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Abstract. The Bremmer coupling series solution of the wave equation, in generally inhomo-
geneous media, requires the introduction of pseudodifferential operators. Such operators appear in
the diagonalization process of the acoustic system’s matrix of partial differential operators upon
extracting a principal direction of (one-way) propagation. In this paper, in three dimensions, uni-
form asymptotic expansions of the Schwartz kernels of these operators are derived. Also, we derive
a uniform asymptotic expansion of the one-way propagator appearing in the series. We focus on
designing closed-form representations, valid in the high-frequency limit, taking into account critical
scattering-angle phenomena. The latter phenomena are not dealt with in the standard calculus of
pseudodifferential operators. Our expansion is not limited by propagation angle. In principle, the
uniform asymptotic expansion of a kernel follows by matching its asymptotic behaviors away and
near its diagonal.
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1. Introduction. Directional wave field decomposition is a tool for analyzing
and computing wave propagation in configurations with a special directionality, such
as a waveguiding structure. Such a method consists of three main steps: (i) decom-
posing the field into two constituents, propagating “one-way” upward or downward
along a preferred or principal direction, (ii) computing the interaction of the coun-
terpropagating constituents, and (iii) recomposing the constituents into observables
at the positions of interest. The Bremmer series [1] then synthesizes the constituents
into a full-wave solution. Each term in the series represents a wave constituent that
has traveled up and down along the principal direction a number of times equal to
its order. Thus we are able to trace waves: evolution is no longer in time but now
in the vertical coordinate, vertical being identified with the principal direction. The
microlocal analysis of the one-way wave propagator can be found in Treves [2].

Applications of the generalized Bremmer series solution to the wave equation
include (i) the identification and elimination of multiple scattered wave constituents
and (ii) the formulation of various imaging and inverse scattering procedures in remote
sensing. In general, the inverse scattering problem can be decomposed into a coupled
inverse “contrast-source” or “reflectivity”–inverse “constituency” problem. With the
aid of time-reversal mirrors, each pair of successive terms in the Bremmer series can
be exploited to construct the reflectivity (see de Hoop [3]).

The generalized Bremmer series can be viewed as a full-wave extension of the
(high-frequency) geometrical ray series representation of the wave field embedded
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778 MAARTEN V. DE HOOP AND A. K. GAUTESEN

in the Kirchhoff approximation (see Frazer [4]). The Maslov canonical operator is
replaced by a Trotter product (see de Hoop, Le Rousseau, and Biondi [5]). The
Bremmer series–Trotter product approach encompasses the microlocal, Kirchhoff–
Maslov, representation of the wave field. Extensive lists of references to applications of
the generalized Bremmer series in exploration and crustal seismology, ocean acoustics,
and integrated optics can be found in Van Stralen, de Hoop, and Blok [6].

De Hoop [1] originally formulated the generalized Bremmer series modeling
method in the time-Laplace domain. Owing to the fact that the medium can vary in
the directions transverse to the preferred direction, pseudodifferential calculus became
a natural tool to introduce the up and downgoing Green’s functions: pseudodiffer-
ential operators appear in the directional (de)composition, in the downward and up-
ward propagation or continuation, and in the interaction (reflection and transmission)
between the counterpropagating constituents due to variations in medium properties
in the preferred direction. The time-Laplace domain is not amenable to computations,
however.

Various approaches have been developed over the years in the time-Fourier do-
main to approximate the operators appearing in the Bremmer series to make numerical
computations feasible. An overview of the approaches based on rational (paraxial) ex-
pansions of the operator symbols can be found in Van Stralen, de Hoop, and Blok [6].
An overview of approaches based on phase-screen-like approximations of the operator
symbols can be found in de Hoop, Le Rousseau, and Wu [7]. With these numerical ap-
proaches, however, critical “scattering-angle” phenomena such as the ones associated
with rays the tangents to which become horizontal (for example, turning rays) cannot
be modeled. With the approach proposed in this paper, this limitation is removed.
In particular media, spectral analysis can be employed to find exact time-Fourier
representations of mentioned operators (see Fishman, de Hoop, and van Stralen [8]).

In this paper, our goal is to gain analytic insight into the propagation and scat-
tering of waves as described by the generalized Bremmer series—while developing a
time-Fourier analysis of the constituent operators. We extend earlier results (Fish-
man, Gautesen, and Sun [9] and de Hoop and Gautesen [10]) in this direction that were
derived in two dimensions to three (and higher) dimensions. Instead of using pseu-
dodifferential operators in the time-Laplace domain, we will here employ microlocal
and uniform asymptotics techniques combined in the time-Fourier domain. We focus
our analysis on the development of a uniform asymptotic expansion of the transversal
part of the one-way wave operator kernel (of the square-root Helmholtz type) and the
associated one-way wave propagator. For the completion of the Bremmer coupling
series we refer the reader to our earlier paper.

The uniform asymptotic expansions also provide the basis for a numerical scheme.
Such a scheme would involve the computations of (i) a spatially varying effective
index of refraction and (ii) a spatially varying effective “distance” in the transverse
directions, and then applying the kernel. The effective index of refraction and the
effective metric are computed along the bicharacteristics constrained to the plane
spanned by transverse directions.

The outline of this paper is as follows. In the next section a summary of the
method of directional decomposition, leading to a coupled system of one-way wave
equations is given. In section 3, the medium is decomposed into thin slabs. In each
thin slab we introduce a “characteristic” Green’s function. In section 4 we intro-
duce representations of the square-root operator and the one-way wave propagator in
terms of the characteristic Green’s function. The key effort is developing a uniform
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 779

asymptotic expansion of the characteristic Green’s function. Such an expansion in
the absence of transverse caustics is developed in section 5 and in the presence of
transverse caustics in section 6. In both cases an “inner” (near-field) and “outer”
(far-field) representation is derived upon which a matching procedure in a boundary
layer is invoked. The latter synthesizes the uniformly valid expression. Section 7
summarizes the main result of the paper: the uniform asymptotic expansion for the
square-root operator and the likewise expansion for the one-way wave propagator in
higher dimensions. We conclude with a discussion (section 8).

2. Directional wave field decomposition. For the details on the derivation
of the Bremmer coupling series solution of the acoustic wave equation, we refer the
reader to de Hoop [1]. Here, we restrict ourselves to a summary of this wave field
decomposition method.

Notation, transformations. We consider acoustic waves in a three-dimensional
configuration. In this configuration, let p denote the pressure and (v1,2, v3) = (v1, v2, v3)
the particle velocity. We introduce the Fourier transformation with respect to time t
as

(F{p, v1,2, v3})(x1,2, x3, ω) =

∫
t∈R≥0

{p, v1,2, v3}(x1,2, x3, t) exp(iωt) dt(2.1)

for Im{ω} > 0. Under this transformation, assuming zero initial conditions, we have
∂t → −iω.

In each subdomain of the configuration where the acoustic properties vary contin-
uously with position, the acoustic wave field {p, v1,2, v3} satisfies the system of partial
differential equations

∂kp− iωρ vk = fk,(2.2)

−iωκ p+ ∂1v1 + ∂2v2 + ∂3v3 = q.(2.3)

Here, ρ denotes the volume density of mass, κ the compressibility, q the volume source
density of injection rate, and fk the volume source density of force.

The spatial variation of the wave field along a direction of preference can now be
expressed in terms of the variation of the wave field in the direction perpendicular to
it. The direction of preference or principal direction is taken (globally) along the x3-
axis (or “vertical” axis) and the remaining (“transverse” or “horizontal”) coordinates
are denoted by (x1, x2) or x1,2.

The reduced system of equations. Directional decomposition requires a sepa-
rate handling of the horizontal or transverse component of the particle velocity. From
(2.2) and (2.3) we obtain

v1,2 = −iρ−1ω−1(∂1,2p− f1),(2.4)

leaving, upon substitution, the matrix differential equation (I, J = 1, 2)

(∂3δIJ − iωAIJ)FJ = NI , AIJ = AIJ(x1,2, D1,2;x3), D1,2 ≡ − i

ω
∂1,2,(2.5)

in which the elements of the acoustic field matrix1 are given by

F1 = p, F2 = v3,(2.6)

1Present ocean-bottom seismic acquisition technology allows both p and v3 to be measured.
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780 MAARTEN V. DE HOOP AND A. K. GAUTESEN

the elements of the acoustic system’s matrix operator by

A11 = A22 = 0,(2.7)

A12 = ρ,(2.8)

A21 = −D1(ρ
−1D1 )−D2(ρ

−1D2 ) + κ,(2.9)

and the elements of the notional source matrix by

N1 = f3, N2 = D1(ρ
−1f1) +D2(ρ

−1f2) + q.(2.10)

It is observed that the right-hand side of (2.4) and AIJ contain the spatial derivatives
D1,2 with respect to the horizontal coordinates only. In the sequel of the paper it
will become clear that D1,2 has the interpretation of horizontal slowness operator.
Further, it is noted that A12 is simply a multiplicative operator.

The coupled system of one-way wave equations. To distinguish up and
downgoing constituents in the wave field, we shall construct an appropriate linear
operator LIJ with

FI = LIJWJ ,(2.11)

which, with the aid of the commutation relation ([., .] denotes the commutator)

(∂3LIJ) = [∂3, LIJ ],(2.12)

transforms (2.5) into

LIJ (∂3δJM − iωΛJM )WM = −(∂3LIJ)WJ +NI .(2.13)

Transformation (2.11) should result in the diagonalization of the operator AIJ in the
sense that

AIJLJM = LIJΛJM ,(2.14)

where ΛJM is a diagonal matrix of operators. We denote LIJ as the composition
operator and WM as the wave column matrix. The expression in parentheses on the
left-hand side of (2.13) represents the two so-called one-way wave operators. The
first term on the right-hand side of (2.13) is representative for the scattering due to
variations of the medium properties in the vertical direction. The diffraction due to
variations of the medium properties in the horizontal directions is contained in ΛJM

and, implicitly, in LIJ . This diffraction comprises the multipathing of characteristics
that commonly occurs in geophysical configurations.

To investigate whether solutions of (2.14) exist, we introduce the column matrix

operators L
(±)
I according to

L
(+)
I = LI1, L

(−)
I = LI2.(2.15)

Upon writing the diagonal elements of ΛJM as

Λ11 = Γ(+), Λ22 = Γ(−),(2.16)

(2.14) decomposes into the two systems of equations

AIJL
(±)
J = L

(±)
I Γ(±).(2.17)
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 781

By analogy with the case where the medium is translationally invariant in the hor-
izontal directions, we shall denote Γ(±) as the vertical slowness operators. Notice

that the operators L
(±)
1 synthesize the acoustic pressure and that the operators L

(±)
2

synthesize the vertical particle velocity. Through mutual elimination, the equations

for L
(±)
1 and L

(±)
2 can be decoupled as follows:

A12A21L
(±)
1 = L

(±)
1 Γ(±) Γ(±),(2.18)

A21A12L
(±)
2 = L

(±)
2 Γ(±) Γ(±).(2.19)

The partial differential operators on the left-hand sides differ from one another in the
case where the volume density of mass does vary in the horizontal directions.

To ensure that nontrivial solutions of (2.18)–(2.19) exist, one equation must imply
the other. To construct a formal solution, an ansatz is introduced in the form of a

commutation relation for one of the components L
(±)
J that restricts the freedom in

the choice for the other component. In the acoustic-pressure normalization analogue

one assumes that L
(±)
2 can be chosen such that

[A12L
(±)
2 , A12A21] = 0.(2.20)

In view of (2.19), Γ(±) must then satisfy

A12A21 − Γ(±) Γ(±) = 0.(2.21)

The commutation relation for L
(±)
1 follows as [L

(±)
1 , A12A21] = 0 and a possible solu-

tion of (2.17) is

L
(±)
2 = A−1

12 Γ
(±), L

(±)
1 = I.(2.22)

Since L
(±)
2 as given by (2.22) satisfies (2.20), the ansatz is justified. The solutions of

(2.21) are written as

Γ(+) = −Γ(−) = Γ = A1/2 with A = A12A21.(2.23)

Thus, the composition operator becomes

L =

(
I I

A−1
12 Γ −A−1

12 Γ

)
.(2.24)

Note that we have decomposed the pressure field according to

F1 = F
(+)
1 + F

(−)
1 with F

(+)
1 = W1, F

(−)
1 = W2.

In terms of the inverse vertical slowness operator, Γ−1 = A−1/2, the decomposition
operator then follows as

L−1 = 1
2

(
I Γ−1A12

I −Γ−1A12

)
.(2.25)

Using the decomposition operator, (2.13) transforms into

(∂3δIM − iωΛIM )WM = −(L−1)IM (∂3LMJ)WJ + (L−1)IMNM ,(2.26)
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782 MAARTEN V. DE HOOP AND A. K. GAUTESEN

which can be interpreted as a coupled system of one-way wave equations. The
propagation is captured by the left-hand side. The coupling between the counter-
propagating components, W1 and W2, is apparent in the first source-like term on the
right-hand side. The waves are excited by the second term on the right-hand side.
We have

−L−1(∂3L) =

(
T R
R T

)
,(2.27)

in which T and R represent the transmission and reflection operators, respectively:
let Y = A−1

12 Γ denote the admittance operator; then

R = −T = 1
2Y

−1 (∂3Y ).(2.28)

The two-way Helmholtz equation. Suppose that the medium does not vary
with x3. Eliminating F2 or v3 from (2.5) then leads to the second-order equation for
the pressure,

[∂2
3 + ω2A(x1,2, D1,2)]F1 = iω ρN2 + ∂3N1,(2.29)

the two-way Helmholtz equation, where A is given by (2.23).

3. Decomposition of the configuration into thin slabs. We will now de-
compose the medium into (thin) slabs. Each slab in our three-dimensional configura-
tion is assumed to be invariant in the direction of preference, x3: the compressibility,
κ, may vary in the transverse directions, whereas the density is assumed to be constant
all together. However, the medium may vary from slab to slab, and hence the vertical
coordinate x3 becomes a parameter that identifies the slab in our further analysis.

The characteristic operator. As mentioned, in our thin-slab analysis, we will
consider the following medium profile:

ρ = const.,(3.1)

κ(x1,2) = κ0 n2(x1,2);(3.2)

thus, setting κ0 = ρ−1c−2
0 , the wave speed follows from

c−2(x1,2) = c−2
0 n2(x1,2),

where n denotes the index of refraction. The operator in (2.23) is then given by

A(x1,2, D1,2) = −D2
1 −D2

2 + c−2
0 n2(x1,2).(3.3)

We will denote A as the transverse Helmholtz or characteristic operator.

Factorization, Green’s functions. We introduce the well-known Helmholtz
equation and “characteristic” Green’s function as (cf. (2.29))

[∂2
3 + ω2A(x1,2, D1,2)]G(x1,2, x3 − x′

3;x
′
1,2)

= −δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3).(3.4)

The vertical slowness operators Γ(±) factorize the Helmholtz operator (cf. (2.23)):

∂2
3 + ω2A(x1,2, D1,2) = [∂3 − iω Γ(+)(x1,2, D1,2)] [∂3 − iω Γ(−)(x1,2, D1,2)].(3.5)

The one-way Green’s functions G(±) associated with the two factors satisfy

[∂3 − iω Γ(±)(x1,2, D1,2)]G(±)(x1,2, x3 − x′
3;x

′
1,2)

= δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3).(3.6)
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 783

Vertical slowness as phase variable. Note that the Fourier representation of
the causal Green’s function G yields

G(x1,2, x3 − x′
3;x

′
1,2) =

ω

2πc0

∫
ζ∈Z

G̃(x1,2, x
′
1,2; ζ) exp[i (ω/c0)︸ ︷︷ ︸

k0

|x3 − x′
3|ζ] dζ.(3.7)

Here, Z follows the real axis in the complex ζ-plane, below it for negative real parts
and above it for positive real parts. Since

ω2A(x1,2, D1,2) = ∂2
1 + ∂2

2 + (ω/c0)
2 n2(x1,2),(3.8)

G̃ satisfies (cf. (3.4))

[∂2
1 + ∂2

2 + (ω/c0)
2 (n2(x1,2)− ζ2)] G̃(x1,2, x

′
1,2; ζ) = −δ(x1 − x′

1)δ(x2 − x′
2),(3.9)

or, more formally,

−ω2[A(x1,2, D1,2)− c−2
0 ζ2] G̃(x1,2, x

′
1,2; ζ) = δ(x1 − x′

1)δ(x2 − x′
2).(3.10)

We can deform contour Z to a contour Z ′, say, such that the distance from a zero
crossing of n2(x1,2)− ζ2 remains finite.

Observe the symmetry G̃(x1,2, x
′
1,2;−ζ) = G̃(x1,2, x

′
1,2; ζ). Hidden inside the in-

tegral is a cut-off function in accordance with the microlocal representation of G.

4. Kernel representations in terms of the characteristic Green’s func-
tion.

The one-way propagator. Using the image principle, we can express the one-
way Green’s functions in terms of the Green’s function of the second-order Helmholtz
equation,

(4.1)

G(+)(x1,2, x3 − x′
3;x

′
1,2) + G(−)(x1,2, x3 − x′

3;x
′
1,2) = −2 ∂3G(x1,2, x3 − x′

3;x
′
1,2).

Hence, for x3 > x′
3,

G(+)(x1,2, x3 − x′
3;x

′
1,2) = −2 ∂3G(x1,2, x3 − x′

3;x
′
1,2).(4.2)

In fact, G ≡ G(+) is the kernel of the (upward) one-way wave propagator. In view of
(4.2) this kernel satisfies the property

∂2j
3 G = [−ω2A(x1,2, D1,2)]

jG, j = 1, 2, . . . ,(4.3)

for x3 > x′
3. We will pay special attention to the so-called thin-slab expansion of G.

The vertical slowness or square-root operator. The vertical slowness or
square-root operator Γ (see (2.23)) acts on the wave field as

(Γ{W1,W2})(x1,2) =

∫
x′
1,2∈R2

C(x1,2, x
′
1,2) {W1,W2}(x′

1,2) dx
′
1dx

′
2,(4.4)

where C denotes a Schwartz kernel. From this operator representation, we extract the
left vertical slowness symbol through the Fourier transformation

γ(x1,2, p1,2) =

∫
x′
1,2∈R2

C(x1,2, x
′
1,2) exp[−iω(xσ − x′

σ)pσ] dx
′
1dx

′
2,(4.5)

D
ow

nl
oa

de
d 

12
/1

7/
20

 to
 1

28
.4

2.
23

9.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



784 MAARTEN V. DE HOOP AND A. K. GAUTESEN

where the summation convention has been invoked for σ ∈ {1, 2}. The left symbols of
the horizontal slowness operators D1,2 appear to be simply p1,2. The relation between
the left vertical slowness symbol and the horizontal slowness symbol constitutes the
generalized slowness surface.

We will now focus on finding integral representations for the Schwartz kernel.
First, note that the Schwartz kernel can be expressed in terms of the one-way Green’s
function,

C(+)(x1,2, x
′
1,2;x

′
3) = − lim

x3↓x′
3

i

ω
∂3G(+)(x1,2, x3 − x′

3;x
′
1,2),(4.6)

C(−)(x1,2, x
′
1,2;x

′
3) = − lim

x3↑x′
3

i

ω
∂3G(−)(x1,2, x3 − x′

3;x
′
1,2).(4.7)

With (4.2) we find that

C(x1,2, x
′
1,2;x

′
3) = − lim

x3↓x′
3

2

iω
∂2
3G(x1,2, x3 − x′

3;x
′
1,2).(4.8)

Note that C is dependent on x′
3 through the index of refraction. We will suppress this

dependence in our notation.

The inverse vertical slowness operator. The inverse or reciprocal vertical
slowness operator admits the kernel identification

A−1/2(x1,2, x
′
1,2) = −2iωG(x1,2, 0;x

′
1,2).(4.9)

From the inverse vertical slowness operator, the higher fractional powers of the char-
acteristic operator can be obtained, viz., through the composition

Aj−1/2 = AjA−1/2.(4.10)

5. Uniform asymptotic expansion of the characteristic Green’s func-
tion: The absence of caustics.

The inner solution. The inner region is determined by the condition

||(x1 − x′
1, x2 − x′

2)|| = O(k−1
0 )

and corresponds to the behavior of the kernels near their diagonals. The inner region
is so close to the “source” at x′

1,2 that caustics have not (yet) formed.
We reconsider (3.4),

[∂k∂k + k2
0n

2(x1,2)]G(x1,2, x3 − x′
3;x

′
1,2) = −δ(x1 − x′

1)δ(x2 − x′
2)δ(x3 − x′

3)

and introduce the relative coordinate

yj = xj − x′
j , j ∈ {1, 2, 3}.

We expand the index of refraction about (x′
1, x

′
2) according to

n2(y1,2 + x′
1,2) = n2(x′

1,2) + 2n(x′
1,2) ([y1∂1 + y2∂2]n)(x

′
1,2)

+n(x′
1,2) [y1∂1 + y2∂2]

2n(x′
1,2) + (([y1∂1 + y2∂2]n)(x

′
1,2))

2 + . . . ,(5.1)
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 785

where we differentiate (∂1,2) with respect to x′
1,2 while the argument of n and its

derivatives is x′
1,2. We invoke the expansion of the Green’s function in terms of y1,2,

G = G0 +G1 +G2 + . . . ,(5.2)

where the subscript indicates the order in y = (y2
1 + y2

2 + y2
3)

1/2. Then

[∂k∂k + k2
0n

2(x′
1,2)]G0(x1,2, x3 − x′

3;x
′
1,2)

= −δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3),(5.3)

[∂k∂k + k2
0n

2(x′
1,2)]G1(x1,2, x3 − x′

3;x
′
1,2)

= −2k2
0n(x

′
1,2) ([y1∂1 + y2∂2]n)(x

′
1,2) G0(x1,2, x3 − x′

3;x
′
1,2),(5.4)

[∂k∂k + k2
0n

2(x′
1,2)]G2(x1,2, x3 − x′

3;x
′
1,2)

= −2k2
0n(x

′
1,2) ([y1∂1 + y2∂2]n)(x

′
1,2) G1(x1,2, x3 − x′

3;x
′
1,2)(5.5)

−k2
0

[
n(x′

1,2) [y1∂1 + y2∂2]
2n(x′

1,2)

+(([y1∂1 + y2∂2]n)(x
′
1,2))

2
]

G0(x1,2, x3 − x′
3;x

′
1,2),

etc., with solutions obtained recursively as

G0(x1,2, x3 − x′
3;x

′
1,2) =

exp[ik0n y]

4πy
,(5.6)

G1(x1,2, x3 − x′
3;x

′
1,2) =

1
2 ik0y ([y1∂1 + y2∂2]n) G0(x1,2, x3 − x′

3;x
′
1,2),(5.7)

G2(x1,2, x3 − x′
3;x

′
1,2) =

ik0y

24n

{
4n[y1∂1 + y2∂2]

2n

+(3ik0ny + 1)([y1∂1 + y2∂2]n)
2 − y2[(∂1n)

2 + (∂2n)
2]

+
(∂1n)

2 + (∂2n)
2 − 2n[(∂1)

2 + (∂2)
2]n

(ik0n)2
(ik0ny − 1)

}
G0.(5.8)

Inner expansion in midpoint coordinates. In the spirit of the Weyl calculus
of kernel symbols (see [11, 21.6.5]), we can improve the above result by introducing
the midpoint coordinates

x̄j =
1
2 (xj + x′

j), j ∈ {1, 2, 3},
and re-expand the exponential according to

exp[ik0n(x
′
1,2) y] = exp[ik0n(x̄1,2) y]

{
1− 1

2 ik0y[y1∂1 + y2∂2]n

+ 1
8 ik0y[y1∂1 + y2∂2]

2n− 1
8k

2
0y

2([y1∂1 + y2∂2]n)
2 + . . .

}
,(5.9)

where the argument of n is now x̄1,2. The expansion for G (cf. (5.2) and (5.6)–(5.8))
can then be rewritten as

G =
exp[ik0n y]

4πy

1 +
ik0y

24n

 n[y1∂1 + y2∂2]
2n+ ([y1∂1 + y2∂2]n)

2

− y2[(∂1n)
2 + (∂2n)

2]

+
(∂1n)

2 + (∂2n)
2 − 2n[(∂1)

2 + (∂2)
2]n

(ik0n)2
(ik0ny − 1)

+ . . .

 .(5.10)
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786 MAARTEN V. DE HOOP AND A. K. GAUTESEN

Note that the odd order terms (up to this order, G1) have disappeared. The expansion
above has an improved error estimate, here O(y4): We now have (cf. (5.2)) G �
G0 +G2 and upon substitution it follows that

[∂k∂k + k2
0n

2(x1,2)]G = G0(x1,2, x3 − x′
3;x

′
1,2) k2

0O(y4).(5.11)

The outer solution. The outer region is determined by the condition

||(x1 − x′
1, x2 − x′

2)|| = O(1)

and corresponds to the behavior of the kernels away from their diagonals.
We reconsider (3.9),

[∂2
1 + ∂2

2 + k2
0(n

2(x1,2)− ζ2)] G̃(x1,2, x
′
1,2; ζ) = −δ(x1 − x′

1)δ(x2 − x′
2)

and we introduce the representation

G̃(x1,2, x
′
1,2; ζ) = C exp(ik0ψ),(5.12)

where C is a yet-to-be-determined constant. We expand ψ into phase and amplitude
contributions,

ψ = φ+
1

ik0
φ1 +

1

(ik0)2
φ2 + . . .︸ ︷︷ ︸

amplitude

.(5.13)

Substituting this expansion into the partial differential equation, and collecting equal
powers of (ik0), results in the eikonal equation

p2 + q2 + ζ2 − n2(x1,2) = 0,(5.14)

for the leading order; here p ≡ ∂x1φ and q ≡ ∂x2φ. The next order terms yield the
equation

2p (∂x1φ1) + 2q (∂x2φ1) + ∂x1p+ ∂x2q = 0,(5.15)

whereas the final order that we will account for implies the equation

2p (∂x1φ2) + 2q (∂x2φ2) + ∂2
x1

φ1 + ∂2
x2

φ1 + (∂x1φ1)
2 + (∂x2φ1)

2 = 0.(5.16)

Amplitude expansion. It is convenient to remove the singularities from φ1 and φ2.
This is accomplished by the change of functions,

φ1 = − 1
2 logφ+ ψ1,(5.17)

φ2 = 1
8φ

−1 + ψ2.(5.18)

With this change, (5.15)–(5.16) take the form

2p (∂x1ψ1) + 2q (∂x2
ψ1) + φ [∂2

x1
+ ∂2

x2
]logφ = 0,(5.19)

2p (∂x1ψ2) + 2q (∂x2
ψ2) + ∂2

x1
ψ1 + ∂2

x2
ψ1 + (∂x1

ψ1)
2 + (∂x2

ψ1)
2 = 0,(5.20)

supplemented with the initial conditions ψ1 = ψ2 = 0 at x1,2 = x′
1,2.
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 787

Expansion in z = O(k−1
0 ). We now make the assumption that the propagation

distance satisfies

k0 |x3 − x′
3|︸ ︷︷ ︸

y3=z

= O(1).(5.21)

Thus we guarantee that the stationary point (where ∂ζφ = 0) of the integral repre-
sentation (3.7) remains at ζ = 0, and that

| exp[ik0 |x3 − x′
3|ζ]| = O(1).(5.22)

We then expand the relevant functions about ζ = 0, i.e.,

φ = I0 − 1
2ζ

2I1 − 1
8ζ

4I2 + . . . ,(5.23)

ψ1 = ψ10 + ζ2ψ11 + . . . ,(5.24)

ψ2 = ψ20 + . . . ,(5.25)

where I0, I1, I2 and ψ10, ψ11, ψ20 are independent of ζ.
The phase function. Invoking expansion (5.23) into (5.14), the equations deter-

mining the phase function become

P 2 +Q2 − n2(x1,2) = 0,(5.26)

P (∂x1I1) +Q (∂x2I1)− 1 = 0,(5.27)

P (∂x1
I2) +Q (∂x2

I2)− (∂x1
I1)

2 − (∂x2
I1)

2 = 0,(5.28)

where P = ∂x1I0 and Q = ∂x2I0. With eikonal equation (5.26) is associated the
Hamilton system

dx1

dµ
= P,

dP

dµ
= (∂1M)(x1,2),

dx2

dµ
= Q,

dQ

dµ
= (∂2M)(x1,2),

(5.29)

where M = 1
2n

2, supplemented by the initial conditions

(x1, x2)|0 = (x′
1, x

′
2), (P,Q)|0 = (α1, α2), α2

1 + α2
2 = n2(x′

1,2).(5.30)

The additional equations (5.27)–(5.28) comply with the initial conditions at µ = 0:
Ij = 0, j = 0, 1, 2, . . . .

In the Hamilton system (5.29), we expand the right-hand sides into a Taylor series
about the “source” coordinates, x′

1,2:

dP

dµ
= (∂1M)(x′

1,2) + y1∂1(∂1M)(x′
1,2) + y2∂2(∂1M)(x′

1,2),

dQ

dµ
= (∂2M)(x′

1,2) + y1∂1(∂2M)(x′
1,2) + y2∂2(∂2M)(x′

1,2).

(5.31)

We then evaluate the solutions to the Hamilton (see (5.29)–(5.31)) and eikonal (see
(5.26)) equations for small values of µ. The parametric representation of the Hamil-
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788 MAARTEN V. DE HOOP AND A. K. GAUTESEN

tonian flow follows as

y1 = P |0µ+ 1
2P1µ

2 + 1
3P2µ

3 + . . . ,

P = α1︸︷︷︸
P |0

+(∂1M)︸ ︷︷ ︸
P1

µ+ 1
2 [α1∂1 + α2∂2](∂1M)︸ ︷︷ ︸

P2

µ2 + . . . ,

y2 = Q|0µ+ 1
2Q1µ

2 + 1
3Q2µ

3 + . . . ,

Q = α2︸︷︷︸
Q|0

+(∂2M)︸ ︷︷ ︸
Q1

µ+ 1
2 [α1∂1 + α2∂2](∂2M)︸ ︷︷ ︸

Q2

µ2 + . . . ;

(5.32)

in these equations we differentiate (∂1,2) with respect to x′
1,2 while the argument of

(∂1,2M) is x′
1,2. For the purpose of the uniform matching, we will re-expand the

solution about the transverse midpoint coordinates x̄1,2 and give results as needed
later.

Solving system (5.32) for µ, α1, α2 in terms of y1, y2, yields

µ =
r2

n

(
1− 1

2

[y1∂1 + y2∂2]n

n
+

1

3

(
[y1∂1 + y2∂2]n

n

)2

+
1

8

(
[y⊥1 ∂1 + y⊥2 ∂2]n

n

)2

− 1

6

[y1∂1 + y2∂2]
2n

n

)
,(5.33)

α1,2 =
n

r2

(
y1,2(1− 1

2a
2
1) + y⊥1,2(a1 + a2)

)
,(5.34)

where the argument of n is x′
1,2,

r2 = (y2
1 + y2

2)
1/2(5.35)

and

y⊥1 = −y2, y⊥2 = y1,(5.36)

while

a1 = − [y⊥1 ∂1 + y⊥2 ∂2]n

2n
,

(5.37)

a2 =
1

12

(
([y⊥1 ∂1 + y⊥2 ∂2]n)([y1∂1 + y2∂2]n)

n2

−2
[y⊥1 ∂1 + y⊥2 ∂2][y1∂1 + y2∂2]n

n

)
;

note that a1 and a2 are of first and second order in y, respectively.
With the aid of relation

P ∂x1Ij +Q∂x2Ij =
dIj
dµ

D
ow

nl
oa

de
d 

12
/1

7/
20

 to
 1

28
.4

2.
23

9.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 789

valid along a characteristic or ray, (5.26)–(5.28) take the form

dI0
dµ

= n2(x1,2),(5.38)

dI1
dµ

= 1,(5.39)

dI2
dµ

= (∂x1
I1)

2 + (∂x2
I1)

2.(5.40)

Explicit expansions of Ij near the “source” (µ small or, equivalently, r2 small) are
readily obtained from (5.38)–(5.40) using system (5.32) and solutions (5.33)–(5.34).
(Basically, such a procedure encompasses an expansion of (the argument of) n2 about
the fixed initial point (x′

1,2) in terms of y1,2; we then substitute the small µ expansion
(5.32) for y1,2 and re-expand the relevant coefficients about x̄1,2.) These expansions
are only needed for matching the inner and outer solutions. They are given as needed
later (see (5.54)–(5.58)).

The amplitude expansion. Invoking expansion (5.23)–(5.25) into (5.19)–(5.20),
the equations determining the amplitude become

2P ∂x1ψ10 + 2Q∂x2ψ10 + I0[∂
2
x1

+ ∂2
x2
]logI0 = 0,(5.41)

2P ∂x1ψ20 + 2Q∂x2ψ20 + (∂x1ψ10)
2 + (∂x2ψ10)

2 + [∂2
x1

+ ∂2
x2
]ψ10 = 0,(5.42)

supplemented with the initial conditions

ψ10 = ψ20 = 0 at x1,2 = x′
1,2.(5.43)

The next order equation, for ψ11, becomes

2P ∂x1
ψ11 + 2Q∂x2

ψ11 − (∂x1
I1)(∂x1

ψ10)− (∂x2
I1)(∂x2

ψ10)

− 1
2I1[∂

2
x1

+ ∂2
x2
]logI0 − 1

2I0[∂
2
x1

+ ∂2
x2
](I1/I0) = 0,(5.44)

supplemented with the initial conditions

ψ11 = 0 at x1,2 = x′
1,2.(5.45)

In (5.41)–(5.42) and (5.44),

P ∂x1ψij +Q∂x2ψij =
dψij

dµ

along a characteristic or ray. Upon solving these equations, about the stationary point
at ζ = 0, we obtain the transform-domain expansion for the characteristic Green’s
function,

G̃(x1,2, x
′
1,2; ζ) exp[−ik0(x3 − x′

3)ζ] = C
1√
I0

exp[ik0(I0 − 1
2ζ

2I1) + ψ10]{
1− ik0ζ(x3 − x′

3) +
1

ik0

(
1

8I0
+ ψ20 + ik0ζ

2

(
ψ11 +

I1
4I0

+ 1
2 [ik0(x3 − x′

3)]
2

)

− 1
8 (ik0ζ

2)2I2

)
+ . . .

}
.(5.46)
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790 MAARTEN V. DE HOOP AND A. K. GAUTESEN

Table 5.1
Relevant equations.

I0 I1 I2 ψ10 ψ20 ψ11
(5.38) (5.39) (5.40) (5.41) (5.42) (5.44)

Carrying out the inverse Fourier transform with the method of stationary phase then
results in

G(x1,2, x3 − x′
3;x

′
1,2) = C

(−ik0

2π

)1/2

exp(ψ10)
exp(ik0I0)

(I0I1)1/2{
1 +

1

ik0I0

(
3

8

(
1− I2I0

I2
1

)
+

(
ψ11

I1
+ ψ20

)
I0 +

1
2 [ik0(x3 − x′

3)]
2 I0
I1

)
+ . . .

}
.(5.47)

Effective index of refraction, effective metric and uniform asymptotic
expansion. As in the two-dimensional case [10], for notational convenience, we in-
troduce the effective index of refraction and effective horizontal distance as

ν ≡
[
I0
I1

]1/2

,(5.48)

χ1 ≡ [I0I1]
1/2,(5.49)

where the arguments are evaluated along the characteristics, whereas

r = [χ2
1 + z2]1/2.(5.50)

Then a uniform asymptotic expansion is

G(x1,2, x3 − x′
3;x

′
1,2) =

1

4πr
exp(ik0νr) exp(ψ10r

2/χ2
1)(5.51)  1 +

r

ik0νχ2
1

(
3

8

(
1− ν3I2

χ1

)
+ ν(νψ11 + χ1ψ20)

)

+
1

8

(
1− ν3I2

χ1

)(
(x3 − x′

3)
2

χ2
1r

2
[ik0νr(x3 − x′

3)
2 + r2 + χ2

1]

)
+ . . .

 .

The equations to be evaluated or solved are listed in Table 5.1.
In the outer region, χ1 = O(1), whence

r

χ1
∼ 1 +

(x3 − x′
3)

2

2χ2
1

= 1 +O(k−2
0 ),(5.52)

νr = νχ1 + ν
(x3 − x′

3)
2

2χ1
+O(k−4

0 ),(5.53)

and the uniform solution reduces to the outer solution (5.47) with

C =

(
i

8πk0

)1/2

.
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 791

On the inner region, χ1 = O(k−1
0 ), whence

1

χ2
1

(
1− ν3I2

χ1

)
∼ −1

3

[(
∂1n

n

)2

+

(
∂2n

n

)2
]
,(5.54)

ν

χ2
1

(νψ11 + χ1ψ20) ∼ 1

12

[
[∂2

1 + ∂2
2 ]n

n
+

(
∂1n

n

)2

+

(
∂2n

n

)2
]
,(5.55)

ψ10

χ2
1

∼ 1

12

[
− [∂2

1 + ∂2
2 ]n

n
+

(
∂1n

n

)2

+

(
∂2n

n

)2
]
,(5.56)

νr ∼ ny

(
1 +

1

24

{
[y1∂1 + y2∂2]

2n

n
+

(
y1∂1n

n

)2

+

(
y2∂2n

n

)2

+

[(
∂1n

n

)2

+

(
∂2n

n

)2
](

−y2 +
(x3 − x′

3)
4

y2

)})
,(5.57)

1

r
∼ 1

y

(
1− 1

24

[(
∂1n

n

)2

+

(
∂2n

n

)2
]

r4
2

y2

)
,(5.58)

where r2 was defined in (5.35), and the argument of n is x̄1,2. Substitution of these
results into the uniform solution yields the inner solution (5.10).

The inner and outer solutions match when χ1 = O(k
−2/3
0 ), which scaling defines

the boundary layer.

6. Uniform asymptotic expansion of the characteristic Green’s func-
tion: The presence of a caustic. In the generic case of a heterogeneous slab,
caustics will form in the transverse directions. Following the Maslov approach, we
note that there will always be two coordinates chosen from (y1, y2) and their Fourier
duals (η1, η2) such that the solution in these coordinates remains asymptotically finite
and meaningful. The transition from one doublet of coordinates to another is followed
by the Keller–Maslov line bundle [11] that is accounted for in the solution’s ampli-
tude through a tensor product. We will discuss the mixed (y1, η2) case here; together
with the previous section, all necessary combinations can be found by permutation of
coordinates.

We reconsider (3.4) once again,

[∂k∂k + k2
0n

2(x1,2)]G(x1,2, x3 − x′
3;x

′
1,2) = −δ(x1 − x′

1)δ(x2 − x′
2)δ(x3 − x′

3),

and introduce a slight change in notation,

y1,2 = x1,2 − x′
1,2, z = x3 − x′

3.

We write the Green’s function in the form of an appropriate Fourier integral,

G(x1,2, x3 − x′
3;x

′
1,2) =

k0

2π

∫
R

Ĝ(y1, η2, z;x
′
1,2) exp(ik0η2y2) dη2.(6.1)

We now distinguish amplitude and phase according to

Ĝ(y1, η2, z;x
′
1,2) = A(y1, η2, z;x

′
1,2) exp[ik0φ(y1, η2, z;x

′
1,2)].(6.2)
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792 MAARTEN V. DE HOOP AND A. K. GAUTESEN

The inner solution. We expand the index of refraction, n2(x′
1,2 + y1,2), in the

partial differential equation in y2 about −q where q ≡ ∂η2φ. Upon substituting the
Fourier representation into the Helmholtz equation (3.4), after several integrations by
parts, we obtain the following equations.

Up to highest order (lowest order in (ik0)
−1), we recover the eikonal equation,

viz.,

p2 + η2
2 + r2 − n2(x′

1 + y1, x
′
2 − q) = 0,(6.3)

where p ≡ ∂y1φ and r ≡ ∂zφ. This is a pseudodifferential equation for φ. In the spirit
of the solution method of characteristics, we deduce the Hamilton equations for the
bicharacteristics,

dy1

dλ
= p,

dp

dλ
= (∂1M)(x′

1 + y1, x
′
2 − q),

dη2

dλ
= (∂2M)(x′

1 + y1, x
′
2 − q),

dq

dλ
= −η2,

dz

dλ
= r,

dr

dλ
= 0,

(6.4)

in which

M = 1
2n

2.

The Hamilton system is supplemented with initial conditions at λ = 0:

(y1, η2, z)|0 = (0, β2, 0), (p, q, r)|0 = (β1, 0, β3), β2
1 + β2

2 + β2
3 = n2(x′

1,2).(6.5)

In the next order, we recover the transport-like equation for A, viz.,

(∂2
y1

+ ∂2
z )A+ 2ik0CA−DA = −δ(y1)δ(z),(6.6)

in which

CA = [p ∂y1 + r∂z + (∂2M)(x′
1 + y1, x

′
2 − q) ∂η2 ]A

+ 1
2

[
∂2
y1

φ+ ∂2
zφ− (∂2

2M)(x′
1 + y1, x

′
2 − q) ∂2

η2
φ
]
A,(6.7)

DA =
[
(∂2

2M)(x′
1 + y1, x

′
2 − q) ∂2

η2
− (∂η2q)(∂

3
2M)(x′

1 + y1, x
′
2 − q) ∂η2

]
A

+
[− 1

3 (∂
2
η2

q)(∂3
2M)(x′

1 + y1, x
′
2 − q) + 1

4 (∂η2
q)2(∂4

2M)(x′
1 + y1, x

′
2 − q)

]
A

+O((ik0)
−1).(6.8)

Observe that on the inner region the y1 and z derivatives are large, and, hence, the
inner transport-like equation reduces to

(∂2
y1

+ ∂2
z )A+ 2ik0CA = −δ(y1)δ(z) + . . . .(6.9)

The phase function. First, we evaluate the solutions to the Hamilton (cf. (6.4))
and eikonal (cf. (6.3)) equations for small values of λ. The parametric representation
of the Hamiltonian flow follows from (6.4) as

y1 = β1λ+ 1
2 (∂1M)λ2 + . . . , p = β1 + (∂1M)λ+ . . . ,

η2 = β2 + (∂2M)λ+ . . . , q = −β2λ− 1
2 (∂2M)λ2 + . . . ,

z = β3λ, r = β3

(6.10)
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 793

while, through integration of the canonical one-form along the bicharacteristic, the
phase function is found to be

φ = (β2
1 + β2

3)λ+ [β1(∂1M)− 1
2β2(∂2M)]λ2 + . . . ,(6.11)

in which the substitution (∂1,2M) = (∂1,2M)(x′
1,2) is understood.

Solving system (6.10) subject to the constraint in (6.5) for λ, β1, β2, β3 in terms
of y1, η2, z yields

λ = (R/γ)[1− γ−3( 1
2γy1(∂1M) + η2R(∂2M)) + . . .],(6.12)

β1 = (γ/R)[y1 + γ−3(− 1
2γz

2(∂1M) + η2y1R(∂2M)) + . . .],(6.13)

β2 = η2 − (R/γ)(∂2M) + . . . ,(6.14)

β3 = (γz/R)[1 + γ−3( 1
2γy1(∂1M) + η2R(∂2M)) + . . .],(6.15)

in which R ≡ (y2
1 + z2)1/2 and γ ≡ [n2(x′

1,2)− η2
2 ]

1/2. Substituting these solutions in
the remaining equations of system (6.10) gives

p = (γ/R)[y1 + γ−3( 1
2γ(y

2
1 +R2)(∂1M) + η2y1R(∂2M)) + . . .],

q = (R/γ)[−η2 + γ−4 1
2 (γ

2y1η2(∂1M) + (γ2 + 2η2
2)R(∂2M)) + . . .],

r = (γz/R)[1 + γ−3( 1
2γy1(∂1M) + η2R(∂2M)) + . . .],

(6.16)

whereas the phase function (6.11) takes the form

φ = γR [1 + γ−3( 1
2γy1(∂1M) + 1

2η2R(∂2M)) + . . .].(6.17)

The amplitude function. Having obtained the solution of the eikonal equation,
we now proceed with solving the transport-like equation. First, observe the following
property of functions F of k0φ:[

∂2
y1

+ ∂2
z + 2ik0C

]
F = k2

0(p
2 + r2){

F ′′ + 2iF ′ +
1

k0φ
(F ′ + iF ) +

η2(∂2M)(x′
1,2)

2k0γ4
(F ′ + iF − 4ik0φF

′) + . . .

}
.

Using this property, the inner solution of (6.9) is constructed and found to be

A =
i

4
exp(−ik0φ)(6.18) {

H
(1)
0 (k0φ) +

η2(∂2M)(x′
1,2)

2γ4
k0φ

2[H
(1)
1 (k0φ)− iH

(1)
2 (k0φ)] + . . .

}
.

The outer solution. We assume that our wave field is a transient phenomenon
with dominant wave number k0. The outer region is determined by the condition

||(x1 − x′
1, x2 − x′

2)|| = O(1)

and corresponds to the behavior of the kernels away from their diagonals.
Amplitude expansion. In the outer region the derivatives of the amplitude A in

(6.2) are O(1). Thus we expand

A =
1

(k0φ)1/2

{
A0 +

1

ik0

(
A0

8φ
+A1

)
+ . . .

}
.(6.19)
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794 MAARTEN V. DE HOOP AND A. K. GAUTESEN

With this definition, A0 and A1 are continuous near the “source” (at x′
1,2). Substi-

tution of (6.19) into (6.6) and setting terms proportional to k
−n+1/2
0 , n = 0, 1, . . . ,

equal to zero yields the transport equations

LA0 = 0,(6.20)

LA1 − φ1/2D(φ−1/2A0) + ∂2
y1

A0 + ∂2
zA0

+
1

φ
(∂2M)(x′

1 + y1, x
′
2 − q)

(
∂η2A0 +

3

4

q

φ
A0

)
− 1

2 (∂η2q) (∂
2
2M)(x′

1 + y1, x
′
2 − q)A0 = 0,(6.21)

where

LA = 2
dA

dλ
+

{
φ [∂2

y1
+ ∂2

z ]logφ

− q

φ
(∂2M)(x′

1 + y1, x
′
2 − q)− (∂η2q)(∂

2
2M)(x′

1 + y1, x
′
2 − q)

}
A.(6.22)

The nonhomogeneous terms in (6.21) are continuous near the “source.”
In preparation for matching the inner and outer solutions, we consider the small

λ expansion of the solutions to (6.20)–(6.21):

A0 → A0|0
(
1− 3β2λ(∂2M)(x′

1,2)

4(β2
1 + β2

3)
+ . . .

)
= A0|0

(
1− 3β2(∂2M)(x′

1,2)φ

4(β2
1 + β2

3)
2

+ . . .

)
,(6.23)

A1 → A1|0 + . . . .(6.24)

Thus near the “source,” (6.19) takes the form

A =

(
1

k0φ

)1/2 {
A0|0

(
1 +

1

8ik0φ
− 3β2(∂2M)(x′

1,2)

32(β2
1 + β2

3)
2

[
8φ+

1

ik0

])
+

1

ik0
A1|0 + . . .

}
.

(6.25)

Inner solution on the outer scale. In preparation for developing the inner
solution on the outer region, we observe the asymptotic behavior of the amplitude
given in (6.18): We have

A =

(
i

8πk0φ

)1/2 {
1 +

1

8ik0φ
− 3η2(∂2M)(x′

1,2)

4γ4

[
φ− 5

8ik0

]
+ . . .

}
(6.26)

as k0φ becomes large. On the other hand, approaching the “source” as λ (i.e., φ)
becomes small, in this expression, gives

η2

γ4
→ β2

(β2
1 + β2

3)
2
,

cf. (6.10).
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 795

Uniform asymptotic expansion. Matching the inner solution on the overlap-
ping region. The overlapping region is governed by λ small and k0λ large, i.e., φ small

and k0φ large (or R = O(k
−1/3
0 ), where R was defined just below (6.15)). Comparing

(6.25) with (6.26) yields the initial conditions for A0 and A1,

A0|0 =

(
i

8π

)1/2

,(6.27)

A1|0 =

(
i

8π

)1/2 9β2(∂2M)(x′
1,2)

16(β2
1 + β2

3)
2

.(6.28)

Thus the initial conditions for A0 and A1 are determined by matching the outer
expansion to the inner solution on the overlapping region. It is only now that the
outer solution is fully determined.

Uniform expansion. Finally, the uniform expansion is obtained by adding the
outer solution ((6.1), (6.2), and (6.19)) to the inner solution ((6.1), (6.2), and (6.18))
and subtracting the matching terms on the overlapping region (equation (6.26)). How-
ever, in the inner region caustics will not have developed yet and, hence, there the
noncaustic uniform asymptotic expansion of the previous section will apply.

Expansion in z = O(k−1
0 ). For use of the expansion of G in the kernels of

the vertical slowness operator and the thin-slab propagator, we will have to make the
assumption that the propagation distance satisfies

k0 |x3 − x′
3|︸ ︷︷ ︸

z

= O(1).(6.29)

Exploiting the small range of propagation to yield the thin-slab propagator, we expand

φ = I0 +
1
2z

2I1 +
1
8z

4I2 + . . . ,(6.30)

A0 = A00 + z2A01 + . . . ,(6.31)

A1 = A10 + . . . ,(6.32)

where I0, I1, I2 and A00, A01, A10 are independent of z.
The phase function. Substituting the expansion for φ in (6.3) yields up to leading

order

P 2 + η2
2 − n2(x′

1 + y1, x
′
2 −Q) = 0,(6.33)

where P = ∂y1I0 and Q = ∂η2I0. The associated Hamilton system, i.e., the counter-
part of (6.4) with the preferred (principal) components removed, becomes

dy1

dµ
= P,

dP

dµ
= (∂1M)(x′

1 + y1, x
′
2 −Q),

dη2

dµ
= (∂2M)(x′

1 + y1, x
′
2 −Q),

dQ

dµ
= −η2,

(6.34)

supplemented by the initial conditions (cf. (6.5))

(y1, η2)|0 = (0, α2), (P,Q)|0 = (α1, 0), α2
1 + α2

2 = n2(x′
1,2).(6.35)
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796 MAARTEN V. DE HOOP AND A. K. GAUTESEN

The equation for the next order term follows as

dI1
dµ

+ I2
1 = 0(6.36)

with solution

I1 =
1

µ
.(6.37)

(The initial condition has been matched with the inner solution.)
The equation for I2 follows as

dI2
dµ

+ 4I2I1 + (∂y1I1)
2 − (∂2

2M)(x′
1 + y1, x

′
2 −Q)(∂η2

I1)
2 = 0.(6.38)

This equation simplifies from a computational point of view upon scaling I2 = µ−4Ī2;
then

dĪ2
dµ

+ [(∂y1
I1)

2 − (∂2
2M)(x′

1 + y1, x
′
2 −Q)(∂η2

I1)
2]µ4 = 0,(6.39)

supplemented by the initial condition

Ī2|0 = 0.(6.40)

We evaluate the solutions to the Hamilton (equation (6.34)) and eikonal (equa-
tion (6.33)) equations for small values of µ. The parametric representation of the
Hamiltonian flow follows as (compare with (6.10))

y1 = α1µ+ 1
2 (∂1M)µ2 + . . . , P = α1 + (∂1M)µ+ . . . ,

η2 = α2 + (∂2M)µ+ . . . , Q = −α2µ− 1
2 (∂2M)µ2 + . . . ,

(6.41)

while the leading-order constituent phase function is found to be (compare with (6.11))

I0 = α2
1µ+ [α1(∂1M)− 1

2α2(∂2M)]µ2 + . . . ,(6.42)

in which the substitution (∂1,2M) = (∂1,2M)(x′
1,2) is understood.

Solving system (6.41) subject to the constraint in (6.35) for µ, α1, α2 in terms of
y1, η2 yields

µ = (|y1|/γ)[1− γ−3( 1
2γy1(∂1M) + η2|y1|(∂2M)) + . . .],(6.43)

α1 = (γ/|y1|)[y1 + γ−3η2y
2
1(∂2M) + . . .],(6.44)

α2 = η2 − (|y1|/γ)(∂2M) + . . . ,(6.45)

in which γ = [n2(x′
1,2)−η2

2 ]
1/2 as before. Substituting these solutions into (6.42) then

yields (compare with (6.17))

I0 = γ|y1|[1 + γ−3( 1
2γy1(∂1M) + 1

2η2|y1|(∂2M)) + . . .].(6.46)

Amplitude expansion. Upon substituting (6.30)–(6.32) into (6.20)–(6.21), and
collecting leading-order terms, the equations for A00 and A10 follow as

L̃A00 = 0,(6.47)

L̃A10 + 2A01 − 3

4

Q

I2
0

(∂2M)(x′
1 + y1, x

′
2 −Q)A00 − D̃A00 = 0,(6.48)
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UNIFORMLY ASYMPTOTIC ONE-WAY PROPAGATOR 797

where

L̃A = 2
dA

dµ
+

[
I0 ∂2

y1
logI0 + I1 − Q

I0
(∂2M)(x′

1 + y1, x
′
2 −Q)

− (∂η2Q)(∂2
2M)(x′

1 + y1, x
′
2 −Q)

]
A,(6.49)

D̃A = −∂2
y1

A− 1

I0
(∂2M)(x′

1 + y1, x
′
2 −Q) ∂η2A

+ I
1/2
0

[
(∂2

2M)(x′
1 + y1, x

′
2 −Q)

(
∂2
η2

+
∂η2Q

2I0

)
− (∂3

2M)(x′
1 + y1, x

′
2 −Q)((∂η2Q)∂η2 +

1
3 (∂

3
η2

Q))

+ 1
4 (∂

4
2M)(x′

1 + y1, x
′
2 −Q) 1

4 (∂η2Q)2

](
A

I
1/2
0

)
,(6.50)

supplemented with the initial conditions (compatible with (6.27)–(6.28))

A00|0 =

(
i

8π

)1/2

,(6.51)

A10|0 =

(
i

8π

)1/2 9β2(∂2M)(x′
1,2)

16(β2
1 + β2

3)
2

.(6.52)

The next order equation, for A01, yields (cf. (6.20))

L̃A01 + 4I1A01 + L̃1A00 = 0,(6.53)

where

L̃1A = (∂y1I1)(∂y1A)− (∂η2I1)(∂
2
2M)(x′

1 + y1, x
′
2 −Q)(∂η2A)

+ 1
2

(
(∂2

y1
I1)− 2P (∂y1I1)

I0
+

P 2I1
I2
0

+ 3I2 − 2I2
1

I0

)
A

+

[ (
QI1
I2
0

− (∂η2I1)

I0

)
(∂2M)(x′

1 + y1, x
′
2 −Q)

+

(
Q(∂η2I1)

I0
− (∂2

η2
I1)

)
(∂2

2M)(x′
1 + y1, x

′
2 −Q)

+ (∂η2I1)(∂η2Q)(∂3
2M)(x′

1 + y1, x
′
2 −Q)

]
A.(6.54)

This equation simplifies from a computational point of view upon scaling A01 =
µ−2Ā01; then

L̃Ā01 + µ2L̃1A00 = 0(6.55)

with the initial condition Ā01|0 = 0.
We remark that the inhomogeneous term in (6.55) is continuous at the “source”

(x′
1,2) and

A01 → −3α2(∂2M)(x′
1,2)

8α4
1µ

A00|0 as µ → 0,
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798 MAARTEN V. DE HOOP AND A. K. GAUTESEN

Table 6.1
Relevant equations.

I0 I1 I2 A00 A10 A01

(6.33) (6.37) (6.39) (6.47) (6.48) (6.55)

cf. (6.41) for Q and (6.42) for I0. The inhomogeneous term in (6.48) is continuous at
the “source” (x′

1,2) since

−3

4

Q

I2
0

(∂2M)(x′
1 + y1, x

′
2 −Q) → 3

4

α2(∂2M)(x′
1,2)

α4
1µ

as µ → 0.

Effective index of refraction and effective metric. Again, we introduce an
effective index of refraction and effective horizontal distance as

ν ≡ [I0I1]
1/2,(6.56)

χ1 ≡
[
I0
I1

]1/2

,(6.57)

where the arguments are evaluated along the characteristics, whereas

r = [χ2
1 + z2]1/2.(6.58)

Then

G(x1,2, x3 − x′
3;x

′
1,2)(6.59)

=
k0

2π

∫
R

1

(k0νr)1/2
exp[ik0(νr + η2y2)]

{
A00 +

1

ik0

(
A00

8νr
+A10

)
+ . . .

}
dη2,

cf. (6.1), (6.2), (6.19), which represents the outer solution. The equations to be
evaluated or solved are listed in Table 6.1.

7. Uniform asymptotic expansions of the vertical slowness operator
and the one-way wave propagator.

The square-root operator kernel. Using (4.8), upon carrying out repeated
differentiation, we arrive at the uniform asymptotic expansion of the square-root
operator kernel,

C(x1,2, x
′
1,2;x

′
3) =

i

2πωχ3
1

exp(ik0νχ1) exp(ψ10)(7.1)  (ik0νχ1 + 2ψ10)

 1 +
1

ik0νχ1

(
3

8

(
1− ν3I2

χ1

)
+ ν(νψ11 + χ1ψ20)

) 
−1

2

(
1 +

ν3I2
χ1

)
+ . . .

 ,

in the absence of caustics, and the outer expansion,

C(x1,2, x
′
1,2;x

′
3) =

ik0

ωπ

∫
R

exp[ik0(νχ1 + η2y2)](7.2) {
1

(νχ1)1/2χ2
1

((
ik0νχ1 − 3

8

)
A00 + 2χ2

1A01 + νχ1A10 + . . .

)}
dη2,

in the presence of a caustic, to the order considered.
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The propagator kernel. Using (4.2), we arrive at the uniform asymptotic ex-
pansion of the one-way propagator kernel,

G(x1,2, x3 − x′
3;x

′
1,2)(7.3)

= −2(x3 − x′
3)


(
ik0ν

r
+

2ψ10

χ2
1

)
G(x1,2, x3 − x′

3;x
′
1,2)

− 1

4πr3
exp(ik0νr) exp

(
ψ10r

2

χ2
1

)
[
−1 +

1

8χ2
1r

2

(
1− ν3I2

χ1

)
(4χ4

1 + (x3 − x′
3)

2(r2 + χ2
1))

]
+ . . .


in the absence of caustics, and the outer expansion,

G(x1,2, x3 − x′
3;x

′
1,2) = −k0

π

∫
R

(x3 − x′
3)

r2(k0νr)1/2
(7.4)

exp[ik0(νr + η2y2)]

{(
ik0νr − 3

8

)
A00 + νrA10 + 2r2A01 + . . .

}
dη2,

in the presence of a caustic, to the order considered. In both cases, we observe that

lim
x3↓x′

3

G(x1,2, x3 − x′
3;x

′
1,2) = δ(x1,2 − x′

1,2),

as it should.

8. Discussion. One of the main objectives of directional wave field decomposi-
tion is the introduction of the concept of “tracing waves.” A general theory for this,
employing the complete generalized Bremmer coupling series, has been developed
before. The application of the series, however, depends on solving an operator com-
position equation, the characteristic equation, and an associated one-way wave equa-
tion. In this paper, in smoothly varying media, we have obtained uniform asymptotic
expansions for both solutions valid in the “high- and mid-frequency” wave regime.

The method of uniform asymptotics consists of three components: (i) the con-
struction of a “far-field” or “outer” solution, representing an operator kernel away
from its diagonal and obtained by microlocal techniques suppressing locally medium
variations in the principal (here vertical) direction; (ii) the construction of a “near-
field” or “inner” solution, representing the operator kernel near its diagonal and ob-
tained mostly by Taylor-like expansions; (iii) matching the inner and outer solutions
in a boundary layer to all orders considered.

The result is a one-way wave field representation that is truly more general than
its microlocal counterpart. For example, the microlocal treatment of the one-way op-
erator solutions to the characteristic equation would require cut-offs removing critical-
angle scattering phenomena. Also, modal behavior is naturally included in our frame-
work of uniform asymptotics. Conceptually, our theory is an intermediate between
asymptotic-ray and full-wave theories in the sense that our theory is still asymptotic
but valid in a much larger frequency band (see also Thomson [12]).

From a computational perspective, the uniform asymptotic one-way wave propa-
gator falls into the category of propagators associated with the paraxial wave equation,
the phase-screen or split-step Fourier approximation, the phase-shift-plus-interpolation
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method, and so on. However, it does not suffer from any of the limitations of these
approaches. A desirable feature of a closed-form solution as presented in this paper
is its ease of use, in particular with a view to taking caustics into account. (In this
context, for a comparison with a ray tracing approach, see Ziomek [13]).

Hidden in the uniform asymptotic expansions are certain aspects of homogeniza-
tion: we have introduced an effective index of refraction and an effective metric, which
follow from the actual medium variations and are evaluated by means of ray methods.

Throughout the paper, the configuration has been assumed to be three-
dimensional. Previous two-dimensional results, obtained by more restrictive argu-
ments, are recovered by assuming that ∂2n ≡ 0 and integrating the characteristic
Green’s function over y2.

As a final remark, we indicate how variable density can be incorporated in the
analysis. For details on how it affects the decomposition procedure, see de Hoop [1].
The key in the approach presented in this paper is the introduction of an effective
wave speed, c′−2

(x1,2, ω) = c−2
0 n′2(x1,2, ω), with

n′2(x1,2, ω) = n2(x1,2) + c20

[
3[(D1ρ)

2 + (D2ρ)
2]

4ρ2
− (D2

1 +D2
2)ρ

2ρ

]
, ρ = ρ(x1, x2).

This change requires some straightforward adjustments of the asymptotic matching.
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