbitrary probing sources for the numerical sim-
ulations (g in equation 8). Here, we investigate the
use of multiple-point sources to reduce the compu-
tational cost. The observational acquisition is com-
posed of 160 point sources; that is, each source
function fiðxÞ in equations 7 and 8 corresponds
to a delta-Dirac function in xðfÞi , according to equation 9. For the com-
putational acquisition (g in equation 8), we now consider nstack multi-
ple-point sources, each composed of npt points (equation 10).
We assume that the multiple-point sources all have the same

number of points. The positions of the multiple points are taken
to coincide with the observational acquisition, and we consider a
group of sources in a structured partition of the original configura-
tion, as illustrated in Figure 1. We have

xðgÞj;• ¼ fxðfÞi gi2i¼i1
; with i1 ¼ ðj − 1Þnpt þ 1 and

i2 ¼ i1 þ npt − 1;
(12)

where xj corresponds with the multiple point source, composed of
the point sources located in xi. The FWI counterpart is to use shot
stacking, which requires summation of the observed data, according
to equation 11.

We perform the iterative reconstruction using nstack ¼ 5multiple-
point sources, each of them composed of npt ¼ 32 points. The
reconstruction using the shot-stacking version of FWI equation 11

a) b)

Figure 4. (a) Seismic traces in time including noise and (b) the corresponding real part
Fourier transform at 5 Hz frequency. These are associated with a single point source
located in ðxs; ys; zsÞ ¼ ð1160; 780; 10Þ m, for the velocity model of Figure 2. The mea-
surements are obtained from 1376 receivers positioned at a depth of z ¼ 100 m.

a) b) c)

Figure 5. Time-domain (a) pressure trace without noise, (b) pressure trace with 10 dB S/
N, and (c) normal velocity trace with 10 dB S/N. These correspond with a line of receivers
at a fixed y ¼ 695 m, for a single point source located in ðxs; ys; zsÞ ¼ ð1160; 780; 10Þ m
for the velocity model shown in Figure 2. For our experiment, we apply 10 dB S/N to the
synthetic data and use the Fourier transform of the noisy traces. The available frequency
ranges from 5 to 15 Hz (see Figure 4).

Figure 6. Velocity reconstruction from the minimization of J L2 in
equation 7, starting with the model of Figure 3. The reconstruction
uses 30 iterations per frequency between 5 and 15 Hz, with pressure
and normal velocity data. For visualization, we picture sections at a
fixed depth of z ¼ 800 m (bottom) and for y ¼ 1125 m (right).
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is shown Figure 8, and the result using FRgWI (i.e., where only the
computational acquisition is changed) is shown Figure 9.
We observe that FRgWI performs better than the shot stacking in

FWI, in this experiment of relatively small scale:

1) The vertical and horizontal sections shown in Figure 9 are ac-
tually very close from the reconstruction obtained using the
same computational and observational acquisition (Figure 7).
The pattern of increasing and decreasing velocity is well cap-
tured with the appropriate values.

2) However, the FWI with shot stacking loses accuracy, in particu-
lar the vertical section in Figure 8 where the nonmonotonic
variation is not even recovered.

Testing each of the observational sources independently with the
arbitrary computational ones, the FRgWI is robust with multiple-
point sources and allows a sharp decrease in the number of numeri-
cal sources for the simulations.

Remark 2

The results using the shot stacking with FWI could be improved
by using a more advanced strategy of shot blending as mentioned in
the “Introduction” section (Krebs et al., 2009; Li et al., 2012). We

illustrate here that even a naive approach (i.e., simple to implement
numerically) of shot stacking is sufficient for the FRgWI to produce
satisfactory results. Also, note that we have tried to use a random
selection of positions for the multiple point, but it was not perform-
ing as well as the structured criterion. This would, however, require
more testing to confirm.
We can further reduce the number of computational sources. The

reconstruction using FRgWI with nstack ¼ 2, npt ¼ 80 is shown in
Figure 10. In Figure 11, we show the reconstruction using only one
source: nstack ¼ 1, npt ¼ 160. We see that FRgWI still behaves quite
well, in particular for two sources the reconstruction carries similar
accuracy than before: The vertical structures are discovered accu-
rately, with pertinent variations of velocity. For the reconstruction
using only one source, Figure 11, we see some deterioration in the
recovered layers, but it remains more accurate than the shot-stack-
ing FWI using five sources (Figure 8).
The essence of FRgWI is that it does not modify the observatio-

nal acquisition and instead it probes every measured seismogram
independently. It increases the robustness of the reconstruction pro-
cedure, and it allows for the design of arbitrary computational ac-
quisitions to reduce the computational cost. In this experiment, we
have used a naive approach of shot summation, which requires no
effort for its implementation and already shows accurate recon-
structions.

Figure 7. Velocity reconstruction from the minimization of J r in
equation 8, starting with the model of Figure 3. The reconstruction
uses 30 iterations per frequency between 5 and 15 Hz, with pressure
and normal velocity data. Here, the numerical acquisition for FRgWI
follows the observational one (the number of sources and position).
For visualization, we picture sections at a fixed depth of z ¼ 800 m
(bottom) and for y ¼ 1125 m (right).

Figure 8. Velocity reconstruction from the minimization of J stack
L2 in

equation 11, starting with the model of Figure 3. It uses nstack ¼ 5
multiple-point sources composed of npt ¼ 32 (compare equation 11).
The reconstruction uses 30 iterations per frequency between 5 and
15 Hz. For visualization, we picture sections at a fixed depth of z ¼
800 m (bottom) and for y ¼ 1125 m (right).

Figure 9. Velocity reconstruction from the minimization ofJ r, start-
ing with the model of Figure 3. The numerical acquisition (g in equa-
tion 8) uses nstack ¼ 5 sources composed of npt ¼ 32 (compare
equation 10). The reconstruction uses 30 iterations per frequency be-
tween 5 and 15 Hz. For visualization, we picture sections at a fixed
depth of z ¼ 800 m (bottom) and for y ¼ 1125 m (right).

Figure 10. Velocity reconstruction from the minimization of J r,
starting with the model of Figure 3. The numerical acquisition (g
in equation 8) uses nstack ¼ 2 sources composed of npt ¼ 80 (equa-
tion 10). The reconstruction uses 30 iterations per frequency between
5 and 15 Hz. For visualization, we picture sections at a fixed depth of
z ¼ 800 m (bottom) and for y ¼ 1125 m (right).
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Sparse observational acquisition

We now investigate a different situation: when the measurements
are obtained from only a few set of multiple-point sources. This
happens, for example, in marine seismic when an array of air guns
are excited simultaneously. It consequently speeds up the field ac-
quisition and reduces the amount of data obtained, hence reducing
the cost of the field acquisition.
Hence, we now consider that the measurements are obtained from

five multiple-point sources. We follow the configuration of the pre-
vious subsection but inverting the computational and observational
acquisitions: it is now f in equation 8 that is represented with a
multiple-point sources equation 12 whereas the computational
sources g consist of 160 single point sources. It means that the ob-
served measurements are acquired from the physical phenomenon
corresponding with multiple-point sources. Note that from this type
of measurement, the FWI reconstruction coincides with the shot-
stacking result of Figure 8. In Figure 12, we show the reconstruction
in which the observations are obtained from nstack ¼ 5 multiple-
point sources and the computational acquisition consists of 160 sin-
gle point sources. In Figure 13, we show the reconstruction in which
the measured data result from one multiple point source, composed
of 160 points (i.e., all sources are excited at the same time) whereas
the numerical acquisition remains with 160 point sources.

We observe that the reconstructions obtained from a drastically
reduced set of measurements, resulting from multiple-point sources,
retrieve the appropriate velocity variation. It displays similar accu-
racy compared to the use of single-point source measurements with
multiple-point source simulations (Figures 9 and 11 for five and one
computational sources, respectively). Namely, it seems that FRgWI
is insensitive to which acquisition is made sparse (i.e., with multi-
ple-point sources).

NUMERICAL EXPERIMENT 2: SALT-BODY
SEAM MODEL

In this experiment, we consider a 3D velocity model encompass-
ing salt domes. The velocity is extracted from the seismic SEAM
benchmark, and is 7 × 6.5 × 2.1 km3. The velocity model is de-
picted in Figure 14, and it varies from 1500 to 4800 m s−1. In this
experiment, the density is heterogeneous, and it is pictured in Fig-
ure 15. Compared to a previous test case, it is of a different nature
(salt domes), it is larger, and it has a heterogeneous density. There-
fore, we expect this numerical experiment to be more challenging.

Time-domain data

Similarly to the previous experiment, we work with noisy time-
domain data and compute their Fourier transform to generate the har-
monic data used in the iterative reconstruction. There is a total of 272
point sources in the observational acquisition, which is located at 10 m
in depth. The sources are placed on a 2D plane with 400 m between
each source along the x- and y-axes. For multiple point acquisition, we
follow the structured combination illustrated in Figure 1b. In this ex-
periment, we generate the time-domain data and we use a 20 dB S/N.
The resulting seismograms are illustrated in Figure 16 for a single
source, where we show the pressure and vertical velocity measure-
ments. The data are acquired by a total of 2805 receivers. For the
reconstruction, we perform a Fourier transform of the time-domain
noisy data, and we use frequency content from 2 to 7 Hz.

Reconstruction using FRgWI

For the reconstruction, we start with initial guesses that corre-
spond to the smooth version of the true models; they are shown in
Figures 17 and 18 for the starting velocity and density, respectively.

Figure 11. Velocity reconstruction from the minimization of J r,
starting with the model of Figure 3. The numerical acquisition
(g in equation 8) uses nstack ¼ 1 source composed of npt ¼ 160
(equation 10). The reconstruction uses 30 iterations per frequency
between 5 and 15 Hz. For visualization, we picture sections at a
fixed depth of z ¼ 800 m (bottom) and for y ¼ 1125 m (right).

Figure 12. Velocity reconstruction from the minimization of J r,
starting with the model of Figure 3. The observational acquisition
(f in equation 8) uses nstack ¼ 5 sources composed of npt ¼ 32
(equation 10) whereas the computational acquisition (g in equation 8)
uses 160 point sources. The reconstruction uses 30 iterations per fre-
quency between 5 and 15 Hz. For visualization, we picture sections at
a fixed depth of z ¼ 800 m (bottom) and for y ¼ 1125 m (right).

Figure 13. Velocity reconstruction from the minimization of J r,
starting with the model of Figure 3. The observational acquisition
(f in equation 8) uses nstack ¼ 1 source composed of npt ¼ 160
(equation 10) whereas the computational acquisition (g in equation 8)
uses 160 point sources. The reconstruction uses 30 iterations per fre-
quency between 5 and 15 Hz. For visualization, we picture sections at
a fixed depth of z ¼ 800 m (bottom) and for y ¼ 1125 m (right).
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We actually only focus on the reconstruction of the velocity model,
and we keep the density as its initial representation of Figure 18.
The density is known to be more poorly resolved than the velocity
because of the lack of sensitivity in the data (Jeong et al., 2012),
but it should not prevent us from recovering the velocity (Faucher,
2017).
We use the FRgWI algorithm with the minimization of equation 8

using sequential frequency content from 2 to 7 Hz. We perform 30
iterations per frequency for a total of 180 iterations. We analyze the
two following configurations.

1) We first use the dense observational acquisition composed of 272
point sources and multiple-point sources for the computational
acquisition (g in equation 8). The multiple-point sources use
npt ¼ 8 points, resulting in nstack ¼ 34 sources. The recon-
structed velocity after the iterations at 7 Hz is shown in Figure 19.

2) Next, we consider the opposite situation: we assume a sparse
observational acquisition of nstack ¼ 34 sources each composed
of npt ¼ 8 points. Here, the computational acquisition is made
dense, with 272 point sources. The recovered velocity is shown
in Figure 20.

The minimization performs well in both situations: The salt dome
is appearing with appropriate values (approximately 4500ms−1).
The upper boundary of the salt is recovered accurately (compare
the right sides of Figures 19 and 20), whereas the deepest parts

are more difficult to obtain. It is possible that the high velocity con-
trast prevents us from imaging below the salt. The horizontal section
(the bottom of Figures 19 and 20) also shows the appropriate pat-
tern, in particular with the decrease of velocity in the middle, and
only the parts near the boundary are slightly less accurate. It con-
firms the results of our first experiment that FRgWI is relatively
insensitive to whether an observational or computational acquisition
is taken as sparse or dense: the reconstructions display similar res-
olution for the two cases. In terms of numerical cost, sparse com-
putational acquisition reduces the computational time but, in the
frequency domain with the use of direct solver, this gain remains
marginal. To further improve the reconstruction, we shall include
a regularization parameter in the minimization, for example, with
the total variation approach, which can indeed be supported by
our misfit functional; see also Faucher et al. (2020b).

Figure 14. The velocity model of 7 × 6.5 × 2.1 km3. For visualiza-
tion, we extract sections at a fixed depth of z ¼ 1.5 km (bottom), for
x ¼ 3.5 km (top right), and y ¼ 3.25 km (bottom right).

Figure 15. The density model of 7 × 6.5 × 2.1 km3. For visualiza-
tion, we extract sections at a fixed depth of z ¼ 1.5 km (bottom), for
x ¼ 3.5 km (top right), and y ¼ 3.25 km (bottom right).

a) b)

Figure 16. Time domain (a) pressure trace and (b) normal velocity
trace with 20 dB S/N. These correspond to a line of receivers at a
fixed y ¼ 3.1 km, for a single-point source located in ðxs; ys; zsÞ ¼ð3.4; 3.4; 0.01Þ km for the velocity and density models given in Fig-
ures 14 and 15. For our experiment, we apply 20 dB S/N to the
synthetic data and use the Fourier transform of the noisy traces.
The available frequency ranges from 2 to 7 Hz.

Figure 17. Starting velocity model for the reconstruction of the
model of Figure 14. We picture vertical sections at a fixed
x ¼ 3.5 km (top right) and y ¼ 3.25 km (bottom right).

Figure 18. Starting density model for the reconstruction of the
model of Figures 14 and 15. We picture vertical sections at a fixed
x ¼ 3.5 km (top right) and y ¼ 3.25 km (bottom right).
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ANALYSIS OF RESULTS AND PERSPECTIVES

We have implemented the iterative minimization method based
upon the reciprocity-gap functional in the frequency domain, with
the HDG discretization to efficiently address the first-order system.
To probe the method, we have carried out two 3D experiments: one
with a velocity made of layers and another with a medium contain-
ing a salt dome, extracted from the SEAM benchmark. First, our
experiments have shown that the FRgWI method performs better
than FWI in the same configuration, that is, when we keep the ob-
servational acquisition for the numerical one, in particular by im-
proving the illumination on the sides. These promising results
motivate the implementation of the method for larger, field bench-
marks, to probe the scalability of FRgWI. In this case, the time-do-
main formulation should be considered to continue the performance
analysis that we have started.

Flexibility in the computational acquisition

The main feature of FRgWI is its robustness regarding the ab-
sence of information on the observational acquisition, and the con-
sequent freedom in the computational one. This is due to the misfit
functional equation 8 that works with a product of a datum with a
simulation, and that relates to the correlation-based family of meth-
ods. For instance, the wavelet used for the computational source
does not have to match the observational one, as long as there is
an overlap in their frequency contents, and we have not observed
any other requirement on the choice of the source function. The use
of less traditional sources such as plane waves is theoretically pos-
sible, and it should be investigated in the future.
Our main result comes from the positions of the sources used for

the simulations that can be chosen arbitrarily. This flexibility is in
the core of the misfit functional, which does not directly compare an
observation with a simulation but tests the product of any observa-
tion with any simulation, hence enforcing the domain illumination.
It is crucial to note that the measurements are not modified and are
independently tested one by one against each of the (chosen) com-
putations. In our work, we stay with illumination from one side (i.e.,
simulations and observations are generated near the surface), mo-
tivated by Alessandrini et al. (2019), which demonstrates the sta-
bility of the method. This choice also is motivated from the
derivation of the variational formulation that we give in Appendix A,
to avoid the appearance of additional integrals (see the discussion at
the end of Appendix A). The use of probing sources from another
part of the domain (e.g., deeper) has to be carefully investigated, and
it is part of our ongoing research.

Using sparse acquisitions

The use of multiple-point sources allows for the reduction of the
computational time or of the field acquisition process. Here, the key
is that only one of the two acquisitions is reduced, whereas the other
remains dense. Once again, because every datum in the dense ac-
quisition is tested with respect to each datum of the sparse one, it
appears to overall produce the proper illumination of the domain.
This is possible due to the misfit formula, which offers high flex-
ibility, contrary to more traditional approaches in which both
acquisitions must be the same.
We have experimented with the two configurations (the sparse

computational acquisition with the dense observational one or

the opposite), and it results in similar accuracy in the reconstruction.
Because FRgWI independently tests all combinations of an obser-
vation with a simulation, it further appears robust with respect to
shot stacking. With FRgWI, we do not exactly observe the crosstalk
effect because the measurements are not modified before entering
the misfit; instead, we observe some inherent difficulties when the
acquisition is too sparse. This is unavoidable, for instance, if the
original field data have been obtained from a few sources only:
we cannot artificially enhance the information contained in the
measurements. However, the difficulties that come from the
summation of data (i.e., having multiple-point sources in a sparse
acquisition) and that results in crosstalk are diminished by the
misfit functional, which takes the product with each datum in the
dense acquisition.
In the context of shot stacking, there is a “reference” solution,

which is the use of the nonsummed fields. Here, we raise the

Figure 19. Velocity reconstruction of the SEAM model from the
minimization of J r, starting with the models of Figure 17. It uses
a dense observational acquisition of 272 point sources, whereas the
numerical acquisition (g in equation 8) uses nstack ¼ 34 sources
composed of npt ¼ 8 points. The reconstruction follows 30 itera-
tions per frequency between 2 and 7 Hz. For visualization, we pic-
ture sections at a fixed depth of z ¼ 1.5 km (bottom), for
x ¼ 3.5 km (top right), and y ¼ 3.25 km (bottom right).

Figure 20. Velocity reconstruction of the SEAM model from the
minimization of J r, starting with the models of Figure 17. It uses
a sparse observational acquisition of nstack ¼ 34 sources composed
of npt ¼ 8 points, whereas the numerical acquisition (g in equa-
tion 8) uses a dense array of 272 point-sources. The reconstruction
follows 30 iterations per frequency between 2 and 7 Hz. For visu-
alization, we picture sections at a fixed depth of z ¼ 1.5 km (bot-
tom), for x ¼ 3.5 km (top right), and y ¼ 3.25 km (bottom right).
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following question for future applications of the FRgWI method:
How do we optimally select the numerical acquisition to make
the best use of the observed measurements?

Data coverage

It is important to remember that the reciprocity-gap misfit func-
tional relates, in terms of receivers, to the discretization of a surface
integral, as depicted in Appendix A. In our experiments, we have a
dense array of receivers, according to the standards in exploration
geophysics. In the case in which the surface is not properly covered,
we certainly need to appropriately weight the records, using, for
instance, existing techniques from earth seismology, such as the
one prescribed by Montagner et al. (2012). Similarly, the use of
specific weight (e.g., from quadrature rules) could give a first in-
dication on how to select the computational acquisition to ensure
the equal illumination of the domain with minimal points.

Toward practical applications

Our reconstruction algorithm has been carried out in the fre-
quency domain, in which it is difficult to address the scales encoun-
tered in field applications due to the operations of linear algebra
(mainly the memory required for the matrix factorization).
Although the efficiency of the frequency domain is improved by
the use of HDG discretization (to reduce the size of linear systems)
and by new techniques developed for the solver (Liu et al., 2020),
time- or hybrid-domain inversion should be implemented to further
probe the method in field studies. In this case, the multiplication of
fields in the misfit functional equation 8 turns into convolution
products, maintaining the same features regarding the flexibility
of the numerical acquisition. We do not expect a difference in
the performance of the method when implemented in the time do-
main for the situation we have studied here, especially if one fol-
lows the (usual) progression of increasing frequency content in the
data, as introduced by Bunks et al. (1995). However, it is crucial to
experiment on larger field configurations to further evaluate the
method compared to the existing techniques. Here, the impact of
the (limited) data coverage has to be carefully investigated.

CONCLUSION

We have performed waveform inversion using a reciprocity-gap
misfit functional, which is adapted to the dual-sensor devices that
capture the pressure field and the normal velocity of the waves. In
this case, the measurements can be seen as Cauchy data, motivating
our choice of misfit from the point of view of inverse scattering
theory. Our method enables the use of different acquisitions for
the observations and the simulations, by relying on a product of
data. We have investigated its performance with sparse acquisitions
made of multiple-point sources and have demonstrated its efficiency
compared to the traditional FWI. We have used a sparse acquisition
either for the observational one (to reduce the cost of the field ac-
quisition) or for the computational one (to reduce the numerical cost
of the iterative minimization), while not altering the resolution of
the reconstruction.
We have implemented the method in the frequency domain

and carried out two experiments of different natures. These re-
present the first steps of the validation, while time- and hybrid-
domain inversions now should be considered. The implementation

of the misfit with time signals does not result in any technicality
and should not lead to a difference in performance for the scales
that we have studied with our frequency-domain setup. However,
it is necessary to further probe the behavior of FRgWI in larger
practical test cases and to analyze how it competes with state-of-
the art methods.
The FRgWI method allows for arbitrary computational source

positions that now need to be further analyzed. For instance, the
definition of criteria for the design of the computational acquisition
and the study of the source positions (e.g., not just close to the near
surface area, with quadrature rules to ensure equal illumination) is
the subject of our future research. Note also that the concept of
FRgWI extends readily to elasticity.
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APPENDIX A

RECIPROCITY-GAP FORMULA WITH EULER’S
EQUATIONS IN SEISMIC

In this appendix, we motivate the reciprocity-gap misfit, con-
structed from the variational formulation of problem 1. In the context
of seismic applications, we assume that the data (i.e., pressure and
normal velocity) are acquired on a line Σ, which is slightly under-
neath the surface Γ1. The domain is decomposed into above and be-
low the area from the line of receivers, such that Ω ¼ Ωþ ∪ Ω−,
illustrated in Figure A-1.
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Let us first rewrite problem 1 introducing continuity conditions at
Σ, using exponent + and − for the fields that are in Ωþ and Ω−,
respectively, such that

pjΩþ ¼ pþ; pjΩ− ¼ p−; (A-1)

and similarly for the velocity. Problem 1 is equivalent to

8>>>>>><
>>>>>>:

−iωρðxÞvðxÞ¼−∇pðxÞ; inΩþ∪Ω−; ðA-2aÞ
iωκðxÞ−1pðxÞ¼−∇ ·vðxÞþfðxÞ; inΩþ∪Ω−; ðA-2bÞ
pðxÞ¼0; onΓ1; ðA-2cÞ
∂vpðxÞ− iω

cðxÞpðxÞ¼0; onΓ2; ðA-2dÞ
pþ¼p−; ∂νpþ¼∂νp−; onΣ; ðA-2eÞ
vþ¼v−; ∂νvþ¼∂νv−; onΣ: ðA-2fÞ

We consider two couples ðp1; v1Þ and ðp2; v2Þ solutions to prob-
lem A-2. They are, respectively, associated to two sources, f and g,
and two different sets of physical parameters: ðκ1; ρ1Þ and ðκ2; ρ2Þ,
respectively. We take pk ∈ H1ðΩÞ and vk ∈ ðH1ðΩÞÞ3, for k ¼ 1, 2,
where H refers to the Hilbert space. For the derivation of the reci-
procity-gap formula, we write the variational formulation on Ω−

only. The variational formulation of equation A-2 for ðp1; v1Þ, using
for the test functions ðp2; v2Þ gives

�R
Ω− −iωρ1v1 · v2 þ ∇p1 · v2dΩ− ¼ 0;R
Ω− −iωκ−11 p1p2 þ ð∇ · v1Þp2dΩ− ¼ 0;

(A-3)

where we omit the − exponent in the fields p and v for the sake
of clarity. Furthermore, we assume that the source f is supported
outside Ω−, for example, by using delta-Dirac functions in some
position xf ∈ Ωþ, according to Figure A-1.
We use an integration-by-parts for both equations, and we

subtract the first one from the second one to get

Z
Ω−

iωρ1v1 · v2 þ p1∇ · ðv2Þ − iωκ−11 p1p2 − v1 · ∇p2dΩ−

¼
Z
∂Ω−

p1ðv2 · vÞ − ðv1 · vÞp2d∂Ω−: (A-4)

In the volume integral, we replace ð∇ · v2Þ and ð∇p2Þ using the fact
that ðp2; v2Þ solves equation A-2

Z
Ω−

iωρ1v1 ·v2þp1 ·∇ ·ðv2Þ−iωκ−11 p1p2−v1 ·∇p2dΩ−

¼
Z
Ω−

iωρ1v1 ·v2þp1ðiωκ−12 p2Þ−iωκ−11 p1p2−v1 ·ðiωρ2v2ÞdΩ−

¼
Z
Ω−

iωðρ1−ρ2Þv1 ·v2þiωðκ−12 −κ−11 Þp1p2dΩ−: (A-5)

Next, the integral on the boundary in equation A-4 is decom-
posed between Γ−

2 ¼ Γ2 ∩ ∂Ω− and Σ such that

Z
∂Ω−

p1ðv2 · vÞ − ðv1 · vÞp2d∂Ω−

¼
Z
Γ−
2

p1ðv2 · vÞ − ðv1 · vÞp2dΓ−
2

þ
Z
Σ
p1ðv2 · vÞ − ðv1 · vÞp2dΣ: (A-6)

On Γ−
2 , we first use equation 1a to replace ðv1 · vÞ and ðv2 · vÞ, and

then the ABC equation 1dZ
Γ−
2

p1ðv2 · νÞ − ðv1 · νÞp2dΓ−
2

¼
Z
Γ−
2

p1ððiωρ2Þ−1∂νp2Þ − ððiωρ1Þ−1∂νp1Þp2dΓ−
2

¼
Z
Γ−
2

p1ððc2ρ2Þ−1p2Þ − ððc1ρ1Þ−1p1Þp2dΓ−
2

¼
Z
Γ−
2

ððc2ρ2Þ−1 − ðc1ρ1Þ−1Þp1p2dΓ−
2 : (A-7)

Eventually, injecting the new formulas for the volume and inte-
gral equations in equation A-4, we obtainZ

Ω−
iωðρ1 − ρ2Þv1v2 þ iωðκ−12 − κ−11 Þp1p2dΩ−

−
Z
Γ−
2

ððc2ρ2Þ−1 − ðc1ρ1Þ−1Þp1p2dΓ−
2

¼
Z
Σ
p1ðv2 · vÞ − ðv1 · vÞp2dΣ: (A-8)

The right side coincides with our choice misfit functional for
FRgWI see equation 8 (where we take the square of the expression
to have a positive functional), and it equates to zero if and only if
ρ1 ¼ ρ2 and κ1 ¼ κ2 (meaning that c1 ¼ c2) over the whole domain
Ω−. We further refer to Alessandrini et al. (2018, 2019) for stability
results. We see that the formula equation A-8 does not involve the
sources because we have positioned them above the receivers’ line
(Figure A-1). In the case in which sources are below, or if one wants
to create a numerical acquisition with sources inside the domain, it
results in an additional integral in equation A-3, which then has to
be included in the misfit.

Figure A-1. Illustration of the domain of interest for the Euler’s
equation A-2, the line of measurements cuts the domain into
Ω ¼ Ωþ ∪ Ω−, which are colored in red and blue, respectively.
We also consider the sources (xf and xg) to be located in Ωþ.
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APPENDIX B

GRADIENT FORMULATION USING
ADJOINT-STATE METHOD

The gradient of the misfit functional is computed using the ad-
joint-state method, which comes from the work of Lions in optimal
control (Lions, 1971), with early applications in Chavent (1974).
The method is popular in seismic applications because it avoids the
computation of the Jacobian matrix, thus requiring limited numeri-
cal effort; it is reviewed in Plessix (2006).
For generality, we consider the misfit functional J

•
, which is

either J L2 or J r, and define the constrained minimization problem

min
m

J
•
ðmÞ subject to

X
i

AðUðfiÞÞ ¼ Fi;

for i ∈ f1; : : : ; nsrcg; (B-1)

where A is the linear wave operator corresponding with the Euler’s
equations of problem 1. We denote by fi the sources and use the
notation UðfiÞ ¼ fvðfiÞ; pðfiÞg ¼ fvðfiÞx ; vðfiÞy ; vðfiÞz ; pðfiÞg for the
solution associated with the volume source Fi ¼ f0; 0; 0; fig, in
accordance with problem 1. For the sake of notation, we first con-
sider a single source and drop the index fi, the formulation with
Lagrangian gives

Lðm; ~U; ~γÞ ¼ J
•
þ < A ~U − F; ~γ >Ω : (B-2)

Here, < :; : >Ω denotes the complex inner product in L2ðΩÞ such
that < a; b >Ω¼ ∫ ΩabdΩ, with the complex conjugate.

The first step of the adjoint-state method is to take ~U ¼ U such
that

∇mLðm; ~U ¼ U; ~γÞ ¼ ∇mJ •
: (B-3)

Then, the adjoint state γ is selected such that the derivative of the
Lagrangian with respect to U equates zero; that is, γ is the solution
to

A�γ ¼ −∂UJ •
; (B-4)

where � denotes the adjoint (transposed of the complex conjugate).
With this choice of adjoint state, the gradient of the misfit functional
(which coincides with the one of the Lagrangian from equation B-3)
is

∇mJ •
¼ ∇mLðm; ~U ¼ U; ~γ ¼ γÞ ¼ Reð< ∂mAU; γ >ΩÞ:

(B-5)

We further refer readers to Faucher (2017) and Appendix A of Bar-
ucq et al. (2019, 2018) for more details on the complex-variable
adjoint-state method and to Faucher and Scherzer (2020) for the
specificity with HDG discretization.
When we incorporate back the different sources, the adjoint prob-

lem equation B-4 for the misfit functional J L2 is, for each source fi
in the acquisition,

A�

0
BBBB@

γðfiÞvx

γðfiÞvy

γðfiÞvz

γðfiÞp

1
CCCCA ¼ −R�

0
BBBB@

ηðRðvðfiÞν Þ − dðfiÞv Þνx
ηðRðvðfiÞν Þ − dðfiÞv Þνy
ηðRðvðfiÞν Þ − dðfiÞv Þνz
RðpðfiÞÞ − dðfiÞp

1
CCCCA

adjoint-state problem for J L2:

(B-6)

Here, we use ν to indicate the normal direction (in the case of a flat
surface, i.e., the x − y plane, νx ¼ νy ¼ 0 and νz ¼ 1). The gradient
using all sources is

∇mJ L2 ¼ Re

�Xnobssrc

i¼1

h∂mAUðfiÞ; γðfiÞiΩ
�
: (B-7)

For the misfit functional J r of equation 8, the adjoint-state sol-
ves, for each computational source gj,

A�

0
BBBBBB@

γ
ðgjÞ
vx

γ
ðgjÞ
vy

γ
ðgjÞ
vz

γ
ðgjÞ
p

1
CCCCCCA

¼ −
Xnobssrc

i¼1

ξi;jR�

0
BBBBBB@

−dðfiÞp νx

−dðfiÞp νy

−dðfiÞp νz

dðfiÞv

1
CCCCCCA

adjoint-state problem for J r; (B-8)

with the scalar ξi;j given by

ξi;j ¼
Xnrcv
k¼1

ðdðfiÞv ðxkÞpðgjÞðxkÞ − dðfiÞp ðxkÞvðgjÞν ðxkÞÞ: (B-9)

The gradient is

∇mJ r ¼ Re

�Xnsimsrc
j¼1

h∂mAUðgjÞ; γðgjÞiΩ
�
: (B-10)

We refer readers to Alessandrini et al. (2019) for more details on the
adjoint-state method using Cauchy data. Therefore, we see that the
adjoint state for a single source in the computational acquisition for
J r encodes information from all measurements because of the reci-
procity gap (the sum over i in equation B-8), whereas it takes only
the current source with J L2 (equation B-6).
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