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Abstract

Seismic data is modeled in the high-frequency approximation, using the tech-
niques of microlocal analysis. We consider general, anisotropic elastic media.
Our methods are designed to allow for the formation of caustics. The data is
modeled in two ways. First, we give a microlocal treatment of the Kirchhoff
approximation, where the medium is assumed to be piecewise smooth, and re-
flection and transmission occur at interfaces. Second, we give a refined view on
the Born approximation based upon a linearization of the scattering process in
the medium parameters around a smooth background medium. The joint formu-
lation of Born and Kirchhoff scattering allows us to take into account general
scatterers as well as the nonlinear dependence of reflection coefficients on the
medium parameters. The latter allows the treatment of scattering up to grazing
angles.

The outcome of the analysis is a characterization of the singular part of seis-
mic data. We obtain a set of pseudodifferential operators that annihilate the data.
In the process we construct a Fourier integral operator and a reflectivity function
such that the data can be represented by this operator acting on the reflectivity
function. In our construction this Fourier integral operator becomes invertible.
We give the conditions for invertibility for general acquisition geometry. The
result is also of interest for inverse scattering in acoustic me@@»2002 John
Wiley & Sons, Inc.

1 Introduction

In the seismic experiment one generates elastic waves in the earth using sources
atthe surface. The waves that return to the surface of the earth are observed (in fact,
sources and receivers are not always on the surface of the earth; this case is also
considered). The problem is to reconstruct the elastic properties of the subsurface
from the data thus obtained.

The subsurface is given by an open Xett R". In practicen = 2 or 3, but we
leave it unspecified. Subsurface position is denotedt.bpources and receivers
are contained in the boundadyX of X. Their position is denoted by and X,
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respectively. Measurement of data takes place during a time inf€@Vva[. The

set of (X, X, t) for which data is taken is called traequisition manifold Y; we
assume that coordinatgson Y’ are given. We also assume that the displacement

of the waves is measured for point sourceg at = 0 with all its components,

both at the source and at the receiver. Thus we assume that (after preprocessing)
the data matches the Green’s funct@n(X, X, t) for (X, X,t) € Y.

We refer to the codimension of the set¥dfe X x X x 10, T[ as the codi-
mension of the acquisition manifold, and we denote itblfor example, in marine
data the receivers may lie along a line behind the source, in which case we have
N=3c=10X={XxeR":x3=0},Y ={(X, %,1) e R3xR3x 10, T[: X3 =
X3 = X» — %> = 0}, so the data is a function oh2- 1 — ¢ variables. From this
data we try to determine a function nfvariables; hence there is a redundancy in
the data of dimension — 1 — c.

Our approach follows the work of Beylkin [2, 3] and other authors (see the ref-
erences below), applying microlocal analysis to the seismic inverse problem. Mi-
crolocal analysis and the theory of Fourier integral operators are described in the
books by Hormander [16, 17, 18], Duistermaat [10], and Treves [30, 31]. Beylkin
[3] considered the seismic inverse scattering problem in acoustic media with con-
stant density. He modeled the data using the Born approximation, where the scat-
tering is linearized in the medium coefficients. The medium perturbatigr)
acts as a distribution of scatterers superimposed on a smooth background medium
c(x). Given the background mediun{x), an operator was given to reconstruct
dc(x) microlocally from ann-dimensional subset of the data (from data that is a
function of n variables). This was done under certain conditions on the rays. In
particular, the situation where the wavefronts form caustics was excluded.

When the data is redundant in the sense that the available data is a function
of more tham variables, then the data can be seen as a famity-dimensional
datasets, where eachdimensional subset in the family has a fixed value of some
coordinate, which we refer to &in terms of acquisition variables, this would be
the collection of offset coordinateés— X). The result of the inversion, let us call
this the reflectivityr (x, e), should not depend om This is the criterion that must
be used to determine the background medium from the data; see, for example,
Symes [28]. In summary, under the assumptions made by Beylkin [3], there is
microlocally an invertible map that maps seismic data to a reflectivity function
r (X, e), of which the singular part should not dependeon

In this paper we will generalize the results of Beylkin and Symes in two direc-
tions. First, we remove the restriction that there cannot be caustics. Such a trans-
formation from data to a reflectivity function(x, e) was previously not defined
for data in the neighborhood of a caustic from the scattering point, even in acoustic
media. Second, we consider general elastic media instead of acoustic media. We
decouple the system into scalar equations (see Taylor [29], Ivrii [19], Dencker [9])
and apply Fourier integral operator techniques to take into account the situation
where the wavefronts form caustics. We give results for all orders.
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The fact that we consider general elastic media makes the result technically
more complicated and may make it more difficult to see some of the essential ideas
that can also be applied to the acoustic case. On the other hand, there are several
good reasons why the results are particularly useful in elastic media. For instance,
caustics form “instantaneously” in elastic media; they may even occur in constant-
coefficient media. Also, for elastic media the dependence of reflection coefficients
on the scattering angle is more complicated, and it is more important to use this
information in the inversion of seismic data.

The data is modeled in two ways. In Section 3 we assume that the medium
consists of different pieces with smooth interfaces between the different pieces.
The medium parameters are assumed to be smooth on each piece, and smoothly
extendable across each interface, but they vary discontinuously at the interface.
We discuss how to model the high-frequency part of the data using Fourier inte-
gral operators, following the approach of Taylor [29]. In this way we construct a
generalization of the Kirchhoff approximation. In Section 4 we discuss the Born
approximation. This is essentially a linearization where the medium parameters
are written as the sum of a background medium and a perturbation that is assumed
to be small. It is assumed that the background is smooth and that the perturbation
contains the singularities of the medium.

The main result is the characterization of seismic datain Theorem 7.1. The mul-
timodal data can be written as an invertible Fourier integral opetd{gy acting
on a “reflectivity” distributionr (X, €), that is, a function of subsurface position
x and the additional variablke essentially parameterizing the scattering angle and
azimuth. The position of the singularitiesrgfy (X, €) does not depend am In the
Kirchhoff approximation for elastic media the functiogy (X, €) equals to highest
order Ryn (X, e)||%i;||8(zn(x)), whereRyn (X, €) is the appropriately normalized

reflection coefficient for the pair of elastic modég, N), and|| % 18(z, (X)) is the
singular function of the interface. For the Born approximatiqgy (X, €) is given
by pseudodifferential operators that take into account the radiation patterns acting

on the medium perturbation.

The result is new even for acoustic media. In that case the coordinza
be chosen as scattering angle and azimuth. For acoustic media such a map has
been proposed in the geophysical literature to highest order only and when the
acquisition point is not at a caustic from the scattering point; see Xu, Chauris,
Lambaré, and Noble [32].

The new step in the proof that is needed to deal with the presence of caustics
is given in Section 5. The coordinagds a priori only defined on the co-isotropic
subset’ C T*Y’\0 that contains the wavefront set of the data (the subgét Ten
Kroode, Smit, and Verdel [21]). To construct an invertible Fourier integral operator
from data to the functionyy (X, €), the coordinate has to be defined on an open
part of T*Y” \ 0. This is done in Lemma 5.1, where we construct an extension
of the coordinate functioe from £ to an open neighborhood af in T*Y’ \ 0.
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The extension is not unique. In Xu et al. [32] the choice of the extension is made
implicitly by using the fact that, given the scattering poigtthere is a locally
diffeomorphic map from the source and receiver coordingteg) € 9X x 94X
to the dip and the scattering angle/azimuth (in the notation of Section 5 given by
(&/1€1l, ©), assuming that the acquisition points are not at a caustic from

The results hold microlocally away from points in the cotangent spaseé\ 0
that violate our assumptions 1 to 5, introduced in the main text. The assumptions
exclude certain degenerate ray (bicharacteristic) geometries. For example, assump-
tions 1, 2, and 3 exclude rays that go through a singularity of the slowness surface,
rays tangent to an interface, and direct rays from source to receiver, respectively. In
general, the setaly’, n') € T*Y’\ 0 where the assumptions are violated has lower
dimension than the dimension ®fY’ \ 0. The data associated to sugh, ") can
be muted using a pseudodifferential cutoff.

As a consequence of Theorem 7.1, we obtain results about the reconstruction
of the medium parameters. Given the medium above the interface the function
run (X, €) and hence the position of the interface and the reflection coefficients can
be reconstructed by acting with the inverdg, on the data; see Corollary 7.3.

For the Born approximation a similar result holds, but an inverse is also obtained
directly in Theorem 4.5.

When the data is redundarmtgufficiently small) there is in addition a criterion
to determine whether the medium above the interface (the background medium in
the Born approximation) is correctly chosen. The position of the singularities of the
functionryn (X, €), obtained by acting with—lh;,l“ on the data, should not depend
one. There exist pseudodifferential operat®n(y’, Dy) that, if the medium
above the interface is correctly chosen, annihilate the data; see Corollary 7.4. This
allows one to do differential semblance optimization [28] in elastic media with
caustics.

We discuss some of the literature on this subject. There have been many pub-
lications about high-frequency methods to invert seismic data in acoustic media.
The reconstruction of the singular component of the medium coefficients in the
Born approximation, without caustics, has been done in the papers by Beylkin
[2, 3]. Bleistein [5] discusses the case of a smooth jump using Beylkin’s results.
It has been shown by Rakesh [26] that the modeling operator in the Born approx-
imation is a Fourier integral operator. Hansen [13] studied the inversion in an
acoustic medium with multipathing for both the Born approximation and the case
of a smooth jump. Ten Kroode et al. [21] also treat the case of seismic imaging in
the presence of multipathing. They discuss in more detail the assumptions (most
importantly Assumption 5(ii) below) that are made about the geometry of the rays
underlying the scattering. Stolk [27] discusses the case when Assumption 5(ii) is
violated. Nolan and Symes [25] discuss the imaging with different acquisition ge-
ometries. The article by Symes [28] discusses the reconstruction of the background
medium in the Born approximation.
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The mathematical treatment of systems of equations, such as the elastic equa-
tions, in the high-frequency approximation has been given by Taylor [29]. This
fundamental paper also discusses the interface problem. Beylkin and Burridge [4]
discuss the imaging of seismic data in the Born approximation in isotropic elas-
tic media under a no-caustics assumption. De Hoop and Bleistein [14] discuss
the imaging in general anisotropic elastic media, using a Kirchhoff-type approxi-
mation. The Born approximation in anisotropic elastic media allowing for multi-
pathing is discussed by De Hoop and Brandsberg-Dahl [15].

An overview of the paper follows. In Section 2 we discuss the propagation of
waves in smooth elastic media. First, we discuss how asymptotically the elastic
system can be decoupled by conjugating with appropriately chosen pseudodiffer-
ential operators (a technique that is common in mathematics but not in the seismic
literature). Then we discuss the construction of asymptotic solutions for the de-
coupled equations using Fourier integral operators. In Section 3 we discuss the
reflection and transmission of waves at a smooth interface. We explicitly construct
Fourier integral operators describing reflected and transmitted waves. These so-
lutions were already discussed but not explicitly constructed by Taylor [29]. Thus
we prove directly the validity of the Kirchhoff approximation, which is not obvious
from, for example, De Hoop and Bleistein [14]. In Section 4 we discuss the mod-
eling and inversion of seismic data in the Born approximation. This is important
both in its own right and for the reconstruction problem if we model using a smooth
jump. We give a comprehensive presentation for the case of general, anisotropic
media with general acquisition geometry. We discuss in detail the assumptions that
are needed. In Section 5 we characterize the geometry of the wave front set of the
data. Under the assumptions of Section 4 this set is contained in a co-isotropic sub-
manifold £ of the cotangent spade'Y’\ 0. We discuss the extension of symplectic
coordinates oL to a neighborhood of in T*Y’\ 0.

In Section 6 we establish microlocally a correspondence between the Kirchhoff
approximation and the Born approximation. After the preparations of Sections 2
through 6, the derivation of our main result in Section 7 is relatively simple. We
discuss a characterization of seismic data and some consequences, in particular,
the reconstruction of the position of the interface and the reflection coefficients
given the medium above the interface. Finally, we construct pseudodifferential
operators that annihilate the high-frequency part of the data. In principle, these can
be used for the reconstruction of the smoothly varying medium parameters above
the interface (or of the background medium in the Born approximation).

2 Propagation of Elastic Waves in Smoothly Varying Media
2.1 Decoupling the Modes

The elastic wave equation is given by

02 0 0 _ .
(2.2) (,06” prei 8—chi,-k| 8—xk) (displacement = (vol. force density; .
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Herep(x) is the volume density of mass angl (x) is the elastic stiffness tensor,
andi, j,k,1 =1,2,...,n.

In order to diagonalize this system, thus decoupling the modes of propagation,
it is convenient to remove thedependent coefficient in front of the time deriv-
ative. Thus we introduce the equivalent system

(2.2) Piu = fi,
where
1
(2.3) u = /p(displacement, fi = —(vol. force density; ,
NG
and
92 d Ci 0
(2.4) Pi = 8ii— — % Gk % | Jower-order terms

ot2 3Xj P OXk

is the partial differential operator. Here we use th#& smooth and bounded away
from zero. Both systems (2.1) and (2.2) are real and time-reversal invariant, and
satisfy reciprocity.

We describe how system (2.2) can be decoupled by transforming it with ap-
propriate pseudodifferential operators; see Taylor [29], Ivrii [19], and Dencker
[9]. The goal is to transform the operatBy by conjugation with a matrix-valued
pseudodifferential operat@(x, D)im, D = Dy = —i%, to an operator that is of
diagonal form modulo a regularizing part,

(25) QX D)yi Pi(x, D, DYQ(X, D)in = diag(Pu (X, D, D)mn ,

M,N € {1,2,...,n}, D = —i%. Here the indicesM and N denote the mode

of propagation. In fact, for the construction of Fourier integral operator solutions
as in the scalar case, it is sufficient to transform the partial differential operator to
block-diagonal form, where each of the blodRg (x, D, D;) has scalar principal
part (proportional to the identity matrix). In this case we will use the indides
and N to denote the block, and we will omit indices for the components within
each block. Let

(2.6) um = QX D)yiti,  fu = Q(x, D)yt fi..
The system (2.2) is then equivalent to the uncoupled equations
(27) PM (X, D, Dt)UM = fM .

The time derivative inP; is already in diagonal form; hence, we only have to
diagonalize its spatial part,

9 Cij 0
2 AM ot

(X, D) =—
Al ( ) o p O%
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So we have to findQj and Ay such that (2.5) is valid with?; and Py replaced
by A andAy. The operatoPy is then given by

2

d
Pu(x, D, Dy) =

" 2+AM(X D).

Given the properties of stiffness, the principal symbﬁ)rln(x, g)of Ay(x, D)is
a positive symmetric matrix, so it can be diagonalized by an orthogonal matrix. On
the level of principal symbols, composition of pseudodifferential operators reduces
to multiplication. Therefore, we Ie@p””(x, £) be this orthogonal matrix, and we

let A"(x, &) be the eigenvalues af"™"(x, &) so that

(2.8) QU (x, £) LA™ (x, £) QNN (X, &) = diag AN (X, £))mn -

The principal symboRQP"(x, £) is the matrix that has as its columns the orthonor-
malized polarization vectors associated with the modes of propagation.

If the multiplicities of the eigenvaluea®"(x, &) are constant, then the prin-

cipal symbolQP"(x, £) depends smoothly ofx, £), and microlocally equation
(2.8) carries over to an operator equation. Taylor [29] has shown that if this
condition is satisfied, then decoupling can be accomplished to all orders, where
each block corresponds to a different eigenvalue. In fact, he proved the following
slightly more general result.

LEMMA 2.1 (Taylor) Suppose the pseudodifferential operatqg, @, D) of order
0is such that

Q(x, D)yt A(X, D)t Q(X, D)y =

A(l)(X, D) 0
ax, D ,
( 0 A(z)(x, D)>MN + ( )MN

where Aq) (X, &) and Ay (X, §) are homogeneous of ord® and aXx, §)un is
polyhomogeneous of ordér Suppose the spectra ofiAx, £) and Ay (X, &) are
disjoint on a conic neighborhood of sore), &) € T*X \ 0. Then by modifying
Q with lower-order terms, the system can be transformed such that

(X, D) 0 . .
ax, D)mn ( 0 an(x.D)) + smoothing remainder

microlocally around(xo, &o).

This implies that if the multiplicity of a particular eigenvalég," (x, &) is con-
stant, then the system can be transformed such that the part related to this eigen-
value decouples from the rest of the system modulo a smoothing remainder. In this
work we will assume that at least some of the modes decouple (microlocally). This
is stated as Assumption 1 below. At that point we will also discuss whether this
assumption is satisfied in relevant cases.
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%n
-7, at

(a) CotangentByy"(x, 1) = 1 (b) Tangent:—aigm

BU"(x,r16)=1

FIGURE 2.1. (a) Section of a slowness surface (the characteristic sur-
face) for a transversely isotropic mediumrin= 3 dimensions. (b) Set

of velocities associated to the slowness surface in (a). Note the caustics
that occur due to the fact that one of the sheets is not convex.

We give an alternative characterization of the quantities
AP (x, £) and QN(X, &).
The valueg = +,/ A’,f,ﬁi”(x, &) are precisely the solutions to the equation
(2.9) detP’™(x, £, 7) = 0.

The multiplicity of AP'"(x, £) is equal to the multiplicity of the corresponding root
of (2.9). The columns oQ'},"(x, &) satisfy

QN € kerPP™M(x, &,/ AP(x, £)) .

SinceP!""(x, £, T) is homogeneous i€, ), one may choose to use the slowness
vector —t % instead of the cotangent or wave vectoin calculations. The set

of —t~%& such that (2.9) holds is called the slowness surface, which can be easily
visualized. A section of the slowness surface for the case of a transversely isotropic
medium in three dimensions is given in Figure 2.1(a). Note that the slowness
surface need not be convex. The multiplicity of the eigenvalues changes at the
points (directions) where the different sheets intersect.

The second-order equations (2.7) clearly describe the decoupling of the orig-
inal system into different elastic modes. In addition, equations (2.7) inherit the
symmetries of the original system. It is easy to see that they are time-reversal in-
variant. The operator®;m (X, D) and Ay (X, D) can be chosen in such a way
that Qim (X, &) = —Qim (X, =) and Ay (X, &) = Au(X,§). ThenQju and Ay
are real. We argue that equations (2.7) also satisfy reciprocity. For the causal
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Green’s functionG;; (X, Xo, t — tp), reciprocity means thab;; (X, Xo,t — to) =

G;ji (X0, X, t — tg). We show that such a relationship also holds (modulo smoothing
operators) for the Green’s functidBy (X, Xo, t — tp) associated with (2.7). The
transpose operata®(x, D)},; (obtained by interchanging, xo andi, M in the
distribution kernelQ;v (X, Xo) of Qim (X, D)) is also a pseudodifferential operator,
with principal symbolQP™(x, £)f,.. As noted before for the principal symbol, it
follows from the fact thaIAﬁ = Aj; that we can choos@ orthogonal, i.e., such

thatQ(x, D)im Q(x, D)y;; = &;j. From the fact that

it follows that microlocallyG), is reciprocal, i.e.Gm (X, Xo, t — tg) = Gm(Xo, X,
t — tg) modulo smoothing operators.

Remark2.2 We already observed that if an eigenvaldfi"(x, £) has constant
multiplicity my > 1, thenuy, is anm-dimensional vector and (2.7) igay x My,

system, with scalar principal symbol. For such a system a microlocal solution
can be constructed in the same way as for scalar systems; see the next subsection.
In this case all kinematic quantities, such as bicharacteristics, phase functions, and
canonical relations, depend only bh Other quantities such ag andQ;y (x, D)

will have multiple components. The Green's functi@r, and its amplituded,,
introduced in (2.20), are theny x my matrices. To simplify notation we do not

take this into account explicitly. However, the reader may check that the results of
this work can be generalized to this case.

2.2 The Green’s Function

To evaluate the Green’s function we use the first-order systerayfothat is
equivalent to (2.7). Itis given by

ad Um \ 0 1 Um 0
@0 5 (%)= (o o) (8)+ (1)
This system can be decoupled also. Bgi(x, D) = /Au(X, D), which is a

pseudodifferential operator of order 1 that exists bec#@ys€, D) is positive def-

inite. The principal symbol 0By (x, D) is given by Bl (x, £) = / A"(x, &).
We then find that (2.10) is equivalent to the following two first-order equations:

a .
(211) (a + iBy (X, D)) Um, + = fM,j:

upon transforming
1 1. dUm
U+ = —Uy £ =iBy(x, D) 1—=,
M = SUm £ 3 m ( ) m

1
(2.12) fye = :I:EiBM(x, D) lfy.
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We construct operatofSy + with distribution kernelGy 4 (X, Xo, t) that solve
the initial value problem for (2.11). Then using Duhamel’s principle we find that

t
Um (X, 1) = / Gwm,+ (X, Xo, t — o) f, +(Xo, to)dXo dtp .
0

It follows from (2.12) that the Green’s function for the second-order decoupled
equation is then given by

1. 1.
(2.13) Gm(X, Xo, 1) = (E'GM,Jr(Xa Xo, t) — E'GM,f(X» Xo, t)) Bum (X0, Dy) L.

The operator$sy . are Fourier integral operators. Their construction is well
known; see, for example, Duistermaat [10, chap. 5]. The singularities are propa-
gated along the bicharacteristics that are determined by Hamilton’s equations gen-
erated by the principal symbol (factor i divided outk B}, " (x, &) of (2.11). These
equations read

aX 0 ; ot

o= ig Bh (X, &), = =1
(2.14) )¢ ; )

9% _ _Bprin _T —0.

a)\‘ :Fax M (X’ s) ) a)\‘ 0

The solution may be parameterizedtbyWe denote the solution of (2.14) with the

+ sign and initial valuexy and&y by (Xm (Xo, &0, t), Em (Xo, &0, 1)). The solution

with the — sign is found by reversing the time direction; in other words, it is given
by (Xm (X0, &, —1), Em (X0, €0, —1)). Observe that the group velocity (the velocity

%—’t‘ of the bicharacteristic) is orthogonal to the slowness surface. Where the slow-
ness surface fails to be convex, caustics may arise instantly from a point source.
An example is shown in Figure 2.1(b).

The canonical relation of the operat8g, - is given by

(2.15) Cwm.x = {(xm(Xo, &0, £1), 1, &m (X0, b0, £1), F B+ (X0, £0); X0, §0)} -

A convenient choice of phase function is described in Maslov and Fedoriuk [23].
They state that one can always use a subset of the cotangent vector components as
phase variables. Let us choose coordinate€igt, of the form

(2.16) (X1, Xo, €3, 7),

wherel U J is a partition of{1, 2, .. ., n}. It follows from theorem 4.21 in Maslov
and Fedoriuk [23] that there is a functi®y (X, Xo, &3, T) such thatlocal\Cy +
is given by

X;,:—aSNH t__asl\/l,+
I

(2.17) 9+ 95y .
§| - ) 50 - - .

X 9Xo
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Here we take into account the fact ti&; , is a canonical relation, which intro-
duces a minus sign fdg. A nondegenerate phase function €@y , is then found
to be

(2.18) dm.+ (X, Xo, 1, 3, T) = Su,+ (X1, X0, §3, T) + (§3, X3) + L.
On the other hand, the canonical relatg _ is given by

CM,* = {(Xa ta _59 —T; Xo, _50) : (X9 ta gﬁ T; Xo, gO) € CM,+} .
Thus a phase function f@y _ is

dm.— (X, X0, 1, 63, T) = —Pm + (X, Xo, T, —=&3, —T) .
We may define the canonical relation 8¢y asCy = Cyu + U Cy.— and a phase
functiongym = ¢m.— if T > 0, andpym = ¢m 4 if T < 0.

We have to assume that the decoupling is valid microlocally around the bichar-
acteristic. In that case theorem 5.1.2 of Duistermaat [10] implies that the operator
Gw = is microlocally a Fourier integral operator of orde%. Hence, microlocally
we have an expression f@y . of the form

(2.19) Gm (X, %o, 1) =
(2~ fAM,i(XhXo, £y, T)EMECOLED gy dr

The factors of 2r) in front of the integral are according to the convention of Treves
[31] and Hoérmander [18].

The amplitudedu 1 (X, Xo, &3, T) satisfies a transport equation along the bi-
characteristicgxy (Xo, &0, £t), Em (X0, &0, £t)). Properties of amplitudes are de-
scribed, for instance, in Treves [31, sec. 8.4]. The amplitude is an element of
Mc,, ® Q¥2(Cy), the tensor product of the Keller-Maslov bundi,,, and the
half-densities on the canonical relatiGgy. If the subprincipal part oAy (X, D) is
a matrix, then the amplitude is also a matrix; see Remark 2.2. The Keller-Maslov
bundle gives a factof wherek is an index, which we will absorb in the amplitude.
So the amplitude should be seen as a function on the canonical relajien co-
ordinatized by(x,, Xo, &3, 7); see (2.16). It is possible to choose a Maslov phase
function with a different set of phase variables, for instagggand notr), where
I'U J is a partition of{1, 2, ..., n} andCy . is parameterized bgx;, Xo, t, £5). In
that case the transformed amplitud@],i(xr, Xo, t, £5) contains a Jacobian factor
to the power, that is,

d(x1, o, €3, 7) |2

(Xj, Xo, 1, &53)
where in the Jacobian both sets of variables are coordinat€san
We will calculate the left-hand side of (2.20). For this purpose, consider the

Green’s functiorGy . (X, Xo, t — to) with t andt, = O fixed. It can be viewed as
an invertible Fourier integral operator, mapping the displacementad, uji—g €

(2.20) | Am (X, Xo, £, E)] = [Am= (X1, X0, £3, T)]

’
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&’ (X), to the displacement dt uj; € D'(X), with phaserM,i(x, Xo, t, £5) and
amplitudeﬁM,i(xr, Xo, t, £5). To the highest order, the energy at titrie given by

/ |Bm (X, D)um, (X, t)|2dX .
Conservation of this quantity is reflected by the relation

Gm,+(1)*Bm (X, D)*Bm (X, D)Gwm, +(t) = Bm, + (X0, Dyy)*Bm,+(Xo, Dxy) ,

where the left-hand side denotes a composition of Fourier integral operators and
* denotes the adjoint. Since the left-hand side is a product of invertible Fourier

integral operators, we can use the theory of section 8.6 in Treves [31]. We find that
to highest order

2

|2m) 4 A = (X7, %o, t, €5)|° = |det

9% ‘ Bwm (%o, &0)
X 67 || Bu(X, &)
The value ofBy (X, &) equals the frequency and is conserved along the bichar-
acteristic. Recall thatxo, &, t) are valid coordinates fo€y . (cf. (2.15)). The
Jacobiar| 72220 | js equal to the factordet—%2—|. It follows that to highest

(X1,%0,t,£3) a(x1,€3)

order

. d(Xo, &0, 1) |2
2.21 A Xr, Xo, £, £7)| = (2n)Y* |det——>— 2
( ) [ Am, +( i» X0 §J)| (2m) 8(X|~, Yo t. 55)
From (2.20) it now follows that

(X0, &0, 1) |7?

2.22 A X, Xo, £3, = 2m)Y* |det———> 2
( ) [Am,£ (X1, Xo, &3, T)| = (27) (% . X0, £.7)

We give our result about the Green'’s function for (2.7), collecting the results of
this section, and using equations (2.12) and (2.22) to obtain a statement about the
amplitude. We will assume that microlocally around the relevant bicharacteristics
the decoupling is valid. Let ChéPy) be the characteristic set &, given by
{(x,t,&, 1) : P(X,&, 1) = 0}. The Green’s function is such that precisely the
singularities offy at Cha(Py) propagate; see Hormander [17, theorem 23.2.9].
Thus we have the following:

Assumptioril. On a neighborhood of the bicharacteristic, the multiplicity of the
eigenvalueA?,"(x, £) in (2.8) is constant.

Let WK( f) denote the wave front section 6f[16, sec. 8.1].

LEMMA 2.3 Suppose that for the bicharacteristics througt( fy) N Char(Py)
Assumptiori is satisfied. Theny is given microlocally, away frord/F( fy,), by

(2.23) Um(X,t) = / Gwm (X, Xo, t —to) fm (Xo, to)dXo dto
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where Gy (X, X, t) is the kernel of a Fourier integral operator with canonical re-
lation Cy and order—12%, mapping functions ofp¢o functions ofx, t). It can be
written as

(2.24) Gu(X, X0, 1) =
@)~ / An(Xi, Xo, €3, T)@MOOLED) g gl

For the amplitudedy (X, Xo, €3, T) We have to highest order

(%0, £, 1) |

(X1, X0, 63, T)|

The implications of Assumption 1 for elastic media depend on which class of
media one is interested in. By a class of media we mean a set of media parame-
terized by a number of (position dependent) parameters. From a physical point of
view, one may be interested in media where the elastic tensor is characterized by
certain symmetry properties.

Isotropic media are characterized by the mass densiand the Lame pa-
rametersh and u. The matrix A}""(x, £) has two eigenvaluesA]™"(x, &) =
%Hgnz with polarization vector proportional to (referred to as the P-mode),

1
(2.25) |Am (X1, X0, €3, T)| = <2n>1/“§|r|—l det

and A"™"(x, &) = %)1£11? with polarization space normal £ (the two S-modes).
Thus this system can be decoupled.

If the matrix A" (x, £) of an isotropic medium is perturbed by a small amount,
then one eigenvalue of the perturbed matrix will be close to the P-eigenvalue of
the isotropic medium, and two eigenvalues will be close to the S-eigenvalue. The
two eigenvalues close to the S-eigenvalue of the isotropic medium will not coin-
cide in general but may coincide for certain valuesxfé). So in elastic media
sufficiently close to an isotropic medium, there will still be a quasi-P mode that
decouples from the other modes, but the two quasi-S modes will in general not
decouple.

The elastic system for generic elastic media has been investigated by Braam and
Duistermaat [6]. The set of singular points is generically of codimension 3 (thus 1
lower than one would expect naively) and is of conical form in the neighborhood
of the singular point. They give a normal form for such systems and investigate the
behavior of its associated bicharacteristics and polarization spaces. In this case the
system cannot be decoupled. However, in a generic elastic medium there cannot be
an open set of bicharacteristics that pass through a singular point, since the singular
points form a set of codimension 3. In this sense the set of bicharacteristics that
have to be excluded is small.

In case the elastic tensor has symmetries it is determined by less than 21 coef-
ficients. The characteristic sets of such media are analyzed by Musgrave [24]. In
this case the singularities can be of different types. For instance, in some classes
of media, such as transversely isotropic media, the determinant factors into smooth
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factors. In that case the multiplicities of the eigenvallaé,g‘(x, &) canvary on a
larger (codimension 2) subset®f X \ 0. Since the bicharacteristics are curves on

a codimension 1 surface, Assumption 1 can be violated on an open set of bicharac-
teristics.

3 Reflection at an Interface:
Microlocal Analysis of the “Kirchhoff” Approximation

A particular way to model the subsurface is to assume that it consists of different
layers that have different physical properties—in our case, the elastic coefficients
Cijki and the density. In this section, we will model the reflection of waves at a
smooth interface between two such layers with smoothly varying medium param-
eters.

The amplitude of the scattered waves is determined essentially by the reflection
coefficients and, implicitly, by the curvature of the interface. It is well known how
to calculate these for two constant-coefficient media and a plane interface (see,
e.g., Aki and Richards [1, chap. 5]). In the case of smoothly varying media, they
determine the scattering in the high-frequency limit; see Taylor [29] for a treatment
of reflection and transmission of waves using microlocal analysis. For the acoustic
case, see also Hansen [13].

Mathematically, the reflection and transmission of waves is formulated as a
boundary value problem. The displacementust satisfy the partial differential
equation and initial conditions. In addition, the displacement and the normal trac-
tion have to be continuous at the interface. Denote the normal to the interface.

The following equations must hold:

Piu = fi away from the interface

(3.1) u=0 fort<O0,
while
p Y2y, is continuous at the interface
(3.2) 9 _ . .
v Gijk 87(’0_1/2“') is continuous at the interface
k

Here, we have the factoys because of our normalization (2.3). We assume that
the source vanishes on a neighborhood of the interface. That this is a well-posed
problem can be shown using energy estimates (see, e.g., Lions and Magenes [22,
sec. 3.8].

The solutions to the partial differential equation with= 0 follow from the
theory discussed in Section 2. The singularities are propagated along the bicharac-
teristics, curves im *(X x R) \ 0, given by

(XM (X07 SO? :tt)a t’ gM (XO’ 507 :l:t)a :FBM (XO’ SO)) .

This is the bicharacteristic associated with Me+ constituent of the solution; see
Section 2. We define a bicharacteristic to be incoming if its direction is from inside
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incoming outgoing (reflected) modes

layer 1

~ " ~interface

/

incdming outgoing (transmitted) modes

FIGURE 3.1. Incoming and outgoing rays.

a layer towards the interface for increasing time. We define a bicharacteristic to be
outgoing if its direction is away from the interface into a layer for increasing time;
see Figure 3.1.

Assume that the incoming bicharacteristic stays inside a layer fren® until
it hits the interface; then the solution along such a bicharacteristic is determined
completely by the partial differential equation and the initial condition. On the
other hand, the solution along the outgoing bicharacteristics is not determined by
the partial differential equation and the initial condition. We will show that the so-
lution along the outgoing bicharacteristics is determined by the partial differential
equation and the interface conditions in (3.2).

Let us consider the consequences of the interface conditions. Assume for the
moment that the interface is locatedkat= 0. We denote’ = (Xg, Xo, ..., Xn—1),
X = (X, %), and similarly foré&. The wavefront set of the restriction af to
Xn = O satisfies

WF(UI |xn=0) =
{(X,t, &, 1) : there isg, such thai(x’, 0, t, &', &, ) € WF(up)} .

It follows that a solution traveling along a bicharacteristic that intersects the inter-
face at some pointx’, 0, t) interacts with any other such solution as long as the
associated values f@ andz in their wavefront sets coincide (Snell’s law). This

is depicted in Figure 3.2.

Depending on the interface coordinateand the interface tangential part of
the slowness-t~1¢’, the number of interacting bicharacteristics may vary. For
large values of-t ¢’ there will be neither incoming nor outgoing modes; for
small values there ameincoming andh outgoing modes. The situation where the
vertical line in Figure 3.2 is tangent to the slowness surface corresponds to rays
tangent to the interface. Such rays are associated with head waves and are not
treated in our analysis. Equation (2.9) implies that the incoming and the outgoing
modes correspond to the real solutigp®f

detR| (X/, O’ g/’ sna T) = O
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FIGURE 3.2. Two-dimensional section of an= 3-dimensional slow-
ness surface at some point of the interface for the medium on each side
of the interface. The slownesses of the modes that interact (i.e., reflect
and transmit into each other) are the intersection points with a line that is
parallel to the normal of the interface. The group velocity, which is nor-
mal to the slowness surface, determines whether the mode is incoming
or outgoing.

This equation hasrreal or complex-conjugated roots. The complex roots corre-
spond to “evanescent” wave constituents. To number the roots we use amuindex

In the following theorem we show that if none of the rays involved is tangent,
there exists a pseudodifferential operator-type relation between the different modes
restricted to the surface, = 0; we calculate its principal symbol in the proof. Let
X — z(xX) : R" — R" be a coordinate transformation such that the interface

is given byz, = 0. The corresponding cotangent vector, denoted byatisfies
T

gi (é) = (g_)z()ilij SJ .
Assumptior2. There are no rays tangent to the interfage= 0 microlocally at
Zz,t, 7, 7).

THEOREM 3.1 Suppose the roots of (2.9) have constant multiplicity and As-
sumption2 is valid microlocally on some neighborhood in(Z’ x R) \ 0. Let
uﬂ(v) be microlocal constituents of a solution describing the “incoming” modes,
and suppose 6, refers to an “outgoing” Green'’s functio2.19) Microlocally,
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the single reflected/transmitted constituent of the solution is given by

UM(M)(X, t) = / GM(M)(X, X(Z),t — to)
(3.3) =0

x 2iDgy(Ruv (2, Dz, DU, (X(2), to)) dz dto

where R, (z, Dz, D) is a pseudodifferential operator of ordér

In the proof we derive the explicit form d®?i"(z, ¢’, 7); see Remark 3.2 be-
low. The mtegraldet AE 97 dZ is the Euclidean surface integral over the surface
z, = 0.

ProOF For the moment we assunzéx) = X, i.e., that we have a reflector at
Xn = 0 and smooth coefficients on either side. We show that at the interface there
is a relation of the type

(3.4) uSit, (X, 0,t) = RS, (x', 0, D, DYuy,, -
We will use the notatiom;..ij = Gijx and also(Cjx)ii = Cij. The partial differen-

tial equation (2.1) reads in this notation

92 92 12
8 — Cik:j] ——— ~“u l.ot. =0.
(:0 il 735 9t2 ikl 3Xj8Xk> (p D+

This equation can be rewritten as a first-order system in the varn@bler the
vectorV, of length 2 that contains both the displacement and the normal traction
(normal to the surface, = const)

p~ Y2, .
(35) Va = ap~Y2u | > i=12...,n,
Crkil = 55—

IXk

in preparation for the boundary value problem (3.1)—(3.2). Heiis,an index in
{1,2,...,2n}. The first-order system then is

oVa
0Xn

whereCyp(X, D', Dy) is a matrix partial differential operator given to highest order
by

- ICab(X, D/, Dt)vb7

i anl Zjn 1(Cnn)i_jlcnq jl % (Cnn)i_|1
2 1 (9 .
qu 1 Bpgiil 3% IXpdXg + péir 5 a2 _ZB 1 3xp Txg CPMii] (Cnn)JI b
Here, bpgii = Cpqil — Zj’kzl Cpnij (cnn)j‘k Cng:ki (We indicated the summations
explicitly because the summations overandq are 12,...,n — 1, while still
je{l2....,n).
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The next step is to decouple this first-order system microlocally, as in Sec-
tion 2.1. This means that we want to find scalar pseudodifferential operators
C.(x, D', Dy) and a matrix pseudodifferential operatay, (x, D’, D;) such that

Cab(X, D', D) = La, (X, D', Dy) diag(C,, (X, D', Dp)) Lo (X, D', Dy) .

The principal symbol€2™(x, &', ) are the solutions fof, of

(3.6) detP!™(x, (¢', &), 1) = 0.

In fact, it suffices for the transformed operator (the matrix diagx, D', Dy)) )

to be block-diagonal with a block for each different real root of (3.6), a block
with eigenvalues with positive imaginary part, and a block with eigenvalues with
negative imaginary part. This has also been discussed by Taylor [29]. Under the
assumptions of the lemma, this situation can be obtained, since when vétying
and r, the multiplicity of a real eigenvalue only changes when the multiplicity
of the corresponding root of (2.9) changes or when two real eigenvalues become
complex.

The number of complex eigenvalues with positive or negative imaginary part
changes only when two real eigenvalues become complex or vice versa. The latter

case occurs only when there are tangent rays and hence is excludedh XHm?2
prin

principal symbolLy, (X, &', 7) (the columns appropriately normalized) is given by
QP]{’/IlrEM)(Xv (5/7 Czr'in<xa 5/7 T))) .
Ginka (—i(&", CL™ (%, &, 7)) Qi X, €, CE (X, €, 1)) |

(The polarization vecto®; v (X, £) can also be defined for compléx. We define
V, =L, D/, Dt);gva. (The index mappingt — M (u) assigns the appropriate
mode to the normal component of the wave vector).

If the principal symbol ofC, (X, &', 7) is real, the decoupled equation for mode
w is of hyperbolic type. It corresponds to an outgoing wave or to an incoming
wave, depending on the direction of the corresponding ray. If the principal symbol
of C,(x, &', 7) is complex, the decoupled operator for mqdés of elliptic type.
Depending on the sign of the imaginary part, it corresponds to a mode that grows in
the n-direction, a backward parabolic equation, or one that decays, a forward par-
abolic equation. The growing mode has to be absent; see, for instance, Hormander
[18, sect. 20.1].

The matrixL,, is fixed up to normalization of its columns. For the elliptic
modes (INCR"(x, &', ) # 0) the normalization is unimportant. For the hyper-
bolic modes the normalization can be such that the ve¢toe L (x, D’, Dt);;Va
agrees microlocally with the corresponding madg.. defined in Section 2. To
see this, assumé, refers to the same mode ag ... In that case there is an invert-
ible pseudodifferential operataf (x, D, D;) of order O such thaV, = Y upy .

Now we can defin&/,, new = wflv,wm. Because/ may depend 0§, this factor
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cannot be directly absorbed In However, sinceV/, qq satisfies a first-order hy-
perbolic equation, the dependencegrtan be eliminated and the factgr! can
be absorbed ifh..

In this proof let the in-modes be the modes for which the amplitude is known,
that is, the incoming hyperbolic and the growing elliptic modes. Denoteg@y
and L(af) the matrixL,, on either side of the interface. We define the 2 2n
matrix L™ such that it contains the columns related to incoming modes duf!bf
andL$, i.e.,

ngﬂ _ (L(l),ln _L(z),m)aw
and definel_g;jt similarly (so, hereu is slightly different). The interface conditions
(3.2) now read
Loutvout+ Lin Vin =0.

au au 'p
If we setR), = —(L° iLk (for the question of whether the inverse exists,

see the remark after the proof), then the part referring to the hyperbolic modes
gives (3.4).

By (3.4) theu$i" are determined at the interface; finding how they propagate
away from the interface is a (microlocal) initial value problem similar to the prob-
lem for G+ above, where now thwe,-variable plays the role of time. The solution
is again a Fourier integral operator, with canonical relation generated by the bichar-
acteristics. It follows that we can ugg . (X, t — to, Xo, &3, T) as a phase function
(taking care thah ¢ J). The amplitudedy 4 (X, Xo, &3, T) Satisfies the transport
equation as before. However, the restriction of the Fourier integral operator to the
“initial surface” x, = 0 so constructed is a pseudodifferential operator that is not
necessarily the identity. Let us assume

B.7) uf(x,t) =
[ G 06,01t =t x. D DU 0%, 0. i o

whereyr (x, D', Dy) is to be found such that the restriction of this representation to
Xn = 0 is the identity. Thet sign is chosen such th&y .. is the outgoing mode.

We can use again section 8.6 of Treves [31] to find that the principal symbol of this
pseudodifferential operator should be

oB X -
; SM (& CENE . 1), 0)|
n

i.e., the normal component of the velocity of the ray, the group velocity. We now

replaceGy, 1 by (the relevant part ofp v, using thatGy = %iGM,Jr Bm(x, D)~1—

2iGwm.— Bm(x, D)~L. Taking this into account, and the fact tHgf}"(x, &) = Fr,

we have now obtained (3.3) for the case that x (no coordinate transformation).
We argue that (3.3) is also true whe¢x) is a general coordinate transforma-

tion. This follows from transforming the equations (3.1) and (3.2} toordinates.

(3.8) y(x, &, 1) =

(x, &, CP&’, r))‘ = ‘



280 C. C. STOLK AND M. V. DE HOOP

To highest order, the symbol of (pseudo)differential operators transforms as

transf 9z !
]// (Zv gs f) = w(x(z)v 8_X é" T) .
Tracing the steps of the proof, we find the following equivalent of (3.4)
(3.9) ufit, (X(Z,0),t) = RY,(Z, 0, Dz, D)UY, (X(Z,0), 1).

When the interface is &, = 0, we can obtain (3.7) ig-coordinates instead of
x-coordinates. Transformin@y anduy back tox-coordinates, we find that for
away from the interface,

w0 = [ Guxx@.t = to) | "2z Dy, Dy
zn=0
out x| .,
X Uy (X(2), to) detE dz dtg.
Here| aza“f-”(z, D,, Dy)| is the transformed version of (3.8). Thus expression (3.3)
follows, with

-1

9 0
R.(Z ¢, 1).

ZM n aZn
sza /7 = - Z7 /’ AL
@0 =[P 0| |

O

Remarl3.2 The principal symboRSP™(z, ¢', 7) that occurs in the proof is simply

the reflection coefficient for the amplitudes. The principal syn®fgl'(z, ¢/, 7) is
obtained by multiplyingR:"™ with the normal component of the velocity of the
ray, given (forz(x) = x) by (3.8). The reflection coefficients satisfy unitary re-
lations; see Chapman [8] and Kennett [20] (the appendix to chapter 5). These
follow essentially from conservation of energy. It follows that the matrix of re-
flection coefficients is well defined and in particular that the inversetffexists.
Chapman [8] also gives a direct proof of the reciprocity relations for the reflection
coefficients.

Remark3.3. We have shown that the reflected/transmitted wave is given by a com-
position of Fourier integral operators acting on the source. In the case of multiple
reflections or transmissions (for instance, in a medium consisting of a number of
smooth domains separated by smooth interfaces), this is also the case (cf. Frazer
and Sen [11]). It follows that microlocally the solution operator describing the re-
flected solutions is itself a Fourier integral operator where the canonical relation is
given by the generalized bicharacteristics (i.e., the reflected and transmitted bichar-
acteristics) and the amplitude is essentially the product of the ray amplitudes and
the reflection/transmission coefficients. The integration avexccounts for the
effects associated with the interface’s curvature.
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4 The Born Approximation

We discuss the modeling and inversion of seismic data in the Born approxima-
tion. The medium parameters are written as the sum of a smooth background and a
singular perturbation. This is important in its own right, and it will also be a moti-
vation for our approach to the model with smooth jumps described in the previous
section.

The Born approximation has been discussed by a number of authors. In the
acoustic case with an allowance for multipathing (caustics), see Hansen [13] and
Ten Kroode et al. [21]. For the acoustic problem with nonmaximal acquisition
geometry, see Nolan and Symes [25]. For the elastic case with maximal acquisition
geometry (and from a more applied point of view), see De Hoop and Brandsberg-
Dahl [15]. We extend their results and give an efficient, novel presentation. Also,
we discuss in detail the different assumptions that are needed for the modeling and
inversion of seismic data.

4.1 Modeling: Perturbation of the Green’s Function

In the Born approximation, one assumes that the total value of the medium pa-
rameterssj, andp can be written as the sum of a smooth background constituent
P, Gijx and a singular perturbatidp, §Giji , viz.,

Cijki + 8Gijki » p+dp.

This decomposition induces a perturbatiorPyf(cf. (2.4)),

We denote the causal Green’s operator associated with (2@)) layd its distribu-
tion kernel byG;, (X, xo, t — tg). The first-order perturbatiodG;, of G;, is derived
by demanding that the first-order term(R;; + 6 P;)(Gjk + 6Gjk) vanish. This
results in the following expression f6G;; (X, X, t):

t
—/ /Gij(f(, Xo, t — t0)8 Pk (X0, Dxy, Diy) Gii(Xo, X, tg)dXo ditp .
0
X

Here,X denotes a source locatiofa receiver location, angh a scattering point.
Because the background model is smooth, the opes@&gprcontains only the sin-
gle scattered field.

We use the decoupled equations (2.7). Omitting the fac@pis(X, Dyg), Q(X,
D;()gll at the beginning and end of the product, we obtain an expression for the
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perturbation of the Green'’s functid®G v (X, X, t) for the pair of modedM (scat-
tered) andN (incident)

t
[ Guix .t - Qo Dl
X

80 92 0 5Cijk|
( p8t2 0Xo,j P OXok

SGun(X, X, t) = —/

0

) Q(Xo, Dyo)inGn (Xo, X, to)dXo dto .

Microlocally we can writeGy, as in (2.24), with appropriate substitutions for its
arguments. FofGy we use in addition the reciprocity reIatic@N (X, X, tg) =

Gn (X, Xo, tg). The product of operatorGy Q(Xo, DXO),\,II oy is a Fourier integral
operator with the same phase(aﬁ and amplltude that to hlghest order equals the
productAm (X, Xo, SJ, 7) Q(Xo, EO)MIISO’], wherego = &(X;, Xo, gJ, 7). Assum-

ing that the medium perturbation vanishes arosrahdX, a cutoff is introduced

for to near 0 and. In the resulting expression, one of the two frequency variables
7 and? can now be eliminated using the integral o%ge(see, for instance, Duis-
termaat [10, sect. 2.3]). In this case the result can be readily obtained by noting
that the integral ovely can be extended to the wholef(the phase is not station-
ary forto outside[0, t]), and then using thaf™, €%~ dty = 278(¢ — 7). The
resulting formula fo Gy is, modulo lower-order terms in the amplitude,

o _3n4l |JHJ14+L N A~
SGuN(K, K, t) = (21) 2 ‘/BMN(Xr, €5, X7, &5, X0, T)

o X~ 8Ci (X
(4.1) X e'q)MN(X’X’t’XO’Sj’sj’T)(wM Nijkl (Rps X, Xo, &5, €5 f)iukl( 0
P (Xo)
L A = Bp(Xo) s
+ wmn:o(Xf, Xiy Xo, §5, &35, T)—O)dxo d&;déjdr.
p (Xo)

Here (see (2.18) for the constructiondgaf, ¢n),
(42) CDMN()}Z, )?’ t7 Xo, §j7 gjv T) = ¢M ()}Z’ Xo, t’ éj? T) +¢N ()?7 Xo, t’ §j7 T) —tt.
The amplitude factor§y,y are given by
(4.3) BMN(),&{, )N(r, Xo, é'j, §J~, T) =
(27[) AM (X| , X0, ";:J, T)AN (X| » X0, SJ? T)

We will refer to the factorsumn:iju andwwn.o as the radiation patterns. They are
given by

(4.4) wmnsijkl (X1 X7, X0, €5, €5, T) = Qim (X0, £0) Qin (X0, £0)é0.j ok »
(4.5) wmn:o(X, Xi, Xo, éj» £5,7) = —Qim (X0, £0) Qin (X0, £0)72,

whereéy = £(X;, %o, £5, T) and& = £(X;, Xo, £5, 7). The scattering is depicted
in Figure 4.1.
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FIGURE 4.1. The scattering cotangent vectors.

We investigate the ma@ciju /o, 8p/p) — 8Gun (X, X, t) induced by (4.1).
We use the notatio@,,, to indicate the subset of the global canonical relaGgn
that is associated to a phase functign (cf. (2.15)).

LEMMA 4.1 Assume that if%, f, £, 7; Xo, &) € Cy,, and(%, T, £, 7: Xo, &) € Cyy,

then&y + & # 0. Then the magscij /o, 8p/p) — §Gun (X, X, t) given by(4.1)

is a Fourier integral operato€’(X) — D’(X x X x 10, T[). Its canonical relation
is given by

Aowmn = {R. X E+T6 & 11x0. 60+ &0)

(4.6) o : o )
(X, £, &, 75 %0, 60) € Cyyy, (X, T, €, 71 X0, &0) € Cyy } -

PROOF. We show thatdyn (X;, X, t, Xo, éj, éj, 7) IS a nondegenerate phase
function. The derivatives with respect to the phase variables are given by

ad . 2 £o Pt
arN = —t(R;, X0, &3, 7) — T(%f, X0, €5, 1) + 1,
0o 2
AMN = _)?j(),ZIA’ XO’ Sjvt) +)2j’
0&;
0o =
~MN = _)?j()zfv XO’ Sj’ T) + Xj’
&5

whereX ; (X, Xo, éj, 7) andX; (X, Xo, éjr) are as defined in (2.17), for the receiver
side and the source side, respectively. The derivatives of these expressions with
respect to the variablg;, X3, t) are linearly independent, sbyy is nondegen-
erate. From expression (4.2) it follows that the canonical relation of this operator
is given by (4.6). By the assumption it contains no elements §ith&, = 0, so it

is continuous as a map(X) — D'(X x X x 10, T]). O

We show that the condition in Lemma 4.1 is violated if and onllif= N
and there exists a “direct” bicharacteristic fromé to 8, —&. From the symme-
try of the bicharacteristic under the transformatior> —£&,t — —t, it follows
that indeed in this case the condition is violated. On the other hand, we have
Bwm (X0, £0) = Bn (X0, &) = %7. If & = —&o, then we must havl = N, because
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Bwm (X0, £0) = B (X0, —&o) and the condition that the eigenvalues in (2.8) are dif-
ferent for different modes. IM = N and&; = —&g, then we have the mentioned
direct bicharacteristic.

4.2 Restriction: Acquisition

The data are assumed to be representabBXyn (X, X, t) for (X, X, t) in the
acquisition manifold. To make this explicit, lgt— (X(y), X(y), t(y)) be a coor-
dinate transformation such that= (y’, y”) and the acquisition manifold is given
by y” = 0. Assume that the dimension gf is 2+ ¢, wherec is the codimension
of the geometry (the 2 enforces “remote sensing”). Then the data are given by the
map

(4.7) y = 8Gun(X(Y, 0), X(Y', 0), t(y', 0)).

It follows that the magsciju /o, 5p/p) to the data may be seen as the composition
of the map of Lemma 4.1 with the restriction operatoyto= 0. The restriction
operator that maps a functioh(y) to f(y’, 0) is a Fourier integral operator with
canonical relation given by, = {(Y, 7 (Y, ¥Y"), ', n") e T*Y' x T*Y : y’' =

0}. The composition of the canonical relatiofng iy and A, is well defined if the
intersection ofA; x Ao mn With T*Y"\ O x diag(T*Y \ 0) x T*X\ O is transversal.

In this case we must have that the intersection@f,n with the manifoldy” = 0

is transversal.

Let us repeat our assumptions and state the final result of this subsection.

Assumptior8. There are no elementy’, 0, ', ") € T*Y\0 such 'Ehat there is a di-
rect bicharacteristic fronix(y’, 0), £(y, 0, n’, n”)) to (X(y', 0), —&(Y’, 0, ', "))
with arrival timet (y’, 0).

Assumptionrt. The intersection of\g vy With the manifoldy” = O is transversal.
In other words,

ay”’ .

% has maximal rank

9(Xo, &0, &0, L, 1)

In the following theorem we parameterize (4.6) by, &, &, f, f) using the
parameterization o€y, given by (2.15). Thus we let = By (Xo, &) and

% = X (Xo, £0, £f) , % = X (Xo, &0, £1)
£ = £ (X0, &0, D), E = &N (X0, &0, £D) .

We suppose thaty' (Xo, £o, &o, €, T), 7 (X0, &0, &0, €, T)) is obtained by transforming
&, %, £+ & & 1) to(y, n)-coordinates.

(4.8)

THEOREMA4.2 If Assumption8 and4 are satisfied, then the operatog.iju (re-
spectively, o) that maps the medium perturbatiéaq / p (respectivelysp/p)
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to the data as a function of y4.7)is microlocally a Fourier integral operator with
canonical relation given by

Aun = {(Y (X, €0, &o. £, T). 11 (X0, &0, &0, £, ©); X0, &0 + &0)

Bwm (X0, é0) = Bn (X, &) = £7, Y (X0, &0, &, £, ©) = 0} .

The order equalgn — 1 + ¢)/4. The amplitude is given to highest ord@n coor-
dinates(y;, nj, Xo) for Amn, wWhere | J is a partition of{1,2,...,2n -1 —c})
by the producBun (Y, 13, Xo)wmn:ijki (Vi » 1. Xo) (respectivelyBun (Y, 1y, Xo)
wmn;o(Y|» 17, X)), Where

(4.10) |Bun (Y, 1, Xo)| =

(4.9)

1
1 1
-3 2

3(Xo, £0, &0, £, )
(X0, Y. Y. 0y, AT)

nt+l4c

%1‘17_2(27'[)_ T a(x7 )?7 t)

dy

det

AT=0.y"=0
Here we define\t = 7 — 7 so that the first constraint i(d.9)readsAt = 0. The
map (Xo, &0, &0, t, ©) = (X0, Y|, ¥, 1, A1) is bijective.

PrRoOOF. The first statement has been argued above. The order of the operator
is given by
K dmX+dimY’
T T 1
where yx is the degree of homogeneity of the amplitude &hds the number of
phase variables. The factor®vn.ijk . wmn;o} are homogeneous of order 2 in the
&- and r-variables; the degree of homogeneity of the fadfgy follows from
(2.22). We find

J+131+2
orderFyn:ijk =2+ <—2 — M + n)

2

+|j|+|5|+1 3n—1-c
2 4

_n—l+c

=0

We now calculate the amplitude of the Fourier integral operator in Lemma 4.1.
The factorwmn:iji is simply multiplicative. Suppose we choose coordinates on
Aowmn to be (R;, &5, %;, &5, £, £, X0), with ultimately ¢ = . Definer = £,
At = 7—1. Using (2.25) and (4.3), we find that the amplitugign (X, Xo, §j, X,

€3, 7) is given by

|Bun (R, €5, %0, X7 &5, )| =

NI

3 (Xo, &0, &0, T, ©)
IR, €5, X, €5, T, Xo, AT)

1 o
Zfz(zn)*Tl det
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The transformation fronix, X, t)- to y-coordinates in the Fourier integral (4.7)
induces an additional factqadeta(’?a’—;"t)rl/z (note that for the Fourier integral op-
erators, it would be more natural to transform as a half-density). The amplitude
transforms as a half-density on the canonical relation, and we obtain the factor

/ !/ !/ 1/2

ISR ARY/RY
(Xp, &5, X, €5, T)

The additional factor2r)~?+9/4 arises from the normalization. We find (4.10).
O

det

Natural coordinates for the canonical relation are given>day§o, £, £, T) such
that By (Xo, £0) — Bn (X0, £0) = 0, Y/ (Xo, &0, &0, £, f) = 0. There is a natural density
directly associated with this set, the quotient density. The Jacobian in (4.10) reveals
that the amplitude factdBun (Y|, 75, Xo)| is in fact given by the associated half-
density times

oo -1/2
ey LR
4 oy
If ¢ = 0 and there are no rays tangent to the acquisition manifold, that is,
8 /!
(4.11) rank—Y _ =2,
at, )

then a convenient way to parameterize the canonical relation is by using the phase
directionsa = &o/||%ll, @ = &o/||l&|| € S"~* and the frequency.

4.3 Inversion

Let us now consider the reconstruction(@cijx)/p, (6p)/p) from the data.
We simplify the notation and collect the medium perturbations into

o n (2.2),
PP

The forward operatoFun:ijki » Fmn:o) in the Born approximation is represented
by FM N:a-

Let us consider data from a single pair of mod®s, N) (the general case is
discussed at the end of this section). The standard procedure to deal with the fact
that this inverse problem is overdetermined is to use the method of least squares.
Define the normal operatdy..s as the product oFyn., and its adjoimF,i;,N;a,

(4.12) NMN:ag = Fiin.o FMng

(no summation oveM, N). If Nun.qp is invertible (as a matrix-valued operator
with indicesa), then

(4.13) Fune = (NMNDo5 Flins
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(no summation oveM, N) is a left inverse ofFy ., that is optimal in the sense of
least squares.

The properties of the composition (4.12) depend on thogeg§. Lety and
wx be the projection mappings afyn to T*Y\ 0 andT*X \ 0, respectively.
We will show that under the following assumptidiun.s is a pseudodifferential
operator, so that the problem of invertitjin.s reduces to a finite-dimensional
problem for eachix, &) € wx(Amn)-

Assumptiorb. The projectionty of Ayn onT*Y’\ 0 is an embedding; i.e., itis

() immersive,
(i) injective, and
(iii) proper.

This assumption appears in Guillemin [12], and is sometimes referred to as
the Bolker condition. It implies that the image ©§: is a submanifold( say, of
T*Y’\ 0. Let us discuss these requirements, starting with the first. Using\that
is a canonical relation, we have the following:

LEMMA 4.3 The projectionzy: of Ayy on T*Y’ \ 0 is an immersion if and only
if the projectionty of Ayn on T*X \ 0is a submersion. In this case the image of
v, is locally a co-isotropic submanifold of*’ \ 0.

PrRoOOF. This is a property of Lagrangian manifolds. It follows from lem-
ma 25.3.6 in Hormander [18]. We give an independent proof.

The symplectic formex andoy on T*X \ 0 andT*Y’ \ O, respectively, can
be viewed as 2-forms oAy . Because\ yy IS a canonical relatiorsy: = ox on
Amn, and in particular ranky: = rankoy. Now considetry. Clearly, rankry =
2n if and only if Ty is submersive.

Considermy.. If this projection is immersive, then the image has dimension
n 4+ m, assuming dinT *Y’ \ 0 = 2m (in this proofm = dimY’ = 2n — 1 — ¢).
Then ranky is at least B, so it must be equal tor2 On the other hand, if
rankoy: = 2n, then the tangent space 8fyn at that point is given by the span of
a set vectors of the form

{(U17 w1)9 (UZv wz)v LI ] (U2na w2n), (07 w2n+1)7 (09 w2n+2)’ ceey (O’ wn+m)} .

Thew;j,i € {1, 2,...,2n}, must be linearly independent because @ank= 2n.
Forw;,i < 2n, andwj, j > 2n, we haveoy (w;, wj) = 0, so thew; are linearly
independent of they;. Thew;, i > 2n, must be linearly independent, because
(0, wj) are basis vectors for the tangent spacéfpy. So if rankoy: = 2n, then
Ty 1S an immersion. Because ramk = 2n in that case, the image is locally a
co-isotropic submanifold. O

1Equation (4.12) is for the case where one minimizes the difference with the3@agg in
L2 norm||sGmn — Fum N:« 9« . It can easily be adapted to the case where one minimizes a Sobolev
norm of different order or a Weighteld2 norm. This would introduce extra factors in the amplitude.



288 C. C. STOLK AND M. V. DE HOOP

As a consequence, if part (i) of Assumption 5 is satisfied, then we can use
(X, &) € T*X \ 0 as (local) coordinates oy . In addition, we need to param-
eterize the subsets of the canonical relation giverphy) = const; we denote
such local coordinates & The new parameterization ofyy is (identifying Xo
with x)

(414) Aun = {(y/(xv sse)v U/(X,S,eﬁ (Xv é))}

The results do not depend on the precise definitios.oAs noted before, if
the variablegt, ) can be solved from the second constraint in (4.9) (cf. equation
(4.11)), thenA yn can be parameterized usifg, @, @, t), where(a, &) are phase
directions. In that casé&, &, e) should be related by a coordinate transformation
to (X, @, @, t). In acoustic media (whenéou = ||&|) a suitable choice is the pair
scattering angle/azimuth given by

—a+a
2 sin(arccosa - @)/2)
(cf. Burridge and Beylkin [7]). The azimuth, the second component, defines to-
gether withé the plane spanned b, @). It is not very difficult to show that in
elastic media the scattering angle (the first component) can be used as coordinate
when the slowness sheets are convex, but not always when one of the slowness
sheets fails to be convex.

(arcco$& - @), ) €10, [ x S"?

Remarkd4.4. We show that the first part of Assumption 5 implies t?\%ﬁ (X, &0) +

35“ (x, &) # 0; in other words, the group velocities at the scattering point do not
add up to 0. We have seen in Theorem 4.2 thgty may be parameterized by
(X, &o, &, £, ©), where(&g, &) are such that

Bwi (X0, £0) = Bn (X0, éo) = %7
(and we have the additional constrayftxo, £, &, f, ) = 0). The projectionrx

is given by(x, éo + &). Consider tangent vectors toy N given by vectors, and
vz, They must satisfy

8 B B -
(4.15) Uy g 0% B0 = g, 5 O, B =
So if%(x, £o) = 3BN (X, é0), then (4.15) implies that;_ + vg,) .ﬁ*BM (X, &) =
0, so that the prOJectlon aflpyn on T*X \ O is not submersive. (: = 0 and
rankay”/d(f, T) = 2 (no tangent rays), then the constrafit= 0 mabee used to
solve for the parametefsandf and (4.15) is the only condition o, &p). In that

casem(x £0) # — dBN (x, &) implies that the projection is submersive. In other

cases the set afo, 50) |s in general a smaller subset®f X \ 0 x TS X\ O.
Let us now discuss the second and third parts of Assumption 5. The second part

is a well-known condition; see Hansen [13] and Ten Kroode et al. [21]. Essentially
the condition is that there are no two different singularitieg irmapped to the
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same position inT*Y’ \ 0. For an analysis of the case where this condition is
violated, see Stolk [27].

The definition ofproper is that the preimage of a compact set is a compact
set. So assume we have a compact subsdt*df \ 0. The elements of\ yy
correspond to those “points” where the source and receiver rays intersect. The set
of these points can be written as a set on which some continuous function vanishes.
Therefore this set is closed. Itis also bounded, and hence it is compact. So the third
part of the assumption is automatically satisfied.

When constructing the composition (4.12) there is a subtlety that we have to
take into account, namely, that the linearized forward operator isroidsolocally
a Fourier integral operator. To make it globally a Fourier integral operator, we
apply a pseudodifferential cutoff(y’, Dy/) with compact support. Due to the
third part of Assumption 5, the forward operator is then a finite sum of local Fourier
integral operators.

THEOREM 4.5 Let ¥ (Y, Dy) be a pseudodifferential cutoff with conically com-
pact support in TY’\ 0 such that for the set

(4.16) {(y',n"; X0, &0) € Amn : (Y, 1) € suppy'}.
Assumption8, 4, and5 are satisfied. Then
(417) FI\#;IN;/SW(y,a Dy/)*w(y/a Dy’)FMN;O(

is a pseudodifferential operator of order-n 1. Its principal symbol is given by

1
N g (X, §) = 72" / [y (Y (X, & €, 17 (X, & e)*r™*

-1

- (X, X, t
X WuN;g (X, &, ©wmN;a (X, &, €) det%
a(X, &, &o, T, T
(4.18) ‘deta o SO” A) e
(Xv %-’ € y ’ T) Atr=0,y"=0

wheret = 7(X, &, €).

PROOF. We use the clean intersection calculus for Fourier integral operators
(see, e.g., Treves [31]) to show that (4.17) is a Fourier integral operator. The canon-
ical relation ofFy ., is given by

ADN = {(X7 ";:7 y/9 77/) : (y/v ’7/’ X, 5) S AMN} .
LetL = A}y X Amn andM = T*X\ 0 x diag(T*Y"\ 0) x T*X \ 0. We have
to show that the intersection &fN M is clean, i.e.,
(4.19) L N M is a manifold
(4.20) TLANTM=T(LNM).
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It follows from Assumption 5(ii) that. N M must be given by

(421) LOAM= {(X’ S’ y/7 77/3 y/’ 77/, X, S) : (y/’ n/; X, "i:) € AMN} .

BecauseA vy is @ manifold, this set satisfies (4.19). The property (4.20) follows
from the assumption that the magp is immersive. The excess is given by

E=dmT*X\0x T*Y'\0Ox T*Y'"\0x T*X\ 0+dim(L N M)
(4.22) —dmL —dimM=n-1-c.

Taking into account the pseudodifferential cutgffy’, Dy), it follows that (4.17)
is a Fourier integral operator. The canonical relation

AK/INOAMN of F&N;ﬂw*wFMN;a

is contained in the diagonal df*X \ 0 x T*X \ 0, so it is a pseudodifferential
operator. The order is given ly/2 + 2 ordeXFyn.,) = n — 1 (note that drops
out).

We writey (y', Dy)*y (y', Dy) = 3 x V(Y. Dy), where the symbolg V) (y’,
n’) have small enough support, so that the distribution kerngl'dfy’, Dy) FMN:«
can be written as the oscillatory integral

i / / _n-l-c 1 i ro
(4.23) x"(Y,Dy)Funa (Y. X) = 2r)" " & 2 fx(”(y.,m,x)
3 Bran (Y2 1y X)W (Y] 7y X)& ST X)+05.950)

wherey O (y[, 7. %) = Oy, y5(yi. 15, %), 1y (¥} m5. X), ny). We can write
DU YL X, 1) = SN X 1) + (. Y,) (cf. (2.18) and (4.2)). We do not
indicate the dependence dfoni explicitly. The distribution kernel of the normal
operator is then given by a sum of terms

f(ll'(}”, Dy)Fun;p (Y X)) (W (Y, Dy) Frun:a (Y, Xo))dy'

=@y f x V(Y1 16,3+ X0)
i

X Bun (Y s 03 X)Bun (Y) > 10,3> X0 wmn:g (Y 13 X)wmnza (Y] > 10,35 X0)
x ei(S(vifN(y{,Xo,ngyj)—S(\VN(YI,X,nﬁ)+<n6,3,y3>—<n3,y3)) d’?é),J d’?i] dy’ .

We now apply the method of stationary phase and integrate out the varygbles
andny, ;. For the remaining variables we use

SUN Y X0, 1) — S (Y] X, 1) = (X = Xo, E(Y}, 1, %0)) + O(IX — Xo[?) .
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Thus we find (to highest order)

3n—

@r) "7 > / XV 05, 02 Bun (Y 1 ) Pwmn:p (Y] 15, X)
i

X wMN;ot(yI/a nij» X)é‘(X7xo’S(yi’n,‘]’X0)> dniJ dyl/ .

We now change variables, y;, n;) — (X, &, e) and use (4.10). We sum over
and arrive at

(2m)~" , ) o 4
NMN;/SO((X’ XO) = 16 /|W(y (X’Sve)7n(x’$’e))| T
_ AKX, X, 1)
a0, £ S, €, ©)det S
(424) > detaa(xa SOv go;/t’At) é(X*XOf) d%‘ de
(x,§,eY", A1) Ar=0,y"=0
It follows that the principal symbol oy . s, is given by (4.18). O

So far we have focused on inversion of data from one pair of moklesN).
Often data will be available for some sub&aif all possible pairs of modes. Define
the normal operator for this case as

Neg = D FinaPung= D Nunas-
(M,N)eS (M,N)eS
If all the Nun.qp are pseudodifferential operators, thdgy is also a pseudodiffer-
ential operator. A left inverse is now given by

N(;ﬂl i

WhereF/;‘ is the vector of Fourier integral operators contairﬁm\,;ﬁ, (M, N) € S.

5 Symplectic Geometry of the Data

In the previous section we saw that the wavefront set of the modeled data cannot
be arbitrary. This is due to the redundancy in the data: In the Born approximation
the singular part of the medium parameters is a function wdriables, while the
data is a function of 2 — 1 — ¢ variables. This redundancy is employed in the
parameter reconstruction and is important in the reconstruction of the background
medium (or the medium above the interface in the case of a smooth jump) as well.
This will be explained below.

Consider again the canonical relatiar, . Suppose Assumption 5 is satisfied.
In this section we will denote bg the map

Q: (X &0 (Y(X£&.0),7XE&,e): T"X\0x E— T*Y'\0
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s - — === ===

AmN
Tx (submersion}/ \ny (immersion)

’
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FIGURE 5.1. Visualization of the symplectic structure afyn (cone
structure omitted).

introduced above (4.14). This map conserves the symplectic fofimiXf, 0. That
is, if wy, = 9(Yy’, n")/dx and similarly forwg, andwg, we have

GY’(ins jo) = O'Y’(wéi s wéfj) = Oa

oy (wg , wy) = bij ,
(5-1) UY’(was wxj) = UY’(wei, ng) = UY’(weis wej) =0.
The(x, &, e) are “symplectic coordinates” on the projection/ofjy ontoT*Y’\ 0,
which is a subsef of T*Y’\ 0.

The imagel of the map2 is co-isotropic, as noted in Lemma 4.3. The sets
(X, &) = const are the isotropic fibers of the fibration of Hormander [17] described
in theorem 21.2.6; see also theorem 21.2.4. Duistermaat [10] calls them character-
istic strips (see theorem 3.6.2). We have sketched the situation in Figure 5.1. The
wavefront set of the data is containeddrand is a union of fibers.

Using the following result, we can extend the coordingteg, e) to symplectic
coordinates on an open neighborhood’of

LEMMA 5.1 Let £ be an embedded co-isotropic submanifold &iyT\ 0 with
coordinateg(x, &, e) such that(5.1) holds. DenoteC > (Y, n') = Q(X, &,€). We
can find a homogeneous canonical map G from an open part@X & E) \ 0to
an open neighborhood af in T*Y’\ 0 such that Gx, e, &, ¢ = 0) = Q(X, &, €).

PrROOF. The g can be viewed as (coordinate) functions £n We will first
extend them to functions on the whole'Y’ \ 0 such that the Poisson brackets
{&, g} satisfy
(5.2) {6.}=0, 1<i,j<m-n,
wherem = dimY’ = 2n—c—1. This can be done successivelyépre,, ..., €nn
by the method that we describe now; see the proof of theorem 3.3 in Treves [31,
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chap. 7] or the proof of theorem 3.5.6 in Duistermaat [10]. Suppose we have ex-
tendede;, e, ..., q; we extende ;. In order to satisfy (5.2B.; has to be a
solutionu of
Heu =0, 1<i<l,

whereHg is the Hamilton field associated with the functi@nwith initial condi-
tion on some manifold transversal to tHg . For any(y’, n’) € £ the covectorsd,
1 <i <, restricted toTy L are linearly independent, so tl are transver-
sal to £, and they are linearly independent modillo So we can give the initial
conditionu|, = .1 and even prescribe on a larger manifold, which leads to
nonunigueness of the extensians

We now havem — n commuting vector field$lg that are transversal 6 and
linearly independent on some open neighborhood ofThe Hamilton systems
with parameters; read

y;  de an; CI-I
_— = — /’/’ e s s 1<|’<m—n
b o7 y,n) 3e 8yj/(y n) =IJ=

Let G(x, g, &, €) be the solution fory’, n") of the Hamilton systems combined
with initial value (y', n") = Q(Xx, &, ) with “flowout parameters¢. This gives a
diffeomorphic map from a neighborhood of the set 0in T*(X x E) \ 0 to a
neighborhood of in T*Y’\ 0. One can check from the Hamilton systems that this
map is homogeneous.

It remains to check the commutation relations. The relations (5.1) are valid for
anye, because the Hamilton flow conserves the symplectic form*ofi \ 0. The
commutation relations fai(y’, n")/de; follow, using tha(y’, n")/dei = Hg. O

Let Myn be the canonical relation associated to the @agpe just constructed,
i.e., Mun = {(G(X, €&, ¢€); X, 6 &, ¢)}. We now construct a Maslov-type phase
function for My that is directly related to a phase function fhg,n. Suppose
(y;. 11’5, X) are suitable coordinates faryy (¢ = 0). Fore small, the constart-
subset ofMyn can be coordinatized by the same set of coordinates; thus we can
use coordinategy,, 'y, X, €) on Myn. Now there is a functiodun (y; . X, 77, €)
(see theorem 4.21 in Maslov and Fedoriuk [23]) such Mgty is given by

ISuN , 0Sun ISuN ISuN
T, M T ey ST T Tax 8T e
Thus a phase function foMyy is given by

(5.3)  Wmn(Y. X, eny,€) = Sun(y, X, 0y, €) + (13, Y)) — (€, €).
A Maslov-type phase function fok yy then follows as

/ / / 8S\A !/
e=0
= Sun(Yi. 1. X, 0) + (0, y3) -

y) =

de
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6 Modeling: Joint Formulation

In this section we match the expression for the data modeled using the smooth
jump (Kirchhoff) approximation to the expressions for the Born modeled data we
obtained in Section 4. The smooth medium above the interface plays the role of
the background medium in the Born approximation.

From Theorem 3.1 it follows that reflection of an incidéMitmode with cov-
ector&, into a scatteredvi-mode with covectog, can take place if the frequen-
cies are equal ané + & is normal to the interface. In other words, + &
must be in the wavefront set of the singular function of the interfa¢zg,(x)).

Given & and &y, one can identify. (M) andv(N) and define (at least to high-
est order) the reflection coefficient as a function(oféo, &), Ry (X, &0, &) =
ROty (Z (%), ¢/ (€0). ). This factor can now be viewed as a function of coor-
dinates(y,, X, ;) or of coordinategx, &, €) on Ay (strictly speaking, defined
only for x in the interface ang normal to the interface). To highest order it does
not depend otfj&|| and is simply a function ofx, e).

We obtain the following result, which is a generalization of the Kirchhoff ap-
proximation. The normalization fact(ﬂf%” of the §-function is such that integral
S/ 19218 (z4(x))dX is an integral over the surfagg = 0 with Euclidean surface

X i )
measure irx-coordinates.

THEOREM 6.1 Suppose Assumptiods?2, 3, and4 are satisfied, microlocally for

the relevant part of the data. Létyn (Y, X, ;) andBun (Y, X, ;) be phase and
amplitude, respectively, as in Theordn2, but now for the smooth medium above
the interface. The data modeled with the smooth jump model is given microlo-
cally by

(6.1) GEh(y)=(@n) 7 "
X / (Bun(yr, X, n'p2it () Run (Y] X, ny) + lower-order term$

o« douny x| 9%
X

8(zn(x))dny dx;;

i.e., by a Fourier integral operator with canonical relation, y and order”‘T1+C —
1 acting on the distribution| 9z, /90X |8 (Z,(X)).

PrOOF. We write the distribution kernel of the reflected data (3.3) in a form
similar to (4.1). First, recall the reciprocal expression for the Green’s function
(2.24),

Gn(X(2), X, tp) =

2n

()~ / An(Rr X(2), &5, 1) XX @080 dE s
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By using Theorem 3.1 and doing an integration overand ar-variable, one finds
that the Green'’s function for the reflected part is given by

J1+131+1

Gl (& %, 1) = (2m)" 2 n/(ZifAM(*f’X(Z)’éj’”

2,=0

x An(X;, X(2), €3, T Rumuny (2. ¢, T) + lower-order termp

deta—X 920

dz| || ax
wheret’ depends orix(2), &) (the indicesu andv for the reflection coefficients
are explained in Section 3). The integratifuiz’ is now replaced by §(z,)dz.
The latter can be transformed back to an integral avdrhus we obtain

% @OMNRELX(@).E5.85.7)

dé; dé;drdz,

(Zn)j|+2jl+ln/ (2|T.AM ()A(f, X, éj, 'L'),AN ()~(|~, X, gj’ ‘L’)
x R,y (Z(X), ¢’ (€3, X), T) + lower-order termp

 dOMNRRLXE5.65.7)

a—i‘ 8(zn(x)) d€; dé dr dx .

This formula is very similar to (4.1), only the amplitude is different and
8Cijki (X) and 5p (X)
p(X) p(X)
are replaced by thé-function ||0z,/0X]|6(zn(X)). Also, the factorsvyn.ijxu and
wmn;o depend only on the background medium, wHigwy,n) depends on the
total medium. The phase functichyy now comes from the smooth medium
above the reflector.
The data is modeled B3N (R, X, t) with (&, X, t) in the acquisition manifold,
as explained following Lemma 4.1. We follow the approach of Section 4 and do a
coordinate transformatio(x, X, t) — (y’, y”) such that the acquisition manifold
is given byy” = 0. It follows that under Assumptions 3 and 4, the data is the
image of a Fourier integral operator acting|@z,/9X||8(z,(x)) and that it is given
by (6.1). O

7 Inverse Scattering Revisited

In this section we present the main results of the paper. We first construct a
Fourier integral operator and a reflectivity function, which is a function of subsur-
face position and the additional coordin&teThe data is modeled by letting the
Fourier integral operator act on the reflectivity. The construction is such that this
Fourier integral operator is invertible. We discuss its inverse. Finally, a set of pseu-
dodifferential operators is constructed that annihilates the data if the smooth part
of the medium above the reflector is correctly chosen.
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7.1 Invertible Transformation into Subsurface Coordinates

We now construct the reflectivity function and the operator that maps it to seis-
mic data. This is done by applying the results of Section 5 to the Kirchhoff model-
ing formula (6.1) and its equivalent in the Born approximation (4.1).

THEOREM 7.1 Suppose microlocally Assumptiohs2, 3, 4, and 5 are satisfied.
Let Hyn be the Fourier integral operator with canonical relation given by the
extended mapx, &, e, ¢) — (Y, ') constructed in Sectioh and with amplitude
to highest order given b@n)%(Zir)BMN(yl’, X, 11y, €) such thatByn (e = 0) is as
given in Theorerd.2 Then the data, in both Born and Kirchhoff approximations,
is given by H;n acting on a distribution f;n (X, €) of the form

(7.2) rmn (X, € = (pseudy(x, Dy, e)(distribution (x) .

For the Kirchhoff approximation this distribution equal8z,/dx||§(z, (X)), while
the principal symbol of the pseudodifferential operator equalg K, €), so to
highest order fin(X, €) = Run(X, €)]]02,/9X]||8(z,(X)). For the Born approxi-
mation the functionyin (X, €) is given by a pseudodifferential operator acting on

(%), with principal symbol2it (x. &, €)) twwn:a (X, &, €); see(4.3)

PrROOF. We do the proof for the Kirchhoff approximation using (6.1); for the
Born approximation the proof is similar. Since Assumption 5 is satisfied, the pro-
jectionmy: of Ay into T*Y’\ 0 is an embedding, and the image is a co-isotropic
submanifold of T*Y” \ 0. Therefore we can apply Lemma 5.1. Formula (5.3)
implies that the phase factof’&N can be written in the form

dPMN (X1 d(SuN (Y- Xn5,004(y5.1)))

_ (27,)—<n—1—c>/ei(SMN<y;,x,ng,e)+<y3,n3>—<e,e>> de de:

we define

Pun (Y, X, €175, €) = Sun(yi, X, 0, €) + (Y5, 1) — (e, €).
Thus the number of phase variables is increased by making use of a stationary-
phase argument.
Let Bun (Y, X, 1, €) be as described. Then we obtain

[Jl+n-1-c_2n-1-c
2

(7.2) GRNY) =) 2
X / ((2n)52ir(n’)BMN(y{, X, 0y, €) Run (X, €) + lower-order termp

H / /
x @VYMN (Y X.en].€)

% 8(zn(x)) dn; de dx de.

In this formula, the data is represented as a Fourier integral operator acting on

122218(z4(x)) considered as a function @k, €). Multiplying by Hy\ gives a
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pseudodifferential operator of the form described acting|§€@||8(zn(x)). Thus
we obtain the result. O

Remark7.2 It is implicitly assumed thaB(y;, X, }, €) vanishes outside a conic
(1, €) neighborhood of(y;, X, 1'y) € suppBun(Y;. X, 1)} x {e = 0} (cf. (4.10)).
The operatoHyy is defined microlocally on a neighborhood®6fand its inverse
on a neighborhood dk = 0}.

7.2 The Inversion Operator

The operatoH,, is invertible. A choice of phase function and amplitude for
its inverse is given by (see Treves [31, chap. 8])

ay’,n")
Ay, X, 0y, €)

respectively. Thus microlocally an explicit expressiontigk (X, €) in terms of the
data is given by

—Wun (Y, X, enj,€), Bun (Y|, X, 0y, €)1 |det

’

Ay, X, 1y, €)
x e MmN xens.Ody  (y)dy') de dy’ .

(73) rMN(Xv e) =/BMN(y|,’X’ 77/‘],6)_1 det

Since the functiormyn (X, €) is to highest order equal to the product of the
reflection coefficient and the singular function of the reflector surface, this recon-
struction of the functiomy (X, €) leads to the following result for Kirchhoff data:

COROLLARY 7.3 Suppose that the medium in between the acquisition manifold
and the reflector is known and satisfies Assumptigrs 3, 4, and5. Then one

can reconstruct the position of the interface and the angle-dependent reflection
coefficient R, (x, e) on the interface.

The precise reconstruction assumes mode-decoupled and single-scattered data.
To ensure that the data can be mode decoupled requires maximal acquisition geom-
etryc = 0. Of course, the reflection coefficieR},, (x, €) can only be reconstructed
for values ofe that are associated with rays connected to sources and receivers in
the acquisition manifold. In general, a finite set of values isfrequired to recon-
struct the medium jump.

The motivation for Lemma 5.1 can be explained in case chosen to be the
scattering angle/azimuth. Suppose there is high-frequency data that is not from a
given model. In the Kirchhoff case this may be because the medium above the
interface is not correctly chosen or because the data cannot be modeled at all by
Kirchhoff modeling. To such data there is no natural value of the scattering an-
gle/azimuth associated. So to transform itpe)-coordinates, the value efmust
be chosen. This is precisely the choice that we have in the proof of Lemma 5.1,
where the functior(y’, n") on T*Y’\ 0 is chosen.
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7.3 Annihilators of the Data

The result of the previous subsections gives information on the problem of re-
constructing the smooth background medium (or, in the Kirchhoff approximation,
the smooth medium parameters above/in between the interfacaes).1 c > 0,
there is a redundancy in the data through the variablef the smooth medium
parameters (above the interface) are correct, then applying the opbr,@i\pof
Theorem 7.1 to the data results in a reflectivity functign, (X, €) such that the
position of the singularities does not dependeorThe fact that the inverted data
should “line up” in the variable can be used as a criterion to assess the accuracy
of the background medium.

One way to measure how well the data line up is by taking the derivative with
respect tee. If ryn(X, € depends smoothly oaas in (7.1), theq%rMN(x, e) is
one order less singular than if it does not have this smooth dependerc@arn
instance, &-function versus its derivative in the Kirchhoff case). Taking also the
factor in front of thes-function ofry,y into account (see (7.1)), we obtain that to
the highest two orders

prin

9 R ~
(74) (RMN(X,e)a—e— e (x,e))rMN(x,e)_O.

If Run(X, €) is nonzero, then the lower-order terms can be chosen such that this
equation is valid to all orders.

Conjugating the differential operator of (7.4) with the invertible Fourier integral
operatorHy, N, we obtain a pseudodifferential operator®Bf(Y’). Thus we obtain
the following corollary of Theorem 7.1:

COROLLARY 7.4 Let the pseudodifferential operatorsyw(y’, Dy/) be given by

/ 9 JRmn _
Wun(y', Dy) = Hun (RMN(X’ e)a—e ~ e (X, e)) Huk -

Then for Kirchhoff data gl n (YY) we have to the highest two orders
(7.5) Wun (Y, Dy)dun(y’) = 0.

For values of e where Ry (X, €) # 0, the operator Win(Y', Dy/) can be chosen
such that(7.5)is valid to all orders.

In principle the operatoré/yn (Y, Dy/) can be used to obtain a quantitative cri-
terion of how well the data line up. Symes [28] discusses such criteria for acoustic
media using the offset coordinate.

Appendix: Notation

We use the Einstein summation convention (summation over repeated indices)
unless explicitly mentioned. We use the notati@(x, D) for a pseudodifferential
operator with symboQ(x, &), Q(X, Xo) for its distribution kernel, an@QP™(x, &)
for its principal symbol.
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Index of Notation

General Field Quantities
8ij Kronecker delta p(X) p. 265
n p. 261 Cijkl (¥) p. 265
X p. 261 3Cijki (X), 8p(X) p. 281
X cR" p. 261 O (X) p. 286
t p. 262 uj (X, t) p. 266
Y.,y eY p. 262 fi (x, 1) p. 266
z=(Z,zn) p. 276 upm (X, t), fpx, t) p. 266
ecE p. 288 um, £(X, 1), fm £(X, 1) p. 269
En i, T,€ cotangent vectors Va(x, 1) p. 277
forx,y,zt,e Vi (X, t) p. 278
X, Y p. 287 dun(y) p. 297
rvnN (X, e p. 296
Subscripts FIOs and Related
ik pp. 261,265 XM (X0, §0. ), M (X0, §0. ) p. 270
M, N p. 266 CMm .+, Cwm pp. 270,271
1,9 p. 270 M.+, DM p. 271
X] p. 270 AM X150 AmG L) p. 271
a p. 277 Gm p. 269
W,V p. 276 GMm + p. 270
Pseudodifferential Operators (::G” ’ (_S_GME P- ggi
266 MN;ijkl > FMN;0 p.
il P- F 286
Al P ® 282
) MN p-
QIM (x, D) p. 266 B .. 282
MN> WMN;ijkl » WMN;0 p.
Pm (%, D) p. 266 A 283
0,MN p.
Am (X, D) p. 267 A 285
MN p-
BOM (x, D) p. 269 r p. 287
EW(L Bz“ gt) p. Z; MmN p. 293
N,uv(Z7 7> Dt) p- 286 YMN p. 293
MN;a[}/(Xv ) p. HMN p. 296
WmnN (Y, Dy) p. 298
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