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Ill-posed seismic inverse problems are often solved using Tikhonov-type regularization,
that is, incorporation of damping and smoothing to obtain stable results. This typically
results in overly smooth models, poor amplitude resolution, and a difficult choice
between plausible models. Recognizing that the average of parameters can be better
constrained than individual parameters, we propose a seismic tomography method that
stabilizes the inverse problem by projecting the original high-dimension model space
onto random low-dimension subspaces and then infers the high-dimensional solution
from combinations of such subspaces. The subspaces are formed by functions constant
in Poisson Voronoi cells, which can be viewed as the mean of parameters near a certain
location. The low-dimensional problems are better constrained, and image reconstruction
of the subspaces does not require explicit regularization. Moreover, the low-dimension
subspaces can be recovered by subsets of the whole dataset, which increases efficiency
and offers opportunities tomitigate uneven sampling of themodel space. The final (high-
dimension)model is then obtained from the low-dimension images in different subspaces
either by solving another normal equation or simply by averaging the low-dimension
images. Importantly, model uncertainty can be obtained directly from images in different
subspaces. Synthetic tests show that our method outperforms conventional methods
both in terms of geometry and amplitude recovery. The application to southern
California plate boundary region also validates the robustness of our method by imaging
geologically consistent features as well as strong along-strike variations of San Jacinto
fault that are not clearly seen using conventional methods.

Introduction
Seismic tomography has been one of the most important tools
for imaging 3D subsurface structures since the pioneering local,
regional, and global studies by Aki et al. (1977), Romanowicz
(1979), and Dziewonski et al. (1977), respectively. However, the
uneven distribution of earthquakes and stations usually results
in ill-posed tomographic inverse problems, calling for regulari-
zation to obtain a physically plausible result. Depending on the a
priori information available, regularization can be included
explicitly in the misfit functions used to solve the inverse prob-
lem or implicitly controlled by the user.

Among different explicit regularization techniques, the
most widely used ones involve the use of so-called damping or
smoothing terms, which force the result to be smooth and close
to the a priori model (Aster et al., 2011). Other types of regu-
larization include sparsity, which exploits the fact that a model
can be represented with only a fraction of coefficients in certain
domains (Chiao and Kuo, 2001; Chiao and Liang, 2003; Loris

et al., 2007, 2010; Simons et al., 2011; Fang and Zhang, 2014)
and compactness constraints in cases where the target struc-
ture is not smooth (Ajo-Franklin et al., 2007). These methods
can produce high-resolution images, but the computational
cost is high and the performance often case dependent.

Besides explicit regularization that is incorporated directly
into the misfit function, the choice of model parameterization
and how to weigh data can also affect the results (Kárason and
Van Der Hilst, 2000). Discretization choices include cell- or
grid-based representation in local, regional, and global tomog-
raphy, with cells or grids regularly distributed or irregularly
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adapted to the density of data sampling (Bijwaard et al., 1998;
Kárason and Van Der Hilst, 2000). In global problems, har-
monic bases have been adopted to decrease the dimension
of the model space and allow direct inversion (Dziewonski,
1984). Large grid cells (or low harmony orders) lead to high
model stability but might not represent the small-scale struc-
ture. In contrast, small grid cells (or coefficients of high-order
harmonics) can represent different scales of features, but the
available data might not be able to constrain them well. Thus,
the trade-off between model complexity and model stability
should be taken into consideration when discretizing models.
On the data side, different weighting schemes can be used to
reduce artifacts due to preferential sampling caused by spatial
clustering of events and stations (Bijwaard et al., 1998).
Combined, these subjective factors produce different models
that each fits the data according to some misfit criterion, leading
to a difficult choice of which is more reliable than the others.

Here, we take a different approach toward inversion, which
addresses some of the issues mentioned earlier and is also
(computationally) efficient. Instead of solving the ill-posed full
inverse problem with regularization, we choose to stabilize the
inversion by projecting the original high-dimension model
space onto low-dimension subspaces and infer the final solution
from them. The subspaces are formed by constant functions,
that is, constant wavespeed, in randomly distributed Voronoi
(Poisson Voronoi [PV]) cells (Sambridge et al., 1995; Okabe
et al., 2000). In each subspace, we obtain the low-dimension
image by simply solving a normal equation without using any
explicit regularization. We can do this many times, each with a
random distribution of Voronoi cells. The final result is then
retrieved by combining all low-dimension images, either by
solving another normal equation or simply by averaging the
low-dimension images in different subspaces. Explicit regulari-
zation such as damping and smoothing is not necessary because
the inverse problem in the projected subspace is better con-
strained (Gupta et al., 2018). We note the subspace used here
is different from the subspace inversion of Kennett et al. (1988),
who proposed to solve inverse problems with misfit functions
dependent onmultiple types of parameters, but both approaches
aim for model dimension reduction. Gupta et al. (2018) used
a similar technique to obtain high-resolution images with
extremely sparse data coverage, but instead of solving normal
equations they trained a deep neural net with artificial data
to represent the generalized matrix inverse. In terms of data
weighting, our method allows us to use subsets of the whole
dataset for different realizations to make data coverage more
homogeneous while still benefiting from data redundancy. The
strategy that we consider bears some similarity to the Backus–
Gilbert inversion (Backus and Gilbert, 1968), which focuses on
the mean instead of individual parameters.

In the following sections, we first revisit briefly conventional
seismic travel-time tomography and then introduce PV-based
inversion. We validate our method with synthetic tests and

field data in the southern California plate boundary region.
Lastly, we discuss how to choose the number of Voronoi cells
and subspaces, the effects of using a subset of the whole dataset,
and the possibility of representing uncertainty based on low-
resolution images in different subspaces.

Methodology
Seismic travel-time tomography based on
Tikhonov-type regularization
Linearized seismic travel-time tomography can be formulated
as minimizing the quadratic objective function that character-
izes data fitting as

EQ-TARGET;temp:intralink-;df1;320;584Δm̂ � argminkGΔm − Δdk2; �1�

in which G is the sensitivity matrix, which can be obtained,
for instance, by numerically solving the Eikonal equation (e.g.,
Rawlinson and Sambridge, 2004), 3D raytracing (e.g., Um and
Thurber, 1987), or finite-frequency theory (e.g., Dahlen et al.,
2000); Δm and Δd are the vectors of model update and data
residual between calculated and observed travel times, respec-
tively. Because of the ill-conditioning of the G matrix, which is
caused by the uneven sampling of the model space (due to ray
bending and irregular source and receiver distribution) and a
particular model discretization, regularization terms must be
incorporated to obtain stable results.

The most widely used regularization terms are damping and
smoothing, which prevent the model from changing too much
from the initial model and make model perturbations smooth.
Then, the seismic tomography problem can be recast as

EQ-TARGET;temp:intralink-;df2;320;358Δm̂ � argminkGΔm − Δdk2 � λkLΔmk2 � μkIΔmk2; �2�

in which L is a smoothing matrix, which is usually chosen to be
the first- or second-order Tikhonov matrix (Aster et al., 2011), I
is the identity matrix used to obtain a minimum norm solution,
and λ and μ are the regularization parameters and are often
chosen based on an L-curve (Hansen, 2001; Aster et al., 2011)
or generalized cross validation (Golub et al., 1979; MacCarthy
et al., 2011). Then, the optimization problem can be solved with
singular value decomposition, subspace inversion (Kennett et al.,
1988), least squares (LSQR; Paige and Saunders, 1982), or other
iterative solvers. Other regularization approaches, for example,
using sparsity of the model in certain domains, claim to have
better resolution and be data adaptive (Loris et al., 2007;
Simons et al., 2011; Fang and Zhang, 2014), but they still depend
heavily on the a priori information. Apart from the explicit regu-
larization terms, how to discretize the model can be treated as an
implicit regularization, which is usually determined based on the
user’s preferences.

PV-cells-based seismic tomography
In PV-based tomography, we first discretize the model on a
fine grid to enable resolving structures over different scales
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using the available data. This results in a model dimension m
that could be larger than the quantity of observed data n, and
thus an under(mixed)-determined sensitivity matrix G, even
with homogeneous data sampling. Instead of solving the
high-dimension inverse problem directly, with regularization,
we project the original sensitivity matrix into a series j
(j � 1…N) of subspaces with dimension l, with l ≪ m

EQ-TARGET;temp:intralink-;df3;41;465G̃j � GPj; �3�

in which Pj∈Rml is jth projection matrix. Figure 1 shows
an example of a 2D projection using Voronoi cells, with
m � 16; 384 (128 by 128) and l � 100. The projected sensitiv-
ity matrix G̃ is more well conditioned than the original one,
that is, closer to full rank (farther from singularity). The model
for the jth projected low-dimension subspace Δm̂s

j can be
obtained by solving

EQ-TARGET;temp:intralink-;df4;41;338Δm̂s
j � argminkG̃jΔm̃j − Δdk2; �4�

without any regularization. After solving equation (4) indi-
vidually for N different subspaces formed by PV (i.e., random)
cells, the high-dimension model can be obtained by solving

EQ-TARGET;temp:intralink-;df5;41;266Δm̂ � argminkPΔm − Δm̃k2; �5�

in which P � �P1;P2;…;PN �T , the superscript T stands for the
matrix transpose, and Δm̃ � �Δm̂s

1;Δm̂s
2;…;Δm̂s

N �T . The
LSQR solution to equation (5) is

EQ-TARGET;temp:intralink-;df6;41;189Δm̂ � PgΔm̃; �6�

in which Pg � �PTP�−1PT if the inverse of PTP exists and the
superscript g stands for the generalized inverse. Alternatively,
the solution can be approximated with

EQ-TARGET;temp:intralink-;df7;41;117Δm̂ ≈
1
N
PTΔm̃; �7�

which is a simple average over the different projected subspa-
ces. This is, in effect, a filtered version of the exact solution to

equation (5), because we approximated �PTP�−1 as 1
N I. We

note that this approximation has been widely applied to inter-
face and source imaging, for example, the backprojection
technique to image earthquake rupture using high-frequency
teleseismic data (Ishii et al., 2005). The usage of PV cells makes
equation (7) converge extremely fast. In addition to the average
model, equation (7) yields the variance of the solutions from
different realizations, at a certain location, which can be used as
a measure of uncertainty. Similar random-number-based tech-
niques have also been used for estimating the diagonal entries
of large matrices (MacCarthy et al., 2011) and in full-waveform
inversion to extract the point spread function in the Hessian
matrix for resolution assessment (Trampert et al., 2012;
Fichtner and Leeuwen, 2015).

Method Validation
A 2D synthetic test
We first illustrate and validate our method using a simple 2D
synthetic test. The input model with a 5% low-wavespeed
anomaly in the center is shown in Figure 2a, and the station
distribution used for this test is taken from Zigone et al. (2015)
in the southern California plate boundary region. We then cal-
culate the travel times between different pairs of stations
(Fig. 2a) using straight rays. This would be similar to, for
instance, the first step in obtaining phase or group velocity
maps in surface-wave or ambient-noise tomography. We note
that one could use more accurate kernels but straight rays are
adequate for illustration purposes. After adding Gaussian noise

Figure 1. Schematic diagram of a high-dimension 2D model and
its projection in a subspace formed by Poisson Voronoi (PV) cells.
(a) 100 randomly distributed Voronoi cells. The original fine
discretization (128 by 128 grid, i.e., 16,384 model parameters) is
shown as dots with different colors. Color bar shows the indexes
of different cells. (b) Original high-dimension model with the
dimension of 128 by 128. (c) Projected image of (b) to a subspace
formed by (a) 100 Voronoi cells. The color version of this figure is
available only in the electronic edition.
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with a standard deviation of 0.15 s, we apply the PV-based
method to (randomly selected) 1000 synthetic travel times.

We discretize the original model using a fine grid consisting
of 128 by 128 nodes in the X and Y directions (Fig. 1a), which
leads to 16,384 model parameters. The number of Voronoi
cells used should be related to the noise in the data and the
number of measurements, which will be discussed in detail
later. After several tests with different numbers of subspaces
formed by PV cells, we found that 50 cells already lead to a
stable and good reconstruction, but for this illustration we use
100 cells. We project the high-dimension model onto 500 ran-
domly permuted subspace distributions formed by 100 random
Voronoi cells (Fig. 1a). The number of realizations (N � 500) is
excessive but guarantees stability. We then solve equation (4) for
each realization independently without explicit regularization.

Figure 2b–d shows the results for three different realiza-
tions, with each one recovering the input model to a certain
degree with low-wavespeed anomalies in the center. As
expected, artifacts exist in regions where the data sampling
is poor and anomalies are distorted by the shapes of the
Voronoi cells. The noisy features in the recovered images in

the projected subspaces show that the projections are still sen-
sitive to noise in the data, but the projection matrices are less
ill-conditioned than the original ones, with which recovery
without regularization would not yield plausible results. We
obtain the final model by averaging all 500 different realiza-
tions based on equation (7). The image obtained from averag-
ing (Fig. 2e) suppresses the artifacts in individual realizations
and the effect caused by different shapes of Voronoi cells.
Besides, the standard deviation estimation (Fig. 2f) obtained
from the variance of low-dimension images in different real-
izations captures the large uncertainties in regions with poor
data coverage as well as the bimodal distribution near sharp
boundaries.

(a) (b) (c)

(d) (e) (f)

Figure 2. A 2D synthetic test. (a) The input model with a 5%
low-wavespeed anomaly in the center. Green crosses show the
station distribution. (b–d) Inverted results from three different
realizations, each with 100 Voronoi cells. (e) Recovered image by
averaging 500 realizations. (f) Standard deviation estimated from
500 subspaces. The color version of this figure is available only in
the electronic edition.
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Validation with a 3D
synthetic test
To validate our method further,
we designed a 3D toy model
with high VP (0:5 km=s larger
than the reference) in the upper
11 km and low VP (0:5 km=s
smaller than the reference) at
greater depths (Figs. 3a and 4a).
A fast-marching method (de
Kool et al., 2006) was adopted
to calculate the travel times and
ray paths with the same earth-
quake and station distribution
as the field data (Fig. 5a). After
adding Gaussian noise with a
standard deviation of 0.06 s to
the synthetic data, we applied
the two methods mentioned in
the Methodology section to
invert for VP.

The model obtained from
PV-based inversion shows more
accurate amplitude and fewer

33°

34°

6 km

Input model

D D’

−118° −116°

33°

(b)

(a)

34°

16 km

PV

−118° −116°

Smooth (0.01)

−118° −116°

Smooth (0.1)

−118° −116°

Smooth (0.5)

−118° −116°

−0.5 0.0 0.5
ΔVP (km/s)

Figure 3. Horizontal slices of ▵VP in the 3D synthetic test. The first
column shows the input model, followed by obtained model
from PV-based inversion, conventional inversion with smoothing
parameters of 0.01, 0.1, and 0.5 at depth of (a) 6 and (b) 16 km.

The thick black line in (a) shows the position of cross section for
Figure 4. The color version of this figure is available only in the
electronic edition.
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Figure 5. Application to field data in southern California plate
boundary region. (a) Distribution of earthquakes (red dots) and
stations (blue triangles). Gray lines show the fault traces. EF,
Elsinore fault; SAF, San Andres fault; SJF, San Jacinto fault; ST,
Salton trough. (b,c) Horizontal slice of VP at 3 and 13 km. (d,e)
Same as (b,c) but for the model from Fang et al. (2016). A vertical
slice of VP along the SJF from (f) PV-based method and (g) Fang
et al. (2016). The position is shown as a black thick line in (a). Pink

dots in (f) show the relocated earthquakes within 5 km from the
cross section. Topographic variation along A–A′ is plotted on top
of (f). Magenta lines in horizontal slices show the Peninsular
Range compositional boundary. The shaded area in (b,c,f) cor-
responds to regions with large standard deviation (>0:3 km=s in
Fig. 7). The color version of this figure is available only in the
electronic edition.
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artifacts compared to conventional tomography with different
smoothing parameter (λ) (Figs. 3 and 4). The conventional
tomography method works fine with appropriate regulariza-
tion parameter, with λ in equation (2) equal to 0.1 for this par-
ticular case. Smaller values lead to artifacts, whereas larger
value results in diminished amplitude and smeared boundaries
(Fig. 3). In contrast, the PV-based inversion method recon-
structs the low VP anomaly at greater depth (Fig. 4), whereas
the conventional method tends to underestimate this anomaly
because of the larger trade-off between different model param-
eters in high-dimension space. Both methods fail to recover the
low-wavespeed anomaly at 16 km, but the PV-based method
shows less smearing compared to the conventional method
(Fig. 3), and the large uncertainty also indicates the data do
not constrain this part of the model space well (Fig. 6).

Application to the southern California plate
boundary using P-wave travel-time data
We applied the previous method to P-wave travel-time data in
the southern California plate boundary region (Allam and
Ben-Zion, 2012). The dataset includes about 200,000 P-wave
arrivals recorded by 139 stations from almost 5500 earthquakes

(see Data and Resources). We
use the same initial 1D model
as in Allam and Ben-Zion
(2012), and the model is dis-
cretized with a grid interval
of 0.01° in the horizontal direc-
tions and 0.5 km in the vertical
direction, which results in
3,797,996 model parameters.
The travel times and ray paths
are calculated using a fast
marching method (de Kool
et al., 2006). After a similar
trade-off analysis as the 2D
synthetic test, we choose 100
subspace realizations, each
formed by 500 Voronoi cells.
We only use a selected subset
of the complete datasets for
each subspace; not only do they
reduce computation cost but
also reduce effects of preferen-
tial sampling due to event
clustering. The choice of sub-
datasets for each realization
will be discussed in detail later.

The recovered model shows
features that are similar to a
recent model from joint inver-
sion of body- and surface-wave
data Fang et al. (2016), such as

low VP along the southern San Andres fault in the upper 5 km
related to broad fault damage; low VP in the upper 7 km and
high VP at greater depth in the Salton trough area, which cor-
responds to crustal thinning due to the rifting in the Gulf of
Mexico; as well as a velocity contrast along the northern part of
the San Jacinto fault (SJF; Fig. 5b,c). The central part of the SJF
is relatively slow, which corresponds well with high topogra-
phy and Moho uplifting to maintain isostatic balance in the
mantle (Lewis et al., 2000). In the southeast part of the SJF,
the depth of seismicity is shallower than that of the northwest
part (Fig. 5f), correlating well with the velocity model and high
heat flow data (Enescu et al., 2009), which may indicate a shal-
lower brittle-to-ductile transition depth in this region. The
strong along-strike variation along the SJF, which is not clearly
seen in Allam and Ben-Zion (2012), seems well constrained in
both the new model and that of Fang et al. (2016), but the new
model seems simpler with fewer features that look like artifacts
(Fig. 5f,g). Moreover, the velocity contrast aligns better with the
Peninsular Range compositional boundary and the fault trace
in the northwest part of SJF, compared to the model of Fang
et al. (2016) (Fig. 5b,d). Further model validation using wave-
form simulation will be left to future work. The estimated
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Figure 6. Standard deviation estimated from the 3D synthetic test at 6 and 16 km and a vertical slice
shown in Figure 3a.
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standard deviation (Fig. 7) is consistent with data coverage,
with regions of good data sampling show smaller values than
regions with sparse data sampling. In addition, large standard
deviation in the northwest part of SJF (Fig. 7a) may help indi-
cate large velocity contrast.

Discussions
Determining the number of Voronoi cells and
realizations
Because we do not use explicit regularization, the only subjec-
tive parameters in our inversion system are the number of
Voronoi cells, that is, the dimension l of each subspace, and
the number N of realizations needed to obtain a robust solu-
tion. Similar to the trade-off between model complexity and
stability in conventional tomography, a small number of cells
in PV-based inversion tends to be stable for the LSQR solution,
but will have difficulty fitting the data. In contrast, a large num-
ber of Voronoi cells improve the data fit, but they will also fit
the noise and lead to ill-conditioning of the sensitivity matrix.
Thus, the number of Voronoi cells should depend on the quan-
tity and quality (i.e., noise level) of the data.

We tested different numbers of cells in the 2D synthetic
model using l � 20, 50, 100, 200, and 300 Voronoi cells, each
with N � 500 different realizations (Fig. 8 and Fig. S1, available
in the supplemental material to this article). The data fit versus

dimension l (Fig. 8a) is similar
to the shape of an L-curve
(Hansen, 2001), indicating
there is a trade-off, as expected,
between data fit and the num-
ber of Voronoi cells. The result
for l � 20 (Fig. 8b) shows good
recovery of the low-wavespeed
anomaly in the center, but
with diminished amplitude
and smeared boundaries. With
the number of Voronoi cells
increasing to 300 (Fig. 8f), the
data fit improves, but there are
more artifacts in regions with
poor data sampling. The result
from 100 cells seems best able
to recover the true amplitude
and the relatively sharp boun-
daries with good data fit and
limited artifacts. As expected,
the estimated standard devia-
tion (Fig. S1) shows ring-like
features along the boundaries
and large values in regions with
sparse data coverage when the
cell number is larger than 50.
Combined with the recovered

models, the results indicate (as expected) a trade-off between
data fit and cell number l, but not as strong as conventional
tomography, in which only slightly different regularization
parameters can change the model dramatically (Fig. 3).

To determine the optimal number of realizations, that is N ,
we plot the recovered models and the estimated uncertainty
from different realizations. Figure 9 shows the results associ-
ated with their standard deviation using N � 20, 50, 100, and
300 realizations, respectively. The difference between 100 and
300 realizations is quite small. In fact, the result from 20 real-
izations already captures most of the features, albeit with some
noise. The decrease of mean squared error between the recov-
ered model and the input model becomes insignificant after
about 50 realizations, indicating a small number of realizations
are usually sufficient for obtaining stable results.

We stress that choosing the number of Voronoi cells is eas-
ier than choosing the regularization parameters in conven-
tional tomography. Besides the data quantity and quality, the
number of Voronoi cells is also a function of the complexity in
the actual structure. A simple model with smooth structure
may only need a small number of cells (Fig. S2). More cells
are necessary to represent models with sharp boundaries or
complex structures (Figs. S3 and S4), but the number usually
ranges from several dozen to several hundred in local to regional
scales using travel-time data, which are consistent with the
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Figure 7. Standard deviation estimated from field data application at (a) 3 and (b) 13 km, and (c) a
vertical slice along the SJF. The position of the vertical slice is shown in Figure 5a.
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posterior distribution of cell number in nonlinear inversions
(e.g., Bodin and Sambridge, 2009; Agostinetti et al., 2015; Zhang
et al., 2018). Thus, it is possible to use the posterior distribution
of cell numbers in nonlinear inversion as a priori information for
choosing PV subspace dimension l. Furthermore, choosing l is
quite robust in that the solution changes little for choices around
a reasonable value of l. In contrast, choosing the damping
and smoothing parameters in conventional tomography requires
test inversions with a broad spectrum of different values, and
the solution may be more sensitive to this value than the
choice of l.

The standard deviation estimation
Model uncertainty is critical in seismic tomography, yet most
linearized seismic tomography methods do not give direct
information about it. The most commonly used technique
to characterize the resolution is the checkerboard test, although
it tells us little about the true resolution and has its intrinsic
drawbacks (Lévěque et al., 1993; Rawlinson and Spakman,
2016). The use of Markov chain Monte Carlo (MCMC) sam-
pling to explore the model space has gained in popularity in the
past decade (e.g., Bodin and Sambridge, 2009; Agostinetti et al.,
2015; Burdick and Lekić, 2017), but its applications are limited
to small-scale problems where the dimension of the model
space is less than a few hundred or large-scale problems where
the forward calculation is efficient (Burdick and Lekić, 2017).

In our PV-based tomography, the projected models in dif-
ferent subspaces can fit the data equally well and all lie in or
very close to the high-dimension model space. Thus, we could
in principle characterize model uncertainty using the variance
in the projected models, at least partly. Indeed, the standard
deviations for the 2D and 3D synthetic tests (Figs. 6 and 9)
look similar to those from a Monte Carlo sampler (e.g., Bodin
and Sambridge, 2009; Galetti and Curtis, 2018), with the ring-
like features around the sharp boundaries showing the bimodal
distribution of model parameters in those regions. Moreover,
large differences between the recovered model and the input
model are also associated with large standard deviation (Fig. S5),
indicating the estimated standard deviation could, at least partly,
capture the real model uncertainty when the noise in the data is
known a priori. For the field data application, the standard
deviation is large both in regions with poor data sampling and
in regions with sharp velocity contrasts such as the northwest
part of SJF (Fig. 7). At this stage, we should mention that the
uncertainty estimation is preliminary because it is still not clear
to what degree the projected subspaces capture the whole model

(a) (b) (c)

(d) (e) (f)

Figure 8. (a) The trade-off curve of data fitting versus number of
Voronoi cells. (b–f) The result using 20, 50, 100, 200, and 300,
respectively, each obtained from averaging of 500 realizations.
The color bar is the same as Figure 2. The color version of this
figure is available only in the electronic edition.
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space, but we argue that even with this caveat in mind it is more
informative than conventional synthetic tests for characterizing
uncertainty.

Data selection for each realization
Earthquakes used in passive seismic tomography mostly occur
in specific tectonically active regions. This leads to redundant
sampling in certain regions and leaves others undersampled.
Commonly used techniques to prevent the results from being
dominated by clusters of earthquakes include selecting events
to be optimally distributed (Evans et al., 1994), clustering events

for summary rays (Bijwaard et al., 1998; Kárason and van der
Hilst, 2001), and downweighing the data in regions within event
clusters (e.g., Schaeffer and Lebedev, 2013).

(a) (b) (c) (d)

(e) (f) (g)

(i)

(h)

Figure 9. Obtained results of the 2D synthetic test for (a) 20, (b) 50,
(c) 100, and (d) 300 realizations as well as their corresponding
standard deviation estimation (e–h). (i) The mean square error
(MSE) between the input and obtained model versus the number
of realizations. The color bar for (a–d) is the same as Figure 2. The
color version of this figure is available only in the electronic edition.
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In our field data case, using the full dataset, which includes
about 200,000 measurements, seems unnecessary for deter-
mining 500 unknowns in each subspace realization, and sam-
pling is dominated by data from nearby events (Fig. 10). Both
for efficiency and for suppressing the effects of uneven data
coverage, for each realization we use a subset of all available
data. To this effect, we first cluster earthquakes using blocks
with similar size that span the source regions and randomly
chose a subset of earthquakes in each block for each subspace
reconstruction. We selected about 3000 measurements from
150 events for each subspace reconstruction to achieve more
homogeneous sampling (Fig. 10b). There will be events in
events cluster regions that may not be selected for inverting
the model in the subspace. However, travel-time data from
these events could serve as validation datasets to check if the
obtained model could also fit those data. By choosing different
subsets of the data for different subspaces in a more or less
random way, we obtain results that are less affected by event
clustering and still make use of nearly all data. Indeed, after 100
realizations, the event distribution used (Fig. 10c) in the field

data case is similar to the full
event distribution, and the sub-
sets of data used in the inver-
sion approach 50% of the
whole dataset (Fig. 10d). More
subspaces (or using more data
per subspace) would increase
the percentage of the subset
data to nearly 80% for 500 real-
izations (for 3000 data per
subspace), but the remaining
data seem redundant and will
unlikely add more information
about the final results if the data
noise from similar paths is cor-
related. Indeed, results (Fig. S6)
using about 2000 measure-
ments from 100 events show
very similar results as the results
using 3000 measurements.

Conclusions
We developed a PV-based
seismic tomography method,
which bypasses the need for
explicit regularization. Our
method mitigates the ill-posed-
ness of the inverse problem
by first projecting the high-
dimension model space onto a
number of low-dimension sub-
spaces formed by randomly
distributed Voronoi cells and

then reconstructing the final model from combinations of these
low-dimensional subspaces. In addition to computation effi-
ciency, the method is attractive as the choice of free parameters
(i.e., the dimension l and the number N of subspace distribu-
tions) is more straightforward than the choice of regularization
parameters in conventional tomography, and, the results are
more robust, as they do not vary much between different choices
of l and N around reasonable values. Furthermore, for each
realization a subset of data can be selected to reduce the effects
of uneven data coverage. Lastly, the method can be used to char-
acterize model uncertainty, which is of great importance when
interpreting the final results. Synthetic tests show that (for a cer-
tain type of sensitivity kernel) our method can recover anomaly
amplitudes and relatively sharp boundaries better than conven-
tional tomography methods. The application to the P-wave
travel-time data in the southern California plate boundary
region demonstrates its robustness by revealing geologically
consistent features such as velocity contrasts across faults, fault
damage related low-wavespeed anomalies, and known geologic
boundaries. The low-dimension and independence of subspaces,

Figure 10. (a) Map view of the overall data distribution characterized by one-tenth of the rays of the
complete dataset. (b) Map view of data sampling from a subset of data for a certain subspace.
(c) Map view of the complete set of events (red dots) and events used in the PV inversion (green
dots). (d) Data used in the PV-based inversion with the increasing number of realizations. The color
version of this figure is available only in the electronic edition.
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along with the use of subsets of the data, makes our method
inherently parsimonious and highly efficient (and paralleliz-
able). This PV approach is attractive for several geophysical
inverse problems such as surface-wave tomography, earthquake
slip inversion, and global scale tomography, where MCMC-
based inversion and other full model space searches are still
computationally expensive.

Data and Resources
The earthquake catalog and P-wave travel-time data used in this study
are mostly from Allam and Ben-Zion (2012) and can be obtained from
https://github.com/HongjianFang/sjfz_data (last accessed May 2019).
The inversion code is available now upon request and will be acces-
sible soon on the author’s Github site. Supplemental material for this
article includes validation of Poisson Voronoi projections and model
comparison.
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