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Abstract

Seismic data is modeled in the high-frequency approximation, using the tech-
niques of microlocal analysis. We consider general, anisotropic elastic media.
Our methods are designed to allow for the formation of caustics. The data is
modeled in two ways. First, we give a microlocal treatment of the Kirchhoff
approximation, where the medium is assumed to be piecewise smooth, and re-
flection and transmission occur at interfaces. Second, we give a refined view on
the Born approximation based upon a linearization of the scattering process in
the medium parameters around a smooth background medium. The joint formu-
lation of Born and Kirchhoff scattering allows us to take into account general
scatterers as well as the nonlinear dependence of reflection coefficients on the
medium parameters. The latter allows the treatment of scattering up to grazing
angles.

The outcome of the analysis is a characterization of the singular part of seis-
mic data. We obtain a set of pseudodifferential operators that annihilate the data.
In the process we construct a Fourier integral operator and a reflectivity function
such that the data can be represented by this operator acting on the reflectivity
function. In our construction this Fourier integral operator becomes invertible.
We give the conditions for invertibility for general acquisition geometry. The
result is also of interest for inverse scattering in acoustic media.c© 2002 John
Wiley & Sons, Inc.

1 Introduction

In the seismic experiment one generates elastic waves in the earth using sources
at the surface. The waves that return to the surface of the earth are observed (in fact,
sources and receivers are not always on the surface of the earth; this case is also
considered). The problem is to reconstruct the elastic properties of the subsurface
from the data thus obtained.

The subsurface is given by an open setX ⊂ R
n. In practicen = 2 or 3, but we

leave it unspecified. Subsurface position is denoted byx. Sources and receivers
are contained in the boundary∂X of X. Their position is denoted bỹx and x̂,
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respectively. Measurement of data takes place during a time interval]0, T[. The
set of (x̂, x̃, t) for which data is taken is called theacquisition manifold Y′; we
assume that coordinatesy′ on Y′ are given. We also assume that the displacement
of the waves is measured for point sources atx̃, t = 0 with all its components,
both at the source and at the receiver. Thus we assume that (after preprocessing)
the data matches the Green’s functionGil (x̂, x̃, t) for (x̂, x̃, t) ∈ Y′.

We refer to the codimension of the set ofY′ ∈ ∂X × ∂X × ]0, T[ as the codi-
mension of the acquisition manifold, and we denote it byc. For example, in marine
data the receivers may lie along a line behind the source, in which case we have
n = 3, c = 1, ∂X = {x ∈ R

n : x3 = 0}, Y′ = {(x̂, x̃, t) ∈ R
3 × R

3 × ]0, T[ : x̂3 =
x̃3 = x̂2 − x̃2 = 0}, so the data is a function of 2n − 1 − c variables. From this
data we try to determine a function ofn variables; hence there is a redundancy in
the data of dimensionn − 1 − c.

Our approach follows the work of Beylkin [2, 3] and other authors (see the ref-
erences below), applying microlocal analysis to the seismic inverse problem. Mi-
crolocal analysis and the theory of Fourier integral operators are described in the
books by Hörmander [16, 17, 18], Duistermaat [10], and Treves [30, 31]. Beylkin
[3] considered the seismic inverse scattering problem in acoustic media with con-
stant density. He modeled the data using the Born approximation, where the scat-
tering is linearized in the medium coefficients. The medium perturbationδc(x)
acts as a distribution of scatterers superimposed on a smooth background medium
c(x). Given the background mediumc(x), an operator was given to reconstruct
δc(x) microlocally from ann-dimensional subset of the data (from data that is a
function of n variables). This was done under certain conditions on the rays. In
particular, the situation where the wavefronts form caustics was excluded.

When the data is redundant in the sense that the available data is a function
of more thann variables, then the data can be seen as a family ofn-dimensional
datasets, where eachn-dimensional subset in the family has a fixed value of some
coordinate, which we refer to ase (in terms of acquisition variables, this would be
the collection of offset coordinateŝx − x̃). The result of the inversion, let us call
this the reflectivityr (x,e), should not depend one. This is the criterion that must
be used to determine the background medium from the data; see, for example,
Symes [28]. In summary, under the assumptions made by Beylkin [3], there is
microlocally an invertible map that maps seismic data to a reflectivity function
r (x,e), of which the singular part should not depend one.

In this paper we will generalize the results of Beylkin and Symes in two direc-
tions. First, we remove the restriction that there cannot be caustics. Such a trans-
formation from data to a reflectivity functionr (x,e) was previously not defined
for data in the neighborhood of a caustic from the scattering point, even in acoustic
media. Second, we consider general elastic media instead of acoustic media. We
decouple the system into scalar equations (see Taylor [29], Ivrii [19], Dencker [9])
and apply Fourier integral operator techniques to take into account the situation
where the wavefronts form caustics. We give results for all orders.
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The fact that we consider general elastic media makes the result technically
more complicated and may make it more difficult to see some of the essential ideas
that can also be applied to the acoustic case. On the other hand, there are several
good reasons why the results are particularly useful in elastic media. For instance,
caustics form “instantaneously” in elastic media; they may even occur in constant-
coefficient media. Also, for elastic media the dependence of reflection coefficients
on the scattering angle is more complicated, and it is more important to use this
information in the inversion of seismic data.

The data is modeled in two ways. In Section 3 we assume that the medium
consists of different pieces with smooth interfaces between the different pieces.
The medium parameters are assumed to be smooth on each piece, and smoothly
extendable across each interface, but they vary discontinuously at the interface.
We discuss how to model the high-frequency part of the data using Fourier inte-
gral operators, following the approach of Taylor [29]. In this way we construct a
generalization of the Kirchhoff approximation. In Section 4 we discuss the Born
approximation. This is essentially a linearization where the medium parameters
are written as the sum of a background medium and a perturbation that is assumed
to be small. It is assumed that the background is smooth and that the perturbation
contains the singularities of the medium.

The main result is the characterization of seismic data in Theorem 7.1. The mul-
timodal data can be written as an invertible Fourier integral operatorHM N acting
on a “reflectivity” distributionr M N(x,e), that is, a function of subsurface position
x and the additional variablee, essentially parameterizing the scattering angle and
azimuth. The position of the singularities ofr M N(x,e) does not depend one. In the
Kirchhoff approximation for elastic media the functionr M N(x,e) equals to highest
order RM N(x,e)‖ ∂zn

∂x ‖δ(zn(x)), whereRM N(x,e) is the appropriately normalized
reflection coefficient for the pair of elastic modes(M, N), and‖ ∂zn

∂x ‖δ(zn(x)) is the
singular function of the interface. For the Born approximation,r M N(x,e) is given
by pseudodifferential operators that take into account the radiation patterns acting
on the medium perturbation.

The result is new even for acoustic media. In that case the coordinatee can
be chosen as scattering angle and azimuth. For acoustic media such a map has
been proposed in the geophysical literature to highest order only and when the
acquisition point is not at a caustic from the scattering point; see Xu, Chauris,
Lambaré, and Noble [32].

The new step in the proof that is needed to deal with the presence of caustics
is given in Section 5. The coordinatee is a priori only defined on the co-isotropic
subsetL ⊂ T∗Y′\0 that contains the wavefront set of the data (the subsetLφ in Ten
Kroode, Smit, and Verdel [21]). To construct an invertible Fourier integral operator
from data to the functionr M N(x,e), the coordinatee has to be defined on an open
part of T∗Y′ \ 0. This is done in Lemma 5.1, where we construct an extension
of the coordinate functione from L to an open neighborhood ofL in T∗Y′ \ 0.
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The extension is not unique. In Xu et al. [32] the choice of the extension is made
implicitly by using the fact that, given the scattering pointx, there is a locally
diffeomorphic map from the source and receiver coordinates(x̂, x̃) ∈ ∂X × ∂X
to the dip and the scattering angle/azimuth (in the notation of Section 5 given by
(ξ/‖ξ‖,e)), assuming that the acquisition points are not at a caustic fromx.

The results hold microlocally away from points in the cotangent spaceT∗Y′ \ 0
that violate our assumptions 1 to 5, introduced in the main text. The assumptions
exclude certain degenerate ray (bicharacteristic) geometries. For example, assump-
tions 1, 2, and 3 exclude rays that go through a singularity of the slowness surface,
rays tangent to an interface, and direct rays from source to receiver, respectively. In
general, the set of(y′, η′) ∈ T∗Y′ \0 where the assumptions are violated has lower
dimension than the dimension ofT∗Y′ \ 0. The data associated to such(y′, η′) can
be muted using a pseudodifferential cutoff.

As a consequence of Theorem 7.1, we obtain results about the reconstruction
of the medium parameters. Given the medium above the interface the function
r M N(x,e) and hence the position of the interface and the reflection coefficients can
be reconstructed by acting with the inverseH−1

M N on the data; see Corollary 7.3.
For the Born approximation a similar result holds, but an inverse is also obtained
directly in Theorem 4.5.

When the data is redundant (c sufficiently small) there is in addition a criterion
to determine whether the medium above the interface (the background medium in
the Born approximation) is correctly chosen. The position of the singularities of the
function r M N(x,e), obtained by acting withH−1

M N on the data, should not depend
on e. There exist pseudodifferential operatorsWM N(y′, Dy′) that, if the medium
above the interface is correctly chosen, annihilate the data; see Corollary 7.4. This
allows one to do differential semblance optimization [28] in elastic media with
caustics.

We discuss some of the literature on this subject. There have been many pub-
lications about high-frequency methods to invert seismic data in acoustic media.
The reconstruction of the singular component of the medium coefficients in the
Born approximation, without caustics, has been done in the papers by Beylkin
[2, 3]. Bleistein [5] discusses the case of a smooth jump using Beylkin’s results.
It has been shown by Rakesh [26] that the modeling operator in the Born approx-
imation is a Fourier integral operator. Hansen [13] studied the inversion in an
acoustic medium with multipathing for both the Born approximation and the case
of a smooth jump. Ten Kroode et al. [21] also treat the case of seismic imaging in
the presence of multipathing. They discuss in more detail the assumptions (most
importantly Assumption 5(ii) below) that are made about the geometry of the rays
underlying the scattering. Stolk [27] discusses the case when Assumption 5(ii) is
violated. Nolan and Symes [25] discuss the imaging with different acquisition ge-
ometries. The article by Symes [28] discusses the reconstruction of the background
medium in the Born approximation.
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The mathematical treatment of systems of equations, such as the elastic equa-
tions, in the high-frequency approximation has been given by Taylor [29]. This
fundamental paper also discusses the interface problem. Beylkin and Burridge [4]
discuss the imaging of seismic data in the Born approximation in isotropic elas-
tic media under a no-caustics assumption. De Hoop and Bleistein [14] discuss
the imaging in general anisotropic elastic media, using a Kirchhoff-type approxi-
mation. The Born approximation in anisotropic elastic media allowing for multi-
pathing is discussed by De Hoop and Brandsberg-Dahl [15].

An overview of the paper follows. In Section 2 we discuss the propagation of
waves in smooth elastic media. First, we discuss how asymptotically the elastic
system can be decoupled by conjugating with appropriately chosen pseudodiffer-
ential operators (a technique that is common in mathematics but not in the seismic
literature). Then we discuss the construction of asymptotic solutions for the de-
coupled equations using Fourier integral operators. In Section 3 we discuss the
reflection and transmission of waves at a smooth interface. We explicitly construct
Fourier integral operators describing reflected and transmitted waves. These so-
lutions were already discussed but not explicitly constructed by Taylor [29]. Thus
we prove directly the validity of the Kirchhoff approximation, which is not obvious
from, for example, De Hoop and Bleistein [14]. In Section 4 we discuss the mod-
eling and inversion of seismic data in the Born approximation. This is important
both in its own right and for the reconstruction problem if we model using a smooth
jump. We give a comprehensive presentation for the case of general, anisotropic
media with general acquisition geometry. We discuss in detail the assumptions that
are needed. In Section 5 we characterize the geometry of the wave front set of the
data. Under the assumptions of Section 4 this set is contained in a co-isotropic sub-
manifoldL of the cotangent spaceT∗Y′ \0. We discuss the extension of symplectic
coordinates onL to a neighborhood ofL in T∗Y′ \ 0.

In Section 6 we establish microlocally a correspondence between the Kirchhoff
approximation and the Born approximation. After the preparations of Sections 2
through 6, the derivation of our main result in Section 7 is relatively simple. We
discuss a characterization of seismic data and some consequences, in particular,
the reconstruction of the position of the interface and the reflection coefficients
given the medium above the interface. Finally, we construct pseudodifferential
operators that annihilate the high-frequency part of the data. In principle, these can
be used for the reconstruction of the smoothly varying medium parameters above
the interface (or of the background medium in the Born approximation).

2 Propagation of Elastic Waves in Smoothly Varying Media

2.1 Decoupling the Modes
The elastic wave equation is given by

(2.1)

(
ρδi l

∂2

∂t2
− ∂

∂xj
ci jkl

∂

∂xk

)
(displacement)l = (vol. force density)i .
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Hereρ(x) is the volume density of mass andci jkl (x) is the elastic stiffness tensor,
andi, j, k, l = 1,2, . . . , n.

In order to diagonalize this system, thus decoupling the modes of propagation,
it is convenient to remove thex-dependent coefficientρ in front of the time deriv-
ative. Thus we introduce the equivalent system

(2.2) Pil ul = fi ,

where

(2.3) ul = √
ρ(displacement)l , fi = 1√

ρ
(vol. force density)i ,

and

(2.4) Pil = δi l
∂2

∂t2
− ∂

∂xj

ci jkl

ρ

∂

∂xk
+ lower-order terms

is the partial differential operator. Here we use thatρ is smooth and bounded away
from zero. Both systems (2.1) and (2.2) are real and time-reversal invariant, and
satisfy reciprocity.

We describe how system (2.2) can be decoupled by transforming it with ap-
propriate pseudodifferential operators; see Taylor [29], Ivrii [19], and Dencker
[9]. The goal is to transform the operatorPil by conjugation with a matrix-valued
pseudodifferential operatorQ(x, D)i M , D = Dx = −i ∂

∂x , to an operator that is of
diagonal form modulo a regularizing part,

(2.5) Q(x, D)−1
Mi Pil (x, D, Dt)Q(x, D)l N = diag(PM(x, D, Dt))M N ,

M, N ∈ {1,2, . . . ,n}, Dt = −i ∂
∂t . Here the indicesM and N denote the mode

of propagation. In fact, for the construction of Fourier integral operator solutions
as in the scalar case, it is sufficient to transform the partial differential operator to
block-diagonal form, where each of the blocksPM(x, D, Dt) has scalar principal
part (proportional to the identity matrix). In this case we will use the indicesM
and N to denote the block, and we will omit indices for the components within
each block. Let

(2.6) uM = Q(x, D)−1
Mi ui , fM = Q(x, D)−1

Mi fi .

The system (2.2) is then equivalent to the uncoupled equations

(2.7) PM(x, D, Dt)uM = fM .

The time derivative inPil is already in diagonal form; hence, we only have to
diagonalize its spatial part,

Ail (x, D) = − ∂

∂xj

ci jkl

ρ

∂

∂xk
+ l.o.t.
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So we have to findQi M and AM such that (2.5) is valid withPil and PM replaced
by Ail andAM . The operatorPM is then given by

PM(x, D, Dt) = ∂2

∂t2
+ AM(x, D) .

Given the properties of stiffness, the principal symbolAprin
i l (x, ξ) of Ail (x, D) is

a positive symmetric matrix, so it can be diagonalized by an orthogonal matrix. On
the level of principal symbols, composition of pseudodifferential operators reduces
to multiplication. Therefore, we letQprin

i M (x, ξ) be this orthogonal matrix, and we
let Aprin

M (x, ξ) be the eigenvalues ofAprin
i l (x, ξ) so that

(2.8) Qprin
Mi (x, ξ)

−1Aprin
i l (x, ξ)Qprin

l N (x, ξ) = diag(Aprin
M (x, ξ))M N .

The principal symbolQprin
i M (x, ξ) is the matrix that has as its columns the orthonor-

malized polarization vectors associated with the modes of propagation.

If the multiplicities of the eigenvaluesAprin
M (x, ξ) are constant, then the prin-

cipal symbolQprin
i M (x, ξ) depends smoothly on(x, ξ), and microlocally equation

(2.8) carries over to an operator equation. Taylor [29] has shown that if this
condition is satisfied, then decoupling can be accomplished to all orders, where
each block corresponds to a different eigenvalue. In fact, he proved the following
slightly more general result.

LEMMA 2.1 (Taylor) Suppose the pseudodifferential operator Qi M (x, D) of order
0 is such that

Q(x, D)−1
Mi A(x, D)i l Q(x, D)l N =(

A(1)(x, D) 0
0 A(2)(x, D)

)
M N

+ a(x, D)M N ,

where A(1)(x, ξ) and A(2)(x, ξ) are homogeneous of order2, and a(x, ξ)M N is
polyhomogeneous of order1. Suppose the spectra of A(1)(x, ξ) and A(2)(x, ξ) are
disjoint on a conic neighborhood of some(x0, ξ0) ∈ T∗X \ 0. Then by modifying
Q with lower-order terms, the system can be transformed such that

a(x, D)M N =
(

a(1)(x, D) 0
0 a(2)(x, D)

)
M N

+ smoothing remainder

microlocally around(x0, ξ0).

This implies that if the multiplicity of a particular eigenvalueAprin
M (x, ξ) is con-

stant, then the system can be transformed such that the part related to this eigen-
value decouples from the rest of the system modulo a smoothing remainder. In this
work we will assume that at least some of the modes decouple (microlocally). This
is stated as Assumption 1 below. At that point we will also discuss whether this
assumption is satisfied in relevant cases.
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(a) Cotangent:Bprin
M (x, τ−1ξ) = 1
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∂t

∂xn
∂t
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∂Bprin

M
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∣∣∣
Bprin

M (x,τ−1ξ)=1

FIGURE 2.1. (a) Section of a slowness surface (the characteristic sur-
face) for a transversely isotropic medium inn = 3 dimensions. (b) Set
of velocities associated to the slowness surface in (a). Note the caustics
that occur due to the fact that one of the sheets is not convex.

We give an alternative characterization of the quantities

Aprin
M (x, ξ) and Qprin

i M (x, ξ) .

The valuesτ = ±
√

Aprin
M (x, ξ) are precisely the solutions to the equation

(2.9) detPprin
i l (x, ξ, τ ) = 0 .

The multiplicity of Aprin
M (x, ξ) is equal to the multiplicity of the corresponding root

of (2.9). The columns ofQprin
i M (x, ξ) satisfy

Qprin
i M ∈ ker Pprin

i l (x, ξ,
√

Aprin
M (x, ξ)) .

SincePprin
i l (x, ξ, τ ) is homogeneous in(ξ, τ ), one may choose to use the slowness

vector−τ−1ξ instead of the cotangent or wave vectorξ in calculations. The set
of −τ−1ξ such that (2.9) holds is called the slowness surface, which can be easily
visualized. A section of the slowness surface for the case of a transversely isotropic
medium in three dimensions is given in Figure 2.1(a). Note that the slowness
surface need not be convex. The multiplicity of the eigenvalues changes at the
points (directions) where the different sheets intersect.

The second-order equations (2.7) clearly describe the decoupling of the orig-
inal system into different elastic modes. In addition, equations (2.7) inherit the
symmetries of the original system. It is easy to see that they are time-reversal in-
variant. The operatorsQi M (x, D) and AM(x, D) can be chosen in such a way
that Qi M (x, ξ) = −Qi M (x,−ξ) and AM(x, ξ) = AM(x, ξ). ThenQi M and AM

are real. We argue that equations (2.7) also satisfy reciprocity. For the causal
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Green’s functionGi j (x, x0, t − t0), reciprocity means thatGi j (x, x0, t − t0) =
Gji (x0, x, t − t0). We show that such a relationship also holds (modulo smoothing
operators) for the Green’s functionGM(x, x0, t − t0) associated with (2.7). The
transpose operatorQ(x, D)TMi (obtained by interchangingx, x0 and i,M in the
distribution kernelQi M (x, x0) of Qi M (x, D)) is also a pseudodifferential operator,
with principal symbolQprin(x, ξ)TMi . As noted before for the principal symbol, it
follows from the fact thatAT

i j = Ai j that we can chooseQ orthogonal, i.e., such
that Q(x, D)i M Q(x, D)TM j = δi j . From the fact that

GM(x, x0, t − t0) = Q(x, D)−1
Mi Gi j (x, x0, t − t0)Q(x0, Dx0)j M ,

it follows that microlocallyGM is reciprocal, i.e.,GM(x, x0, t − t0) = GM(x0, x,
t − t0) modulo smoothing operators.

Remark2.2. We already observed that if an eigenvalueAprin
M (x, ξ) has constant

multiplicity mM > 1, thenuM is anm-dimensional vector and (2.7) is amM × mM

system, with scalar principal symbol. For such a system a microlocal solution
can be constructed in the same way as for scalar systems; see the next subsection.
In this case all kinematic quantities, such as bicharacteristics, phase functions, and
canonical relations, depend only onM . Other quantities such asuM andQi M (x, D)
will have multiple components. The Green’s functionGM and its amplitudeAM ,
introduced in (2.20), are thenmM × mM matrices. To simplify notation we do not
take this into account explicitly. However, the reader may check that the results of
this work can be generalized to this case.

2.2 The Green’s Function

To evaluate the Green’s function we use the first-order system foruM that is
equivalent to (2.7). It is given by

(2.10)
∂

∂t

(
uM
∂uM
∂t

)
=
(

0 1
−AM(x, D) 0

)(
uM
∂uM
∂t

)
+
(

0
fM

)
.

This system can be decoupled also. LetBM(x, D) = √
AM(x, D), which is a

pseudodifferential operator of order 1 that exists becauseAM(x, D) is positive def-

inite. The principal symbol ofBM(x, D) is given byBprin
M (x, ξ) =

√
Aprin

M (x, ξ).
We then find that (2.10) is equivalent to the following two first-order equations:

(2.11)

(
∂

∂t
± iBM(x, D)

)
uM,± = fM,±

upon transforming

uM,± = 1

2
uM ± 1

2
iBM(x, D)−1∂uM

∂t
,

fM,± = ±1

2
iBM(x, D)−1 fM .(2.12)
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We construct operatorsGM,± with distribution kernelGM,±(x, x0, t) that solve
the initial value problem for (2.11). Then using Duhamel’s principle we find that

uM,±(x, t) =
∫ t

0
GM,±(x, x0, t − t0) fM,±(x0, t0)dx0 dt0 .

It follows from (2.12) that the Green’s function for the second-order decoupled
equation is then given by

(2.13) GM(x, x0, t) =
(

1

2
iGM,+(x, x0, t)− 1

2
iGM,−(x, x0, t)

)
BM(x0, Dx0)

−1 .

The operatorsGM,± are Fourier integral operators. Their construction is well
known; see, for example, Duistermaat [10, chap. 5]. The singularities are propa-
gated along the bicharacteristics that are determined by Hamilton’s equations gen-
erated by the principal symbol (factor i divided out)τ±Bprin

M (x, ξ) of (2.11). These
equations read

∂x

∂λ
= ± ∂

∂ξ
Bprin

M (x, ξ) ,
∂t

∂λ
= 1 ,

∂ξ

∂λ
= ∓ ∂

∂x
Bprin

M (x, ξ) ,
∂τ

∂λ
= 0 .

(2.14)

The solution may be parameterized byt . We denote the solution of (2.14) with the
+ sign and initial valuesx0 andξ0 by (xM(x0, ξ0, t), ξM(x0, ξ0, t)). The solution
with the− sign is found by reversing the time direction; in other words, it is given
by (xM(x0, ξ0,−t), ξM(x0, ξ0,−t)). Observe that the group velocity (the velocity
∂x
∂t of the bicharacteristic) is orthogonal to the slowness surface. Where the slow-
ness surface fails to be convex, caustics may arise instantly from a point source.
An example is shown in Figure 2.1(b).

The canonical relation of the operatorGM,± is given by

(2.15) CM,± = {
(xM(x0, ξ0,±t), t, ξM(x0, ξ0,±t),∓BM,±(x0, ξ0); x0, ξ0)

}
.

A convenient choice of phase function is described in Maslov and Fedoriuk [23].
They state that one can always use a subset of the cotangent vector components as
phase variables. Let us choose coordinates forCM,+ of the form

(2.16) (xI , x0, ξJ, τ ) ,

whereI ∪ J is a partition of{1,2, . . . ,n}. It follows from theorem 4.21 in Maslov
and Fedoriuk [23] that there is a functionSM,+(xI , x0, ξJ, τ ) such that locallyCM,+
is given by

xJ = −∂SM,+
∂ξJ

, t = −∂SM,+
∂τ

,

ξI = ∂SM,+
∂xI

, ξ0 = −∂SM,+
∂x0

.

(2.17)
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Here we take into account the fact thatCM,+ is a canonical relation, which intro-
duces a minus sign forξ0. A nondegenerate phase function forCM,+ is then found
to be

(2.18) φM,+(x, x0, t, ξJ, τ ) = SM,+(xI , x0, ξJ, τ )+ 〈ξJ, xJ〉 + τ t .

On the other hand, the canonical relationCM,− is given by

CM,− = {
(x, t,−ξ,−τ ; x0,−ξ0) : (x, t, ξ, τ ; x0, ξ0) ∈ CM,+

}
.

Thus a phase function forCM,− is

φM,−(x, x0, t, ξJ, τ ) = −φM,+(x, x0, t,−ξJ,−τ) .
We may define the canonical relation forGM asCM = CM,+ ∪ CM,− and a phase
functionφM = φM,− if τ > 0, andφM = φM,+ if τ < 0.

We have to assume that the decoupling is valid microlocally around the bichar-
acteristic. In that case theorem 5.1.2 of Duistermaat [10] implies that the operator
GM,± is microlocally a Fourier integral operator of order−1

4. Hence, microlocally
we have an expression forGM,± of the form

(2.19) GM,±(x, x0, t) =
(2π)−

|J|+1
2 − 2n+1

4

∫
AM,±(xI , x0, ξJ, τ )e

iφM,±(x,x0,t,ξJ ,τ ) dξJ dτ .

The factors of(2π) in front of the integral are according to the convention of Treves
[31] and Hörmander [18].

The amplitudeAM,±(xI , x0, ξJ, τ ) satisfies a transport equation along the bi-
characteristics(xM(x0, ξ0,±t), ξM(x0, ξ0,±t)). Properties of amplitudes are de-
scribed, for instance, in Treves [31, sec. 8.4]. The amplitude is an element of
MCM ⊗ �1/2(CM), the tensor product of the Keller-Maslov bundleMCM , and the
half-densities on the canonical relationCM . If the subprincipal part ofAM(x, D) is
a matrix, then the amplitude is also a matrix; see Remark 2.2. The Keller-Maslov
bundle gives a factor ik wherek is an index, which we will absorb in the amplitude.
So the amplitude should be seen as a function on the canonical relationCM,±, co-
ordinatized by(xI , x0, ξJ, τ ); see (2.16). It is possible to choose a Maslov phase
function with a different set of phase variables, for instance,ξ J̃ (and notτ ), where
Ĩ ∪ J̃ is a partition of{1,2, . . . ,n} andCM,± is parameterized by(xĨ , x0, t, ξ J̃). In
that case the transformed amplitudeÃM,±(xĨ , x0, t, ξ J̃) contains a Jacobian factor
to the power12, that is,

(2.20) |ÃM,±(xĨ , x0, t, ξ J̃)| = |AM,±(xI , x0, ξJ, τ )|
∣∣∣∣∂(xI , x0, ξJ, τ )

∂(xĨ , x0, t, ξ J̃)

∣∣∣∣
1/2

,

where in the Jacobian both sets of variables are coordinates onCM,±.
We will calculate the left-hand side of (2.20). For this purpose, consider the

Green’s functionGM,±(x, x0, t − t0) with t andt0 = 0 fixed. It can be viewed as
an invertible Fourier integral operator, mapping the displacement att = 0, u|t=0 ∈



272 C. C. STOLK AND M. V. DE HOOP

E ′(X), to the displacement att , u|t ∈ D′(X), with phaseφ̃M,±(x, x0, t, ξ J̃) and
amplitudeÃM,±(xĨ , x0, t, ξ J̃). To the highest order, the energy at timet is given by∫

|BM(x, D)uM,±(x, t)|2 dx .

Conservation of this quantity is reflected by the relation

GM,±(t)∗BM(x, D)∗BM(x, D)GM,±(t) = BM,±(x0, Dx0)
∗BM,±(x0, Dx0) ,

where the left-hand side denotes a composition of Fourier integral operators and
∗ denotes the adjoint. Since the left-hand side is a product of invertible Fourier
integral operators, we can use the theory of section 8.6 in Treves [31]. We find that
to highest order

∣∣(2π)−1/4ÃM,±(xĨ , x0, t, ξ J̃)
∣∣2 =

∣∣∣∣det
∂ξ0

∂(xĨ , ξ J̃)

∣∣∣∣
∣∣∣∣BM(x0, ξ0)

BM(x, ξ)

∣∣∣∣
2

.

The value ofBM(x, ξ) equals the frequencyτ and is conserved along the bichar-
acteristic. Recall that(x0, ξ0, t) are valid coordinates forCM,± (cf. (2.15)). The
Jacobian| ∂(x0,ξ0,t)

∂(xI ,x0,t,ξJ )
| is equal to the factor| det ∂ξ0

∂(xI ,ξJ )
|. It follows that to highest

order

(2.21) |ÃM,±(xĨ , x0, t, ξ J̃)| = (2π)1/4
∣∣∣∣det

∂(x0, ξ0, t)

∂(xĨ , x0, t, ξ J̃)

∣∣∣∣
1/2

.

From (2.20) it now follows that

(2.22) |AM,±(xI , x0, ξJ, τ )| = (2π)1/4
∣∣∣∣det

∂(x0, ξ0, t)

∂(xI , x0, ξJ, τ )

∣∣∣∣
1/2

.

We give our result about the Green’s function for (2.7), collecting the results of
this section, and using equations (2.12) and (2.22) to obtain a statement about the
amplitude. We will assume that microlocally around the relevant bicharacteristics
the decoupling is valid. Let Char(PM) be the characteristic set ofPM given by
{(x, t, ξ, τ ) : P(x, ξ, τ ) = 0}. The Green’s function is such that precisely the
singularities of fM at Char(PM) propagate; see Hörmander [17, theorem 23.2.9].
Thus we have the following:

Assumption1. On a neighborhood of the bicharacteristic, the multiplicity of the
eigenvalueAprin

M (x, ξ) in (2.8) is constant.

Let WF( f ) denote the wave front section off [16, sec. 8.1].

LEMMA 2.3 Suppose that for the bicharacteristics throughWF( fM) ∩ Char(PM)

Assumption1 is satisfied. Then uM is given microlocally, away fromWF( fM), by

(2.23) uM(x, t) =
∫

GM(x, x0, t − t0) fM(x0, t0)dx0 dt0
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where GM(x, x0, t) is the kernel of a Fourier integral operator with canonical re-
lation CM and order−11

4, mapping functions of x0 to functions of(x, t). It can be
written as

(2.24) GM(x, x0, t) =
(2π)−

|J|+1
2 − 2n+1

4

∫
AM(xI , x0, ξJ, τ )e

iφM (x,x0,t,ξJ ,τ ) dξJ dτ .

For the amplitudeAM(xI , x0, ξJ, τ ) we have to highest order

(2.25) |AM(xI , x0, ξJ, τ )| = (2π)1/4
1

2
|τ |−1

∣∣∣∣det
∂(x0, ξ0, t)

∂(xI , x0, ξJ, τ )

∣∣∣∣
1/2

.

The implications of Assumption 1 for elastic media depend on which class of
media one is interested in. By a class of media we mean a set of media parame-
terized by a number of (position dependent) parameters. From a physical point of
view, one may be interested in media where the elastic tensor is characterized by
certain symmetry properties.

Isotropic media are characterized by the mass densityρ and the Lamé pa-
rametersλ andµ. The matrix Aprin

i l (x, ξ) has two eigenvalues,Aprin
1 (x, ξ) =

λ+2µ
ρ

‖ξ‖2 with polarization vector proportional toξ (referred to as the P-mode),

and Aprin
2 (x, ξ) = µ

ρ
‖ξ‖2 with polarization space normal toξ (the two S-modes).

Thus this system can be decoupled.

If the matrix Aprin
i l (x, ξ) of an isotropic medium is perturbed by a small amount,

then one eigenvalue of the perturbed matrix will be close to the P-eigenvalue of
the isotropic medium, and two eigenvalues will be close to the S-eigenvalue. The
two eigenvalues close to the S-eigenvalue of the isotropic medium will not coin-
cide in general but may coincide for certain values of(x, ξ). So in elastic media
sufficiently close to an isotropic medium, there will still be a quasi-P mode that
decouples from the other modes, but the two quasi-S modes will in general not
decouple.

The elastic system for generic elastic media has been investigated by Braam and
Duistermaat [6]. The set of singular points is generically of codimension 3 (thus 1
lower than one would expect naively) and is of conical form in the neighborhood
of the singular point. They give a normal form for such systems and investigate the
behavior of its associated bicharacteristics and polarization spaces. In this case the
system cannot be decoupled. However, in a generic elastic medium there cannot be
an open set of bicharacteristics that pass through a singular point, since the singular
points form a set of codimension 3. In this sense the set of bicharacteristics that
have to be excluded is small.

In case the elastic tensor has symmetries it is determined by less than 21 coef-
ficients. The characteristic sets of such media are analyzed by Musgrave [24]. In
this case the singularities can be of different types. For instance, in some classes
of media, such as transversely isotropic media, the determinant factors into smooth
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factors. In that case the multiplicities of the eigenvaluesAprin
M (x, ξ) can vary on a

larger (codimension 2) subset ofT∗X \ 0. Since the bicharacteristics are curves on
a codimension 1 surface, Assumption 1 can be violated on an open set of bicharac-
teristics.

3 Reflection at an Interface:
Microlocal Analysis of the “Kirchhoff” Approximation

A particular way to model the subsurface is to assume that it consists of different
layers that have different physical properties—in our case, the elastic coefficients
ci jkl and the densityρ. In this section, we will model the reflection of waves at a
smooth interface between two such layers with smoothly varying medium param-
eters.

The amplitude of the scattered waves is determined essentially by the reflection
coefficients and, implicitly, by the curvature of the interface. It is well known how
to calculate these for two constant-coefficient media and a plane interface (see,
e.g., Aki and Richards [1, chap. 5]). In the case of smoothly varying media, they
determine the scattering in the high-frequency limit; see Taylor [29] for a treatment
of reflection and transmission of waves using microlocal analysis. For the acoustic
case, see also Hansen [13].

Mathematically, the reflection and transmission of waves is formulated as a
boundary value problem. The displacementul must satisfy the partial differential
equation and initial conditions. In addition, the displacement and the normal trac-
tion have to be continuous at the interface. Denote byν the normal to the interface.
The following equations must hold:

Pil ul = fi away from the interface,

ul = 0 for t < 0 ,
(3.1)

while

ρ−1/2ul is continuous at the interface,

νj ci jkl
∂

∂xk
(ρ−1/2ul ) is continuous at the interface.

(3.2)

Here, we have the factorsρ because of our normalization (2.3). We assume that
the source vanishes on a neighborhood of the interface. That this is a well-posed
problem can be shown using energy estimates (see, e.g., Lions and Magenes [22,
sec. 3.8].

The solutions to the partial differential equation withf = 0 follow from the
theory discussed in Section 2. The singularities are propagated along the bicharac-
teristics, curves inT∗(X × R) \ 0, given by(

xM(x0, ξ0,±t), t, ξM(x0, ξ0,±t),∓BM(x0, ξ0)
)
.

This is the bicharacteristic associated with theM,± constituent of the solution; see
Section 2. We define a bicharacteristic to be incoming if its direction is from inside
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layer 2

incoming outgoing (transmitted) modes

interface

outgoing (reflected) modesincoming

layer 1 zn

z′

FIGURE 3.1. Incoming and outgoing rays.

a layer towards the interface for increasing time. We define a bicharacteristic to be
outgoing if its direction is away from the interface into a layer for increasing time;
see Figure 3.1.

Assume that the incoming bicharacteristic stays inside a layer fromt = 0 until
it hits the interface; then the solution along such a bicharacteristic is determined
completely by the partial differential equation and the initial condition. On the
other hand, the solution along the outgoing bicharacteristics is not determined by
the partial differential equation and the initial condition. We will show that the so-
lution along the outgoing bicharacteristics is determined by the partial differential
equation and the interface conditions in (3.2).

Let us consider the consequences of the interface conditions. Assume for the
moment that the interface is located atxn = 0. We denotex′ = (x1, x2, . . . , xn−1),

x = (x′, xn), and similarly forξ . The wavefront set of the restriction oful to
xn = 0 satisfies

WF(ul |xn=0) ={
(x′, t, ξ ′, τ ) : there isξn such that(x′,0, t, ξ ′, ξn, τ ) ∈ WF(ul )

}
.

It follows that a solution traveling along a bicharacteristic that intersects the inter-
face at some point(x′,0, t) interacts with any other such solution as long as the
associated values forξ ′ andτ in their wavefront sets coincide (Snell’s law). This
is depicted in Figure 3.2.

Depending on the interface coordinatex′ and the interface tangential part of
the slowness−τ−1ξ ′, the number of interacting bicharacteristics may vary. For
large values of−τ−1ξ ′ there will be neither incoming nor outgoing modes; for
small values there aren incoming andn outgoing modes. The situation where the
vertical line in Figure 3.2 is tangent to the slowness surface corresponds to rays
tangent to the interface. Such rays are associated with head waves and are not
treated in our analysis. Equation (2.9) implies that the incoming and the outgoing
modes correspond to the real solutionsξn of

detPil (x
′,0, ξ ′, ξn, τ ) = 0 .
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FIGURE 3.2. Two-dimensional section of ann = 3-dimensional slow-
ness surface at some point of the interface for the medium on each side
of the interface. The slownesses of the modes that interact (i.e., reflect
and transmit into each other) are the intersection points with a line that is
parallel to the normal of the interface. The group velocity, which is nor-
mal to the slowness surface, determines whether the mode is incoming
or outgoing.

This equation has 2n real or complex-conjugated roots. The complex roots corre-
spond to “evanescent” wave constituents. To number the roots we use an indexµ.

In the following theorem we show that if none of the rays involved is tangent,
there exists a pseudodifferential operator-type relation between the different modes
restricted to the surfacexn = 0; we calculate its principal symbol in the proof. Let
x 7→ z(x) : R

n → R
n be a coordinate transformation such that the interface

is given byzn = 0. The corresponding cotangent vector, denoted byζ , satisfies

ζi (ξ) = ( ∂z
∂x )

−1T
i j
ξj .

Assumption2. There are no rays tangent to the interfacezn = 0 microlocally at
(z′, t, ζ ′, τ ).

THEOREM 3.1 Suppose the rootsτ of (2.9) have constant multiplicity and As-
sumption2 is valid microlocally on some neighborhood in T∗(Z′ × R) \ 0. Let
uin

N(ν) be microlocal constituents of a solution describing the “incoming” modes,
and suppose GM(µ) refers to an “outgoing” Green’s function(2.19). Microlocally,



SEISMIC INVERSE SCATTERING 277

the single reflected/transmitted constituent of the solution is given by

uM(µ)(x, t) =
∫

zn=0

GM(µ)(x, x(z), t − t0)

× 2iDt0

(
Rµν(z, Dz′, Dt0)u

in
N(ν)(x(z), t0)

) ∣∣∣∣det
∂x

∂z

∣∣∣∣
∥∥∥∥∂zn

∂x

∥∥∥∥dz′ dt0

(3.3)

where Rµν(z, Dz′, Dt) is a pseudodifferential operator of order0.

In the proof we derive the explicit form ofRprin
µν (z, ζ ′, τ ); see Remark 3.2 be-

low. The integral|det ∂x
∂z |‖ ∂zn

∂x ‖dz′ is the Euclidean surface integral over the surface
zn = 0.

PROOF: For the moment we assumez(x) = x, i.e., that we have a reflector at
xn = 0 and smooth coefficients on either side. We show that at the interface there
is a relation of the type

(3.4) uout
M(µ)(x

′,0, t) = R0
µν(x

′,0, D′, Dt)u
in
N(ν) .

We will use the notationcjk;i l = ci jkl and also(cjk)i l = ci jkl . The partial differen-
tial equation (2.1) reads in this notation(

ρδi l
∂2

∂t2
− cjk;i l

∂2

∂xj ∂xk

)
(ρ−1/2ul )+ l.o.t. = 0 .

This equation can be rewritten as a first-order system in the variablexn for the
vectorVa of length 2n that contains both the displacement and the normal traction
(normal to the surfacexn = const)

(3.5) Va =
(

ρ−1/2ui

cnk;i l ∂(ρ
−1/2ul )

∂xk

)
, i = 1,2, . . . ,n ,

in preparation for the boundary value problem (3.1)–(3.2). Here,a is an index in
{1,2, . . . ,2n}. The first-order system then is

∂Va

∂xn
= iCab(x, D′, Dt)Vb ,

whereCab(x, D′, Dt) is a matrix partial differential operator given to highest order
by

−i

(−∑n−1
q=1

∑n
j =1(cnn)

−1
i j cnq; j l

∂
∂xq

(cnn)
−1
i l

−∑n−1
p,q=1 bpq;i l ∂2

∂xp∂xq
+ ρδi l

∂2

∂t2 −∑n−1
p=1

∂
∂xp

cpn;i j (cnn)
−1
j l

)
ab

.

Here, bpq;i l = cpq;i l − ∑n
j,k=1 cpn;i j (cnn)

−1
jk cnq;kl (we indicated the summations

explicitly because the summations overp andq are 1,2, . . . , n − 1, while still
j ∈ {1,2, . . . ,n}).
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The next step is to decouple this first-order system microlocally, as in Sec-
tion 2.1. This means that we want to find scalar pseudodifferential operators
Cµ(x, D′, Dt) and a matrix pseudodifferential operatorLaµ(x, D′, Dt) such that

Cab(x, D′, Dt) = Laµ(x, D′, Dt)diag(Cµ(x, D′, Dt))µνL−1
νb (x, D′, Dt) .

The principal symbolsCprin
µ (x, ξ ′, τ ) are the solutions forξn of

(3.6) detPprin
i l (x, (ξ ′, ξn), τ ) = 0 .

In fact, it suffices for the transformed operator (the matrix diag(Cµ(x, D′, Dt))µν)
to be block-diagonal with a block for each different real root of (3.6), a block
with eigenvalues with positive imaginary part, and a block with eigenvalues with
negative imaginary part. This has also been discussed by Taylor [29]. Under the
assumptions of the lemma, this situation can be obtained, since when varyingξ ′
and τ , the multiplicity of a real eigenvalue only changes when the multiplicity
of the corresponding root of (2.9) changes or when two real eigenvalues become
complex.

The number of complex eigenvalues with positive or negative imaginary part
changes only when two real eigenvalues become complex or vice versa. The latter
case occurs only when there are tangent rays and hence is excluded. The 2n × 2n
principal symbolLprin

aµ (x, ξ ′, τ ) (the columns appropriately normalized) is given by(
Qprin

i M (µ)(x, (ξ
′,Cprin

µ (x, ξ ′, τ )))
cinkl(−i(ξ ′,Cprin

µ (x, ξ ′, τ ))k)Q
prin
lM (µ)(x, (ξ

′,Cprin
µ (x, ξ ′, τ )))

)
aµ

.

(The polarization vectorQi M (x, ξ) can also be defined for complexξ ). We define
Vµ = L(x, D′, Dt)

−1
µaVa. (The index mappingµ 7→ M(µ) assigns the appropriate

mode to the normal component of the wave vector).
If the principal symbol ofCµ(x, ξ ′, τ ) is real, the decoupled equation for mode

µ is of hyperbolic type. It corresponds to an outgoing wave or to an incoming
wave, depending on the direction of the corresponding ray. If the principal symbol
of Cµ(x, ξ ′, τ ) is complex, the decoupled operator for modeµ is of elliptic type.
Depending on the sign of the imaginary part, it corresponds to a mode that grows in
then-direction, a backward parabolic equation, or one that decays, a forward par-
abolic equation. The growing mode has to be absent; see, for instance, Hörmander
[18, sect. 20.1].

The matrixLaµ is fixed up to normalization of its columns. For the elliptic
modes (ImCprin

µ (x, ξ ′, τ ) 6= 0) the normalization is unimportant. For the hyper-
bolic modes the normalization can be such that the vectorVµ = L(x, D′, Dt)

−1
µaVa

agrees microlocally with the corresponding modeuM,± defined in Section 2. To
see this, assumeVµ refers to the same mode asuM,±. In that case there is an invert-
ible pseudodifferential operatorψ(x, D, Dt) of order 0 such thatVµ = ψuM,±.
Now we can defineVµ,new = ψ−1Vµ,old. Becauseψ may depend onξn, this factor
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cannot be directly absorbed inL. However, sinceVµ,old satisfies a first-order hy-
perbolic equation, the dependence onξn can be eliminated and the factorψ−1 can
be absorbed inL.

In this proof let the in-modes be the modes for which the amplitude is known,
that is, the incoming hyperbolic and the growing elliptic modes. Denote byL(1)aµ

and L(2)aµ the matrixLaµ on either side of the interface. We define the 2n × 2n
matrix L in such that it contains the columns related to incoming modes out ofL (1)aµ

andL(2)aµ, i.e.,

L in
aµ = (

L(1),in −L(2),in
)

aµ
,

and defineLout
aµ similarly (so, here,µ is slightly different). The interface conditions

(3.2) now read
Lout

aµVout
µ + L in

aµV in
µ = 0 .

If we set R0
µν = −(Lout)−1

µa L in
aν (for the question of whether the inverse exists,

see the remark after the proof), then the part referring to the hyperbolic modes
gives (3.4).

By (3.4) theuout
M are determined at the interface; finding how they propagate

away from the interface is a (microlocal) initial value problem similar to the prob-
lem forGM,± above, where now thexn-variable plays the role of time. The solution
is again a Fourier integral operator, with canonical relation generated by the bichar-
acteristics. It follows that we can useφM,±(x, t − t0, x0, ξJ, τ ) as a phase function
(taking care thatn /∈ J). The amplitudeAM,±(xI , x0, ξJ, τ ) satisfies the transport
equation as before. However, the restriction of the Fourier integral operator to the
“initial surface” xn = 0 so constructed is a pseudodifferential operator that is not
necessarily the identity. Let us assume

(3.7) uout
M (x, t) =∫

GM,±(x, (x′
0,0), t − t0)ψ(x, Dx′

0
, Dt0)u

out
M (x

′
0,0, t0)dx′

0 dt0 ,

whereψ(x, D′, Dt) is to be found such that the restriction of this representation to
xn = 0 is the identity. The± sign is chosen such thatGM,± is the outgoing mode.
We can use again section 8.6 of Treves [31] to find that the principal symbol of this
pseudodifferential operator should be

(3.8) ψ(x, ξ ′, τ ) =
∣∣∣∣∂BM

∂ξn
(x, ξ ′,Cprin

µ (ξ ′, τ ))
∣∣∣∣ =

∣∣∣∣∂xM,n

∂t
(x, ξ ′,Cprin

µ (ξ ′, τ ),0)
∣∣∣∣ ;

i.e., the normal component of the velocity of the ray, the group velocity. We now
replaceGM,± by (the relevant part of)GM , using thatGM = 1

2iGM,+BM(x, D)−1−
1
2iGM,−BM(x, D)−1. Taking this into account, and the fact thatBprin

M (x, ξ) = ∓τ ,
we have now obtained (3.3) for the case thatz = x (no coordinate transformation).

We argue that (3.3) is also true whenz(x) is a general coordinate transforma-
tion. This follows from transforming the equations (3.1) and (3.2) toz-coordinates.



280 C. C. STOLK AND M. V. DE HOOP

To highest order, the symbol of (pseudo)differential operators transforms as

ψ transf(z, ζ, τ ) = ψ(x(z),

(
∂z

∂x

)T

ζ, τ ) .

Tracing the steps of the proof, we find the following equivalent of (3.4)

(3.9) uout
M(µ)(x(z

′,0), t) = R0
µν(z

′,0, Dz′, Dt)u
in
N(ν)(x(z

′,0), t) .

When the interface is atzn = 0, we can obtain (3.7) inz-coordinates instead of
x-coordinates. TransformingGM anduM back tox-coordinates, we find that forx
away from the interface,

uM(x) =
∫

zn=0

GM(x, x(z), t − t0)

∣∣∣∣∂zM,n

∂t
(z, Dz′, Dt0)

∣∣∣∣
× uout

M (x(z), t0)

∣∣∣∣det
∂x

∂z

∣∣∣∣dz′ dt0 .

Here| ∂zM,n
∂t (z, Dz′, Dt)| is the transformed version of (3.8). Thus expression (3.3)

follows, with

Rµν(z, ζ
′, τ ) =

∣∣∣∣∂zM,n

∂t
(z, ζ ′, τ )

∣∣∣∣
∥∥∥∥∂zn

∂x

∥∥∥∥
−1

R0
µν(z, ζ

′, τ ) .

�

Remark3.2. The principal symbolR0,prin
µν (z, ζ ′, τ ) that occurs in the proof is simply

the reflection coefficient for the amplitudes. The principal symbolRprin
µν (z, ζ ′, τ ) is

obtained by multiplyingR0,prin
µν with the normal component of the velocity of the

ray, given (forz(x) = x) by (3.8). The reflection coefficients satisfy unitary re-
lations; see Chapman [8] and Kennett [20] (the appendix to chapter 5). These
follow essentially from conservation of energy. It follows that the matrix of re-
flection coefficients is well defined and in particular that the inverse ofLout

aµ exists.
Chapman [8] also gives a direct proof of the reciprocity relations for the reflection
coefficients.

Remark3.3. We have shown that the reflected/transmitted wave is given by a com-
position of Fourier integral operators acting on the source. In the case of multiple
reflections or transmissions (for instance, in a medium consisting of a number of
smooth domains separated by smooth interfaces), this is also the case (cf. Frazer
and Sen [11]). It follows that microlocally the solution operator describing the re-
flected solutions is itself a Fourier integral operator where the canonical relation is
given by the generalized bicharacteristics (i.e., the reflected and transmitted bichar-
acteristics) and the amplitude is essentially the product of the ray amplitudes and
the reflection/transmission coefficients. The integration overz′ accounts for the
effects associated with the interface’s curvature.
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4 The Born Approximation

We discuss the modeling and inversion of seismic data in the Born approxima-
tion. The medium parameters are written as the sum of a smooth background and a
singular perturbation. This is important in its own right, and it will also be a moti-
vation for our approach to the model with smooth jumps described in the previous
section.

The Born approximation has been discussed by a number of authors. In the
acoustic case with an allowance for multipathing (caustics), see Hansen [13] and
Ten Kroode et al. [21]. For the acoustic problem with nonmaximal acquisition
geometry, see Nolan and Symes [25]. For the elastic case with maximal acquisition
geometry (and from a more applied point of view), see De Hoop and Brandsberg-
Dahl [15]. We extend their results and give an efficient, novel presentation. Also,
we discuss in detail the different assumptions that are needed for the modeling and
inversion of seismic data.

4.1 Modeling: Perturbation of the Green’s Function

In the Born approximation, one assumes that the total value of the medium pa-
rametersci jkl andρ can be written as the sum of a smooth background constituent
ρ, ci jkl and a singular perturbationδρ, δci jkl , viz.,

ci jkl + δci jkl , ρ + δρ .

This decomposition induces a perturbation ofPil (cf. (2.4)),

δPil = δi l
δρ

ρ

∂2

∂t2
− ∂

∂xj

δci jkl

ρ

∂

∂xk
.

We denote the causal Green’s operator associated with (2.2) byGil and its distribu-
tion kernel byGil (x, x0, t − t0). The first-order perturbationδGil of Gil is derived
by demanding that the first-order term in(Pi j + δPi j )(Gjk + δGjk) vanish. This
results in the following expression forδGil (x̂, x̃, t):

−
∫ t

0

∫
X

Gi j (x̂, x0, t − t0)δPjk(x0, Dx0, Dt0)Gkl(x0, x̃, t0)dx0 dt0 .

Here,x̃ denotes a source location,x̂ a receiver location, andx0 a scattering point.
Because the background model is smooth, the operatorδGil contains only the sin-
gle scattered field.

We use the decoupled equations (2.7). Omitting the factorsQi M (x̂, Dx̂), Q(x̃,
Dx̃)

−1
Nl at the beginning and end of the product, we obtain an expression for the
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perturbation of the Green’s functionδGM N(x̂, x̃, t) for the pair of modesM (scat-
tered) andN (incident)

δGM N(x̂, x̃, t) = −
∫ t

0

∫
X

GM(x̂, x0, t − t0)Q(x0, Dx0)
−1
Mi

(
δi l
δρ

ρ

∂2

∂t2
0

− ∂

∂x0, j

δci jkl

ρ

∂

∂x0,k

)
Q(x0, Dx0)l N GN(x0, x̃, t0)dx0 dt0 .

Microlocally we can writeGM as in (2.24), with appropriate substitutions for its
arguments. ForGN we use in addition the reciprocity relationGN(x0, x̃, t0) =
GN(x̃, x0, t0). The product of operatorsGM Q(x0, Dx0)

−1
Mi

∂
∂x0, j

is a Fourier integral
operator with the same phase asGM and amplitude that to highest order equals the
productAM(x̂Î , x0, ξ̂ Ĵ, τ )Q(x0, ξ̂0)

−1
Mi iξ̂0, j , whereξ̂0 = ξ0(x̂Î , x0, ξ̂ Ĵ, τ ). Assum-

ing that the medium perturbation vanishes aroundx̂ and x̃, a cutoff is introduced
for t0 near 0 andt . In the resulting expression, one of the two frequency variables
τ̂ and τ̃ can now be eliminated using the integral overt0 (see, for instance, Duis-
termaat [10, sect. 2.3]). In this case the result can be readily obtained by noting
that the integral overt0 can be extended to the whole ofR (the phase is not station-
ary for t0 outside[0, t]), and then using that

∫∞
−∞ eit0(τ̂−τ̃ ) dt0 = 2πδ(τ̂ − τ̃ ). The

resulting formula forδGM N is, modulo lower-order terms in the amplitude,

δGM N(x̂, x̃, t) = (2π)−
3n+1

4 − | Ĵ|+| J̃|+1
2

∫
BM N(x̂Î , ξ̂ Ĵ, x̃Ĩ , ξ̃ J̃, x0, τ )

× ei8M N (x̂,x̃,t,x0,ξ̂ Ĵ ,ξ̃ J̃ ,τ )

(
wM N;i jkl (x̂Î , x̃Ĩ , x0, ξ̂ Ĵ, ξ̃ J̃, τ )

δci jkl (x0)

ρ(x0)
(4.1)

+ wM N;0(x̂Î , x̃Ĩ , x0, ξ̂ Ĵ, ξ̃ J̃, τ )
δρ(x0)

ρ(x0)

)
dx0 dξ̂ Ĵ dξ̃ J̃ dτ .

Here (see (2.18) for the construction ofφM , φN),

(4.2) 8M N(x̂, x̃, t, x0, ξ̂ Ĵ, ξ̃ J̃, τ ) = φM(x̂, x0, t, ξ̂ Ĵ, τ )+φN(x̃, x0, t, ξ̃ J̃, τ )−τ t .

The amplitude factorsBM N are given by

(4.3) BM N(x̂Î , x̃Ĩ , x0, ξ̂ Ĵ, ξ̃ J̃, τ ) =
(2π)−

n−1
4 AM(x̂Î , x0, ξ̂ Ĵ, τ )AN(x̃Ĩ , x0, ξ̃ J̃, τ ) .

We will refer to the factorswM N;i jkl andwM N;0 as the radiation patterns. They are
given by

wM N;i jkl (x̂Î , x̃Ĩ , x0, ξ̂ Ĵ, ξ̃ J̃, τ ) = Qi M (x0, ξ̂0)Ql N (x0, ξ̃0)ξ̂0, j ξ̃0,k ,(4.4)

wM N;0(x̂Î , x̃Ĩ , x0, ξ̂ Ĵ, ξ̃ J̃, τ ) = −Qi M (x0, ξ̂0)Qi N (x0, ξ̃0)τ
2 ,(4.5)

whereξ̂0 = ξ0(x̂Î , x0, ξ̂ Ĵ, τ ) andξ̃0 = ξ0(x̃Ĩ , x0, ξ̃ J̃, τ ). The scattering is depicted
in Figure 4.1.
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x0

ξ̂0
ξ̃0

ξ̂0 + ξ̃0 x̃x̂

ξ̂ ξ̃

FIGURE 4.1. The scattering cotangent vectors.

We investigate the map(δci jkl /ρ, δρ/ρ) 7→ δGM N(x̂, x̃, t) induced by (4.1).
We use the notationCφM to indicate the subset of the global canonical relationCM

that is associated to a phase functionφM (cf. (2.15)).

LEMMA 4.1 Assume that if(x̂, t̂, ξ̂ , τ ; x0, ξ̂0) ∈ CφM and(x̃, t̃, ξ̃ , τ ; x0, ξ̃0) ∈ CφN ,
thenξ̂0 + ξ̃0 6= 0. Then the map(δci jkl /ρ, δρ/ρ) 7→ δGM N(x̂, x̃, t) given by(4.1)
is a Fourier integral operatorE ′(X) → D′(X × X ×]0, T[). Its canonical relation
is given by

30,M N = {
(x̂, x̃, t̂ + t̃, ξ̂ , ξ̃ , τ ; x0, ξ̂0 + ξ̃0) :
(x̂, t̂, ξ̂ , τ ; x0, ξ̂0) ∈ CφM , (x̃, t̃, ξ̃ , τ ; x0, ξ̃0) ∈ CφN

}
.

(4.6)

PROOF: We show that8M N(x̂Î , x̃Ĩ , t, x0, ξ̂ Ĵ, ξ̃ J̃, τ ) is a nondegenerate phase
function. The derivatives with respect to the phase variables are given by

∂8M N

∂τ
= −t̂(x̂Î , x0, ξ̂ Ĵ, τ )− t̃(x̃Ĩ , x0, ξ̃ J̃, τ )+ t ,

∂8M N

∂ξ̂ Ĵ

= −x̂Ĵ(x̂Î , x0, ξ̂ Ĵ, τ )+ x̂Ĵ ,

∂8M N

∂ξ̃ J̃

= −x̃J̃(x̃Ĩ , x0, ξ̃ J̃, τ )+ x̃J̃ ,

wherex̂Ĵ(x̂Î , x0, ξ̂ Ĵ, τ ) andx̃J̃(x̃Ĩ , x0, ξ̃ J̃τ) are as defined in (2.17), for the receiver
side and the source side, respectively. The derivatives of these expressions with
respect to the variables(x̂Ĵ, x̃J̃, t) are linearly independent, so8M N is nondegen-
erate. From expression (4.2) it follows that the canonical relation of this operator
is given by (4.6). By the assumption it contains no elements withξ̂0 + ξ̃0 = 0, so it
is continuous as a mapE ′(X) → D′(X × X × ]0, T[). �

We show that the condition in Lemma 4.1 is violated if and only ifM = N
and there exists a “direct” bicharacteristic from̃x, ξ̃ to x̂,−ξ̂ . From the symme-
try of the bicharacteristic under the transformationξ → −ξ, t → −t , it follows
that indeed in this case the condition is violated. On the other hand, we have
BM(x0, ξ̂0) = BN(x0, ξ̃0) = ±τ . If ξ̂0 = −ξ̃0, then we must haveM = N, because



284 C. C. STOLK AND M. V. DE HOOP

BM(x0, ξ̂0) = BM(x0,−ξ̂0) and the condition that the eigenvalues in (2.8) are dif-
ferent for different modes. IfM = N andξ̂0 = −ξ̃0, then we have the mentioned
direct bicharacteristic.

4.2 Restriction: Acquisition

The data are assumed to be representable byδGM N(x̂, x̃, t) for (x̂, x̃, t) in the
acquisition manifold. To make this explicit, lety 7→ (x̂(y), x̃(y), t (y)) be a coor-
dinate transformation such thaty = (y′, y′′) and the acquisition manifold is given
by y′′ = 0. Assume that the dimension ofy′′ is 2+ c, wherec is the codimension
of the geometry (the 2 enforces “remote sensing”). Then the data are given by the
map

(4.7) y′ 7→ δGM N(x̂(y
′,0), x̃(y′,0), t (y′,0)) .

It follows that the map(δci jkl /ρ, δρ/ρ) to the data may be seen as the composition
of the map of Lemma 4.1 with the restriction operator toy′′ = 0. The restriction
operator that maps a functionf (y) to f (y′,0) is a Fourier integral operator with
canonical relation given by3r = {(y′, η′; (y′, y′′), (η′, η′′)) ∈ T∗Y′ × T∗Y : y′′ =
0}. The composition of the canonical relations30,M N and3r is well defined if the
intersection of3r ×30,M N with T∗Y′ \0×diag(T∗Y \0)×T∗X \0 is transversal.
In this case we must have that the intersection of30,M N with the manifoldy′′ = 0
is transversal.

Let us repeat our assumptions and state the final result of this subsection.

Assumption3. There are no elements(y′,0, η′, η′′) ∈ T∗Y\0 such that there is a di-
rect bicharacteristic from(x̂(y′,0), ξ̂ (y′,0, η′, η′′)) to (x̃(y′,0),−ξ̃ (y′,0, η′, η′′))
with arrival timet (y′,0).

Assumption4. The intersection of30,M N with the manifoldy′′ = 0 is transversal.
In other words,

(4.8)
∂y′′

∂(x0, ξ̂0, ξ̃0, t̂, t̃)
has maximal rank.

In the following theorem we parameterize (4.6) by(x0, ξ̂0, ξ̃0, t̂, t̃) using the
parameterization ofCφM given by (2.15). Thus we letτ = ∓BM(x0, ξ̂0) and

x̂ = xM(x0, ξ̂0,±t̂) , x̃ = xN(x0, ξ̃0,±t̃) ,

ξ̂ = ξM(x0, ξ̂0,±t̂) , ξ̃ = ξN(x0, ξ̃0,±t̃) .

We suppose that(y′(x0, ξ̂0, ξ̃0, t̂, t̃), η′(x0, ξ̂0, ξ̃0, t̂, t̃)) is obtained by transforming
(x̂, x̃, t̂ + t̃, ξ̂ , ξ̃ , τ ) to (y, η)-coordinates.

THEOREM4.2 If Assumptions3 and4 are satisfied, then the operator FM N;i jkl (re-
spectively, FM N;0) that maps the medium perturbationδci jkl /ρ (respectively,δρ/ρ)
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to the data as a function of y′ (4.7) is microlocally a Fourier integral operator with
canonical relation given by

3M N = {
(y′(x0, ξ̂0, ξ̃0, t̂, t̃), η

′(x0, ξ̂0, ξ̃0, t̂, t̃); x0, ξ̂0 + ξ̃0) :
BM(x0, ξ̂0) = BN(x0, ξ̃0) = ±τ, y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0

}
.

(4.9)

The order equals(n − 1 + c)/4. The amplitude is given to highest order(in coor-
dinates(y′

I , η
′
J, x0) for 3M N, where I, J is a partition of{1,2, . . . ,2n − 1 − c})

by the productBM N(y′
I , η

′
J, x0)wM N;i jkl (y′

I , η
′
J, x0) (respectively,BM N(y′

I , η
′
J, x0)

wM N;0(y′
I , η

′
J, x0)), where

(4.10) |BM N(y
′
I , η

′
J, x0)| =

1

4
τ−2(2π)−

n+1+c
4

∣∣∣∣det
∂(x̂, x̃, t)

∂y

∣∣∣∣
− 1

2

∣∣∣∣∣det
∂(x0, ξ̂0, ξ̃0, t̂, t̃)

∂(x0, y′
I , y′′, η′

J,1τ)

∣∣∣∣∣
1
2

1τ=0 .y′′=0

.

Here we define1τ = τ̂ − τ̃ so that the first constraint in(4.9) reads1τ = 0. The
map(x0, ξ̂0, ξ̃0, t̂, t̃) 7→ (x0, y′

I , y′′, η′
J,1τ) is bijective.

PROOF: The first statement has been argued above. The order of the operator
is given by

χ + K

2
− dim X + dimY′

4
,

whereχ is the degree of homogeneity of the amplitude andK is the number of
phase variables. The factors{wM N;i jkl , wM N;0} are homogeneous of order 2 in the
ξ - and τ -variables; the degree of homogeneity of the factorBM N follows from
(2.22). We find

orderFM N;i jkl = 2 +
(

−2 − | Ĵ| + | J̃| + 2

2
+ n

)

+ | Ĵ| + | J̃| + 1

2
− 3n − 1 − c

4

= n − 1 + c

4
.

We now calculate the amplitude of the Fourier integral operator in Lemma 4.1.
The factorwM N;i jkl is simply multiplicative. Suppose we choose coordinates on
30,M N to be (x̂Î , ξ̂ Ĵ, x̃Ĩ , ξ̃ J̃, τ̂ , τ̃ , x0), with ultimately τ̂ = τ̃ . Defineτ = τ̂+τ̃

2 ,

1τ = τ̂− τ̃ . Using (2.25) and (4.3), we find that the amplitudeBM N(x̂Î , x0, ξ̂ Ĵ, x̃Ĩ ,

ξ̃ J̃, τ ) is given by∣∣BM N(x̂Î , ξ̂ Ĵ, x0, x̃Ĩ , ξ̃ J̃, τ )
∣∣ =
1

4
τ−2(2π)−

n−1
4

∣∣∣∣∣det
∂(x0, ξ̂0, ξ̃0, t̂, t̃)

∂(x̂Î , ξ̂ Ĵ, x̃Ĩ , ξ̃ J̃, τ, x0,1τ)

∣∣∣∣∣
1
2

.
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The transformation from(x̂, x̃, t)- to y-coordinates in the Fourier integral (4.7)
induces an additional factor| det ∂(x̂,x̃,t)

∂y |−1/2 (note that for the Fourier integral op-
erators, it would be more natural to transform as a half-density). The amplitude
transforms as a half-density on the canonical relation, and we obtain the factor∣∣∣∣∣det

∂(y′
I , y′′, η′

J)

∂(x̂Î , ξ̂ Ĵ, x̃Ĩ , ξ̃ J̃, τ )

∣∣∣∣∣
1/2

.

The additional factor(2π)−(2+c)/4 arises from the normalization. We find (4.10).
�

Natural coordinates for the canonical relation are given by(x0, ξ̂0, ξ̃0, t̂, t̃) such
thatBM(x0, ξ̂0)−BN(x0, ξ̃0) = 0, y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0. There is a natural density
directly associated with this set, the quotient density. The Jacobian in (4.10) reveals
that the amplitude factor|BM N(y′

I , η
′
J, x0)| is in fact given by the associated half-

density times

1

4
τ−2(2π)−

n+1+c
4

∣∣∣∣∂(x̂, x̃, t)

∂y

∣∣∣∣
−1/2

.

If c = 0 and there are no rays tangent to the acquisition manifold, that is,

(4.11) rank
∂y′′

∂(t̂, t̃)
= 2 ,

then a convenient way to parameterize the canonical relation is by using the phase
directionsα̂ = ξ̂0/‖ξ̂0‖, α̃ = ξ̃0/‖ξ̃0‖ ∈ S

n−1 and the frequencyτ .

4.3 Inversion

Let us now consider the reconstruction of((δci jkl )/ρ, (δρ)/ρ) from the data.
We simplify the notation and collect the medium perturbations into

gα =
(
δci jkl

ρ
,
δρ

ρ

)
.

The forward operator(FM N;i jkl , FM N;0) in the Born approximation is represented
by FM N;α.

Let us consider data from a single pair of modes(M, N) (the general case is
discussed at the end of this section). The standard procedure to deal with the fact
that this inverse problem is overdetermined is to use the method of least squares.
Define the normal operatorNM N;αβ as the product ofFM N;α and its adjointF∗

M N;α,

(4.12) NM N;αβ = F∗
M N;αFM N;β

(no summation overM, N). If NM N;αβ is invertible (as a matrix-valued operator
with indicesαβ), then

(4.13) F−1
M N;α = (NM N)

−1
αβ F∗

M N;β
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(no summation overM, N) is a left inverse ofFM N;α that is optimal in the sense of
least squares.1

The properties of the composition (4.12) depend on those of3M N . LetπY′ and
πX be the projection mappings of3M N to T∗Y′ \ 0 andT∗X \ 0, respectively.
We will show that under the following assumptionNM N;αβ is a pseudodifferential
operator, so that the problem of invertingNM N;αβ reduces to a finite-dimensional
problem for each(x, ξ) ∈ πX(3M N).

Assumption5. The projectionπY′ of 3M N on T∗Y′ \ 0 is an embedding; i.e., it is

(i) immersive,
(ii) injective, and

(iii) proper.

This assumption appears in Guillemin [12], and is sometimes referred to as
the Bolker condition. It implies that the image ofπY′ is a submanifold,L say, of
T∗Y′ \0. Let us discuss these requirements, starting with the first. Using that3M N

is a canonical relation, we have the following:

LEMMA 4.3 The projectionπY′ of3M N on T∗Y′ \ 0 is an immersion if and only
if the projectionπX of3M N on T∗X \ 0 is a submersion. In this case the image of
πY′ is locally a co-isotropic submanifold of T∗Y′ \ 0.

PROOF: This is a property of Lagrangian manifolds. It follows from lem-
ma 25.3.6 in Hörmander [18]. We give an independent proof.

The symplectic formsσX andσY′ on T∗X \ 0 andT∗Y′ \ 0, respectively, can
be viewed as 2-forms on3M N . Because3M N is a canonical relation,σY′ = σX on
3M N , and in particular rankσY′ = rankσX. Now considerπX. Clearly, rankσX =
2n if and only if πX is submersive.

ConsiderπY′ . If this projection is immersive, then the image has dimension
n + m, assuming dimT∗Y′ \ 0 = 2m (in this proofm = dimY′ = 2n − 1 − c).
Then rankσY′ is at least 2n, so it must be equal to 2n. On the other hand, if
rankσY′ = 2n, then the tangent space of3M N at that point is given by the span of
a set vectors of the form

{(v1, w1), (v2, w2), . . . , (v2n, w2n), (0, w2n+1), (0, w2n+2), . . . , (0, wn+m)} .
Thewi , i ∈ {1,2, . . . ,2n}, must be linearly independent because rankσY′ = 2n.
Forwi , i ≤ 2n, andwj , j > 2n, we haveσY′(wi , wj ) = 0, so thewj are linearly
independent of thewi . Thewi , i > 2n, must be linearly independent, because
(0, wi ) are basis vectors for the tangent space to3M N . So if rankσY′ = 2n, then
πY′ is an immersion. Because rankσY′ = 2n in that case, the image is locally a
co-isotropic submanifold. �

1Equation (4.12) is for the case where one minimizes the difference with the dataδGM N in
L2 norm‖δGM N − FM N;αgα‖. It can easily be adapted to the case where one minimizes a Sobolev
norm of different order or a weightedL2 norm. This would introduce extra factors in the amplitude.



288 C. C. STOLK AND M. V. DE HOOP

As a consequence, if part (i) of Assumption 5 is satisfied, then we can use
(x, ξ) ∈ T∗X \ 0 as (local) coordinates on3M N . In addition, we need to param-
eterize the subsets of the canonical relation given by(x, ξ) = const; we denote
such local coordinates bye. The new parameterization of3M N is (identifying x0

with x)

(4.14) 3M N = {(y′(x, ξ, e), η′(x, ξ, e); (x, ξ))} .
The results do not depend on the precise definition ofe. As noted before, if

the variables(t̂, t̃) can be solved from the second constraint in (4.9) (cf. equation
(4.11)), then3M N can be parameterized using(x, α̂, α̃, τ ), where(α̂, α̃) are phase
directions. In that case(x, ξ, e) should be related by a coordinate transformation
to (x, α̂, α̃, τ ). In acoustic media (where‖ξ̂0‖ = ‖ξ̃0‖) a suitable choice is the pair
scattering angle/azimuth given by(

arccos(α̂ · α̃), −α̂ + α̃

2 sin(arccos(α̂ · α̃)/2)
)

∈ ]0, π [ × S
n−2

(cf. Burridge and Beylkin [7]). The azimuth, the second component, defines to-
gether withξ the plane spanned by(α̂, α̃). It is not very difficult to show that in
elastic media the scattering angle (the first component) can be used as coordinate
when the slowness sheets are convex, but not always when one of the slowness
sheets fails to be convex.

Remark4.4. We show that the first part of Assumption 5 implies that∂BM
∂ξ
(x, ξ̂0)+

∂BN
∂ξ
(x, ξ̃0) 6= 0; in other words, the group velocities at the scattering point do not

add up to 0. We have seen in Theorem 4.2 that3M N may be parameterized by
(x, ξ̂0, ξ̃0, t̂, t̃), where(ξ̂0, ξ̃0) are such that

BM(x0, ξ̂0) = BN(x0, ξ̃0) = ±τ
(and we have the additional constrainty′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0). The projectionπX

is given by(x, ξ̂0 + ξ̃0). Consider tangent vectors to3M N given by vectorsvξ̂0 and
vξ̃0. They must satisfy

(4.15) vξ̂0 · ∂BM

∂ξ
(x, ξ̂0) = vξ̃0 · ∂BN

∂ξ
(x, ξ̃0) = ±vτ .

So if ∂BM
∂ξ
(x, ξ̂0) = − ∂BN

∂ξ
(x, ξ̃0), then (4.15) implies that(vξ̂0 + vξ̃0) · ∂BM

∂ξ
(x, ξ̂0) =

0, so that the projection of3M N on T∗X \ 0 is not submersive. Ifc = 0 and
rank∂y′′/∂(t̂, t̃) = 2 (no tangent rays), then the constrainty′′ = 0 may be used to
solve for the parameterŝt andt̃ , and (4.15) is the only condition on(ξ̂0, ξ̃0). In that
case∂BM

∂ξ
(x, ξ̂0) 6= − ∂BN

∂ξ
(x, ξ̃0) implies that the projection is submersive. In other

cases the set of(ξ̂0, ξ̃0) is in general a smaller subset ofT∗
x X \ 0 × T∗

x X \ 0.

Let us now discuss the second and third parts of Assumption 5. The second part
is a well-known condition; see Hansen [13] and Ten Kroode et al. [21]. Essentially
the condition is that there are no two different singularities ingα mapped to the
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same position inT∗Y′ \ 0. For an analysis of the case where this condition is
violated, see Stolk [27].

The definition ofproper is that the preimage of a compact set is a compact
set. So assume we have a compact subset ofT∗Y′ \ 0. The elements of3M N

correspond to those “points” where the source and receiver rays intersect. The set
of these points can be written as a set on which some continuous function vanishes.
Therefore this set is closed. It is also bounded, and hence it is compact. So the third
part of the assumption is automatically satisfied.

When constructing the composition (4.12) there is a subtlety that we have to
take into account, namely, that the linearized forward operator is onlymicrolocally
a Fourier integral operator. To make it globally a Fourier integral operator, we
apply a pseudodifferential cutoffψ(y′, Dy′) with compact support. Due to the
third part of Assumption 5, the forward operator is then a finite sum of local Fourier
integral operators.

THEOREM 4.5 Let ψ(y′, Dy′) be a pseudodifferential cutoff with conically com-
pact support in T∗Y′ \ 0 such that for the set

(4.16) {(y′, η′; x0, ξ0) ∈ 3M N : (y′, η′) ∈ suppψ} .
Assumptions3, 4, and5 are satisfied. Then

(4.17) F∗
M N;βψ(y

′, Dy′)∗ψ(y′, Dy′)FM N;α

is a pseudodifferential operator of order n− 1. Its principal symbol is given by

NM N;βα(x, ξ) = 1

16
(2π)−n

∫
|ψ(y′(x, ξ, e), η′(x, ξ, e))|2τ−4

× wM N;β(x, ξ, e)wM N;α(x, ξ, e)
∣∣∣∣det

∂(x̂, x̃, t)

∂y

∣∣∣∣
−1

×
∣∣∣∣∣det

∂(x, ξ̂0, ξ̃0, t̂, t̃)

∂(x, ξ, e, y′′,1τ)

∣∣∣∣∣
1τ=0,y′′=0

de,(4.18)

whereτ = τ(x, ξ, e).

PROOF: We use the clean intersection calculus for Fourier integral operators
(see, e.g., Treves [31]) to show that (4.17) is a Fourier integral operator. The canon-
ical relation ofF∗

M N;α is given by

3∗
M N = {(x, ξ ; y′, η′) : (y′, η′; x, ξ) ∈ 3M N} .

Let L = 3∗
M N ×3M N andM = T∗X \ 0 × diag(T∗Y′ \ 0) × T∗X \ 0. We have

to show that the intersection ofL ∩ M is clean, i.e.,

L ∩ M is a manifold,(4.19)

T L ∩ T M = T(L ∩ M) .(4.20)
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It follows from Assumption 5(ii) thatL ∩ M must be given by

(4.21) L ∩ M = {(x, ξ, y′, η′, y′, η′, x, ξ) : (y′, η′; x, ξ) ∈ 3M N} .
Because3M N is a manifold, this set satisfies (4.19). The property (4.20) follows
from the assumption that the mapπY′ is immersive. The excess is given by

E = dimT∗X \ 0 × T∗Y′ \ 0 × T∗Y′ \ 0 × T∗X \ 0 + dim(L ∩ M)

− dim L − dim M = n − 1 − c .(4.22)

Taking into account the pseudodifferential cutoffψ(y′, Dy′), it follows that (4.17)
is a Fourier integral operator. The canonical relation

3∗
M N ◦3M N of F∗

M N;βψ
∗ψFM N;α

is contained in the diagonal ofT∗X \ 0 × T∗X \ 0, so it is a pseudodifferential
operator. The order is given byE/2 + 2 order(FM N;α) = n − 1 (note thatc drops
out).

We writeψ(y′, Dy′)∗ψ(y′, Dy′) = ∑
i χ

(i )(y′, Dy′), where the symbolsχ(i )(y′,
η′) have small enough support, so that the distribution kernel ofχ(i )(y′, Dy′)FM N;α
can be written as the oscillatory integral

(4.23) χ(i )(y′, Dy′)FM N;α(y′, x) = (2π)−
3n−1−c

4 − |J|
2

∫
χ(i )(y′

I , η
′
J, x)

× BM N(y
′
I , η

′
J, x)wM N;α(y′

I , η
′
J, x)ei(S(i )M N (y

′
I ,x,η

′
J )+〈η′

J ,y
′
J 〉) dη′

J ,

whereψ(i )(y′
I , η

′
J, x) = ψ(i )(y′

I , y′
J(y

′
I , η

′
J, x), η′

I (y
′
I , η

′
J, x), η′

J). We can write
8
(i )
M N(y

′, x, η′
J) = S(i )M N(y

′
I , x, η′

J) + 〈η′
J, y′

J〉 (cf. (2.18) and (4.2)). We do not
indicate the dependence ofJ on i explicitly. The distribution kernel of the normal
operator is then given by a sum of terms∫

(ψ(y′, Dy′)FM N;β(y′, x))(ψ(y′, Dy′)FM N;α(y′, x0))dy′

= (2π)−
3n−1−c

2 −|J|∑
i

∫
χ(i )(y′

I , η
′
0,J, x0)

× BM N(y′
I , η

′
J, x)BM N(y

′
I , η

′
0,J, x0)wM N;β(y′

I , η
′
J, x)wM N;α(y′

I , η
′
0,J, x0)

× ei(S(i )M N (y
′
I ,x0,η

′
0,J )−S(i )M N (y

′
I ,x,η

′
J )+〈η′

0,J ,y
′
J 〉−〈η′

J ,y
′
J 〉) dη′

0,J dη′
J dy′ .

We now apply the method of stationary phase and integrate out the variablesy′
J

andη′
0,J . For the remaining variables we use

S(i )M N(y
′
I , x0, η

′
J)− S(i )M N(y

′
I , x, η′

J) = 〈x − x0, ξ(y
′
I , η

′
J, x0)〉 + O(|x − x0|2) .



SEISMIC INVERSE SCATTERING 291

Thus we find (to highest order)

(2π)−
3n−1−c

2

∑
i

∫
χ(i )(y′

I , η
′
J, x)2|BM N(y

′
I , η

′
J, x)|2wM N;β(y′

I , η
′
J, x)

× wM N;α(y′
I , η

′
J, x)ei〈x−x0,ξ(y′

I ,η
′
J ,x0)〉 dη′

J dy′
I .

We now change variables(x, y′
I , η

′
J) → (x, ξ, e) and use (4.10). We sum overi

and arrive at

NM N;βα(x, x0) = (2π)−2n

16

∫
|ψ(y′(x, ξ, e), η′(x, ξ, e))|2τ−4

× wM N;β(x, ξ, e)wM N;α(x, ξ, e)
∣∣∣∣det

∂(x̂, x̃, t)

∂y

∣∣∣∣
−1

×
∣∣∣∣∣det

∂(x, ξ̂0, ξ̃0, t̂, t̃)

∂(x, ξ, e, y′′,1τ)

∣∣∣∣∣
1τ=0,y′′=0

ei〈x−x0,ξ 〉 dξ de.(4.24)

It follows that the principal symbol ofNM N;βα is given by (4.18). �

So far we have focused on inversion of data from one pair of modes(M, N).
Often data will be available for some subsetSof all possible pairs of modes. Define
the normal operator for this case as

Nαβ =
∑

(M,N)∈S

F∗
M N;αFM N;β =

∑
(M,N)∈S

NM N;αβ .

If all the NM N;αβ are pseudodifferential operators, thenNαβ is also a pseudodiffer-
ential operator. A left inverse is now given by

N−1
αβ F∗

β ,

whereF∗
β is the vector of Fourier integral operators containingF∗

M N;β, (M, N) ∈ S.

5 Symplectic Geometry of the Data

In the previous section we saw that the wavefront set of the modeled data cannot
be arbitrary. This is due to the redundancy in the data: In the Born approximation
the singular part of the medium parameters is a function ofn variables, while the
data is a function of 2n − 1 − c variables. This redundancy is employed in the
parameter reconstruction and is important in the reconstruction of the background
medium (or the medium above the interface in the case of a smooth jump) as well.
This will be explained below.

Consider again the canonical relation3M N . Suppose Assumption 5 is satisfied.
In this section we will denote by� the map

� : (x, ξ, e) 7→ (y′(x, ξ, e), η′(x, ξ, e)) : T∗X \ 0 × E → T∗Y′ \ 0
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3M N

πX (submersion) πY (immersion)

T∗X \ 0
ε

T∗Y′ \ 0

(x, ξ)eL
πX ◦ π−1

Y

FIGURE 5.1. Visualization of the symplectic structure of3M N (cone
structure omitted).

introduced above (4.14). This map conserves the symplectic form ofT∗X \0. That
is, if wxi = ∂(y′, η′)/∂xi and similarly forwξi andwei , we have

σY′(wxi , wxj ) = σY′(wξi , wξj ) = 0 ,

σY′(wξi , wxj ) = δi j ,

σY′(wei , wxj ) = σY′(wei , wξj ) = σY′(wei , wej ) = 0 .(5.1)

The(x, ξ, e) are “symplectic coordinates” on the projection of3M N ontoT∗Y′ \0,
which is a subsetL of T∗Y′ \ 0.

The imageL of the map� is co-isotropic, as noted in Lemma 4.3. The sets
(x, ξ) = const are the isotropic fibers of the fibration of Hörmander [17] described
in theorem 21.2.6; see also theorem 21.2.4. Duistermaat [10] calls them character-
istic strips (see theorem 3.6.2). We have sketched the situation in Figure 5.1. The
wavefront set of the data is contained inL and is a union of fibers.

Using the following result, we can extend the coordinates(x, ξ, e) to symplectic
coordinates on an open neighborhood ofL.

LEMMA 5.1 Let L be an embedded co-isotropic submanifold of T∗Y′ \ 0 with
coordinates(x, ξ, e) such that(5.1) holds. DenoteL 3 (y′, η′) = �(x, ξ, e). We
can find a homogeneous canonical map G from an open part of T∗(X × E) \ 0 to
an open neighborhood ofL in T∗Y′ \ 0 such that G(x,e, ξ, ε = 0) = �(x, ξ, e).

PROOF: The ei can be viewed as (coordinate) functions onL. We will first
extend them to functions on the wholeT∗Y′ \ 0 such that the Poisson brackets
{ei ,ej } satisfy

(5.2) {ei ,ej } = 0 , 1 ≤ i, j ≤ m − n ,

wherem = dimY′ = 2n−c−1. This can be done successively fore1,e2, . . . , em−n

by the method that we describe now; see the proof of theorem 3.3 in Treves [31,



SEISMIC INVERSE SCATTERING 293

chap. 7] or the proof of theorem 3.5.6 in Duistermaat [10]. Suppose we have ex-
tendede1,e2, . . . ,el ; we extendel+1. In order to satisfy (5.2)el+1 has to be a
solutionu of

Hei u = 0 , 1 ≤ i ≤ l ,

whereHei is the Hamilton field associated with the functionei , with initial condi-
tion on some manifold transversal to theHei . For any(y′, η′) ∈ L the covectors dei ,
1 ≤ i ≤ l , restricted toT(y′,η′)L are linearly independent, so theHei are transver-
sal toL, and they are linearly independent moduloL. So we can give the initial
conditionu|L = el+1 and even prescribeu on a larger manifold, which leads to
nonuniqueness of the extensionsei .

We now havem − n commuting vector fieldsHei that are transversal toL and
linearly independent on some open neighborhood ofL. The Hamilton systems
with parametersεi read

∂y′
j

∂εi
= ∂ei

∂η′
j

(y′, η′) ,
∂η′

j

∂εi
= − ∂ei

∂y′
j

(y′, η′) , 1 ≤ i, j ≤ m − n .

Let G(x,e, ξ, ε) be the solution for(y′, η′) of the Hamilton systems combined
with initial value (y′, η′) = �(x, ξ, e) with “flowout parameters”ε. This gives a
diffeomorphic map from a neighborhood of the setε = 0 in T∗(X × E) \ 0 to a
neighborhood ofL in T∗Y′ \0. One can check from the Hamilton systems that this
map is homogeneous.

It remains to check the commutation relations. The relations (5.1) are valid for
anyε, because the Hamilton flow conserves the symplectic form onT∗Y′ \ 0. The
commutation relations for∂(y′, η′)/∂εi follow, using that∂(y′, η′)/∂εi = Hei . �

Let MM N be the canonical relation associated to the mapG we just constructed,
i.e., MM N = {(G(x,e, ξ, ε); x,e, ξ, ε)}. We now construct a Maslov-type phase
function for MM N that is directly related to a phase function for3M N . Suppose
(y′

I , η
′
J, x) are suitable coordinates for3M N (ε = 0). Forε small, the constant-ε

subset ofMM N can be coordinatized by the same set of coordinates; thus we can
use coordinates(y′

I , η
′
J, x, ε) on MM N . Now there is a functionSM N(y′

I , x, η′
J, ε)

(see theorem 4.21 in Maslov and Fedoriuk [23]) such thatMM N is given by

y′
J = −∂SM N

∂η′
J

, η′
I = ∂SM N

∂y′
I

, ξ = −∂SM N

∂x
, e = ∂SM N

∂ε
.

Thus a phase function forMM N is given by

(5.3) 9M N(y
′, x,e, η′

J, ε) = SM N(y
′
I , x, η′

J, ε)+ 〈η′
J, y′

J〉 − 〈ε,e〉 .
A Maslov-type phase function for3M N then follows as

8M N(y
′, x, η′

J) = 9M N

(
y′, x,

∂SM N

∂ε

∣∣∣∣
ε=0

, η′
J,0

)
= SM N(y

′
I , η

′
J, x,0)+ 〈η′

J, y′
J〉 .
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6 Modeling: Joint Formulation

In this section we match the expression for the data modeled using the smooth
jump (Kirchhoff) approximation to the expressions for the Born modeled data we
obtained in Section 4. The smooth medium above the interface plays the role of
the background medium in the Born approximation.

From Theorem 3.1 it follows that reflection of an incidentN-mode with cov-
ector ξ̃0 into a scatteredM-mode with covector̂ξ0 can take place if the frequen-
cies are equal and̂ξ0 + ξ̃0 is normal to the interface. In other words,ξ̂0 + ξ̃0

must be in the wavefront set of the singular function of the interface,δ(zn(x)).
Given ξ̃0 and ξ̂0, one can identifyµ(M) and ν(N) and define (at least to high-
est order) the reflection coefficient as a function of(x, ξ̂0, ξ̃0), Rprin

M N(x, ξ̂0, ξ̃0) =
Rprin
µ(M),ν(N)(z

′(x), ζ ′(ξ̃0), τ ). This factor can now be viewed as a function of coor-
dinates(y′

I , x, η′
J) or of coordinates(x, ξ, e) on3M N (strictly speaking, defined

only for x in the interface andξ normal to the interface). To highest order it does
not depend on‖ξ‖ and is simply a function of(x,e).

We obtain the following result, which is a generalization of the Kirchhoff ap-
proximation. The normalization factor‖ ∂zn

∂x ‖ of theδ-function is such that integral∫ ‖ ∂zn
∂x ‖δ(zn(x))dx is an integral over the surfacezn = 0 with Euclidean surface

measure inx-coordinates.

THEOREM 6.1 Suppose Assumptions1, 2, 3, and4 are satisfied, microlocally for
the relevant part of the data. Let8M N(y′, x, η′

J) andBM N(y′
I , x, η′

J) be phase and
amplitude, respectively, as in Theorem4.2, but now for the smooth medium above
the interface. The data modeled with the smooth jump model is given microlo-
cally by

(6.1) Grefl
M N(y

′) = (2π)−
|J|
2 − 3n−1−c

4

×
∫ (BM N(y

′
I , x, η′

J)2iτ(η′)RM N(y
′
I , x, η′

J)+ lower-order terms
)

× ei8M N (y′,x,η′
J )

∥∥∥∥∂zn

∂x

∥∥∥∥δ(zn(x))dη
′
J dx ;

i.e., by a Fourier integral operator with canonical relation3M N and ordern−1+c
4 −

1 acting on the distribution‖∂zn/∂x‖δ(zn(x)).

PROOF: We write the distribution kernel of the reflected data (3.3) in a form
similar to (4.1). First, recall the reciprocal expression for the Green’s function
(2.24),

GN(x(z), x̃, t0) =
(2π)−

| J̃|+1
2 − 2n+1

4

∫
AN(x̃Ĩ , x(z), ξ̃ J̃, τ )e

iφN (x̃,x(z),t0,ξ̃ J̃ ,τ ) dξ̃ J̃ dτ .
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By using Theorem 3.1 and doing an integration over at- and aτ -variable, one finds
that the Green’s function for the reflected part is given by

Grefl
M N(x̂, x̃, t) = (2π)−

| Ĵ|+| J̃|+1
2 −n

∫
zn=0

(
2iτAM(x̂Î , x(z), ξ̂ Ĵ, τ )

× AN(x̃Ĩ , x(z), ξ̃ J̃, τ )Rµ(M)ν(N)(z, ζ
′, τ )+ lower-order terms

)

× ei8M N (x̂,x̃,t,x(z),ξ̂ Ĵ ,ξ̃ J̃ ,τ )

∣∣∣∣det
∂x

∂z

∣∣∣∣
∥∥∥∥∂zn

∂x

∥∥∥∥dξ̂ Ĵ dξ̃ J̃ dτ dz′ ,

whereζ ′ depends on(x(z), ξ̃0) (the indicesµ andν for the reflection coefficients
are explained in Section 3). The integration

∫
dz′ is now replaced by

∫
δ(zn)dz.

The latter can be transformed back to an integral overx. Thus we obtain

(2π)−
| Ĵ|+| J̃|+1

2 −n
∫ (

2iτAM(x̂Î , x, ξ̂ Ĵ, τ )AN(x̃Ĩ , x, ξ̃ J̃, τ )

× Rµ(M)ν(N)(z(x), ζ
′(ξ̃J, x), τ )+ lower-order terms

)
× ei8M N (x̂,x̃,t,x,ξ̂ Ĵ ,ξ̃ J̃ ,τ )

∥∥∥∥∂zn

∂x

∥∥∥∥ δ(zn(x))dξ̂ Ĵ dξ̃ J̃ dτ dx .

This formula is very similar to (4.1), only the amplitude is different and

δci jkl (x)

ρ(x)
and

δρ(x)

ρ(x)

are replaced by theδ-function‖∂zn/∂x‖δ(zn(x)). Also, the factorswM N;i jkl and
wM N;0 depend only on the background medium, whileRµ(M)ν(N) depends on the
total medium. The phase function8M N now comes from the smooth medium
above the reflector.

The data is modeled byGrefl
M N(x̂, x̃, t) with (x̂, x̃, t) in the acquisition manifold,

as explained following Lemma 4.1. We follow the approach of Section 4 and do a
coordinate transformation(x̂, x̃, t) 7→ (y′, y′′) such that the acquisition manifold
is given byy′′ = 0. It follows that under Assumptions 3 and 4, the data is the
image of a Fourier integral operator acting on‖∂zn/∂x‖δ(zn(x)) and that it is given
by (6.1). �

7 Inverse Scattering Revisited

In this section we present the main results of the paper. We first construct a
Fourier integral operator and a reflectivity function, which is a function of subsur-
face position and the additional coordinatee. The data is modeled by letting the
Fourier integral operator act on the reflectivity. The construction is such that this
Fourier integral operator is invertible. We discuss its inverse. Finally, a set of pseu-
dodifferential operators is constructed that annihilates the data if the smooth part
of the medium above the reflector is correctly chosen.
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7.1 Invertible Transformation into Subsurface Coordinates

We now construct the reflectivity function and the operator that maps it to seis-
mic data. This is done by applying the results of Section 5 to the Kirchhoff model-
ing formula (6.1) and its equivalent in the Born approximation (4.1).

THEOREM 7.1 Suppose microlocally Assumptions1, 2, 3, 4, and 5 are satisfied.
Let HM N be the Fourier integral operator with canonical relation given by the
extended map(x, ξ, e, ε) 7→ (y′, η′) constructed in Section5 and with amplitude
to highest order given by(2π)

n
2 (2iτ)BM N(y′

I , x, η′
J, ε) such thatBM N(ε = 0) is as

given in Theorem4.2. Then the data, in both Born and Kirchhoff approximations,
is given by HM N acting on a distribution rM N(x,e) of the form

(7.1) r M N(x,e) = (pseudo)(x, Dx,e)(distribution)(x) .

For the Kirchhoff approximation this distribution equals‖∂zn/∂x‖δ(zn(x)), while
the principal symbol of the pseudodifferential operator equals RM N(x,e), so to
highest order rM N(x,e) = RM N(x,e)‖∂zn/∂x‖δ(zn(x)). For the Born approxi-
mation the function rM N(x,e) is given by a pseudodifferential operator acting on
(
δci jkl

ρ
,
δρ

ρ
)α, with principal symbol(2iτ(x, ξ, e))−1wM N;α(x, ξ, e); see(4.3).

PROOF: We do the proof for the Kirchhoff approximation using (6.1); for the
Born approximation the proof is similar. Since Assumption 5 is satisfied, the pro-
jectionπY′ of 3M N into T∗Y′ \ 0 is an embedding, and the image is a co-isotropic
submanifold ofT∗Y′ \ 0. Therefore we can apply Lemma 5.1. Formula (5.3)
implies that the phase factor ei8M N can be written in the form

ei8M N (y′
I ,x,η

′
J ) = ei(SM N (y′

I ,x,η
′
J ,0)+〈y′

J ,η
′
J 〉)

= (2π)−(n−1−c)
∫

ei(SM N (y′
I ,x,η

′
J ,ε)+〈y′

J ,η
′
J 〉−〈e,ε〉) dε de;

we define

9M N(y
′, x,e, η′

J, ε) = SM N(y
′
I , x, η′

J, ε)+ 〈y′
J, η

′
J〉 − 〈e, ε〉 .

Thus the number of phase variables is increased by making use of a stationary-
phase argument.

LetBM N(y′
I , x, η′

J, ε) be as described. Then we obtain

(7.2) Grefl
M N(y

′) = (2π)−
|J|+n−1−c

2 − 2n−1−c
2

×
∫ (

(2π)
n
2 2iτ(η′)BM N(y

′
I , x, η′

J, ε)RM N(x,e)+ lower-order terms
)

× ei9M N (y′,x,e,η′
J ,ε)

∥∥∥∥∂zn

∂x

∥∥∥∥ δ(zn(x))dη′
J dε dx de.

In this formula, the data is represented as a Fourier integral operator acting on
‖ ∂zn
∂x ‖δ(zn(x)) considered as a function of(x,e). Multiplying by H−1

M N gives a
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pseudodifferential operator of the form described acting on‖ ∂zn
∂x ‖δ(zn(x)). Thus

we obtain the result. �

Remark7.2. It is implicitly assumed thatB(y′
I , x, η′

J, ε) vanishes outside a conic
(η′, ε) neighborhood of{(y′

I , x, η′
J) ∈ suppBM N(y′

I , x, η′
J)}×{ε = 0} (cf. (4.10)).

The operatorHM N is defined microlocally on a neighborhood ofL, and its inverse
on a neighborhood of{ε = 0}.
7.2 The Inversion Operator

The operatorHM N is invertible. A choice of phase function and amplitude for
its inverse is given by (see Treves [31, chap. 8])

−9M N(y
′, x,e, η′

J, ε) , BM N(y
′
I , x, η′

J, ε)
−1

∣∣∣∣det
∂(y′, η′)

∂(y′
I , x, η′

J, ε)

∣∣∣∣ ,
respectively. Thus microlocally an explicit expression forr M N(x,e) in terms of the
data is given by

r M N(x,e) =
∫

BM N(y
′
I , x, η′

J, ε)
−1

∣∣∣∣det
∂(y′, η′)

∂(y′
I , x, η′

J, ε)

∣∣∣∣(7.3)

× e−i9M N (y′,x,e,η′
J ,ε)dM N(y

′)dη′
J dε dy′ .

Since the functionr M N(x,e) is to highest order equal to the product of the
reflection coefficient and the singular function of the reflector surface, this recon-
struction of the functionr M N(x,e) leads to the following result for Kirchhoff data:

COROLLARY 7.3 Suppose that the medium in between the acquisition manifold
and the reflector is known and satisfies Assumptions1, 2, 3, 4, and 5. Then one
can reconstruct the position of the interface and the angle-dependent reflection
coefficient Rµν(x,e) on the interface.

The precise reconstruction assumes mode-decoupled and single-scattered data.
To ensure that the data can be mode decoupled requires maximal acquisition geom-
etryc = 0. Of course, the reflection coefficientRµν(x,e) can only be reconstructed
for values ofe that are associated with rays connected to sources and receivers in
the acquisition manifold. In general, a finite set of values ofe is required to recon-
struct the medium jump.

The motivation for Lemma 5.1 can be explained in casee is chosen to be the
scattering angle/azimuth. Suppose there is high-frequency data that is not from a
given model. In the Kirchhoff case this may be because the medium above the
interface is not correctly chosen or because the data cannot be modeled at all by
Kirchhoff modeling. To such data there is no natural value of the scattering an-
gle/azimuth associated. So to transform it to(x,e)-coordinates, the value ofemust
be chosen. This is precisely the choice that we have in the proof of Lemma 5.1,
where the functione(y′, η′) on T∗Y′ \ 0 is chosen.
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7.3 Annihilators of the Data
The result of the previous subsections gives information on the problem of re-

constructing the smooth background medium (or, in the Kirchhoff approximation,
the smooth medium parameters above/in between the interfaces). Ifn− 1− c > 0,
there is a redundancy in the data through the variablee. If the smooth medium
parameters (above the interface) are correct, then applying the operatorH−1

M N of
Theorem 7.1 to the data results in a reflectivity functionr M N(x,e) such that the
position of the singularities does not depend one. The fact that the inverted data
should “line up” in the variablee can be used as a criterion to assess the accuracy
of the background medium.

One way to measure how well the data line up is by taking the derivative with
respect toe. If r M N(x,e) depends smoothly one as in (7.1), then∂

∂er M N(x,e) is
one order less singular than if it does not have this smooth dependence one (for
instance, aδ-function versus its derivative in the Kirchhoff case). Taking also the
factor in front of theδ-function of r M N into account (see (7.1)), we obtain that to
the highest two orders

(7.4)

(
RM N(x,e)

∂

∂e
− ∂Rprin

M N

∂e
(x,e)

)
r M N(x,e) = 0 .

If RM N(x,e) is nonzero, then the lower-order terms can be chosen such that this
equation is valid to all orders.

Conjugating the differential operator of (7.4) with the invertible Fourier integral
operatorHM N , we obtain a pseudodifferential operator onD′(Y′). Thus we obtain
the following corollary of Theorem 7.1:

COROLLARY 7.4 Let the pseudodifferential operators WM N(y′, Dy′) be given by

WM N(y
′, Dy′) = HM N

(
RM N(x,e)

∂

∂e
− ∂RM N

∂e
(x,e)

)
H−1

M N .

Then for Kirchhoff data dM N(y′) we have to the highest two orders

(7.5) WM N(y
′, Dy′)dM N(y

′) = 0 .

For values of e where RM N(x,e) 6= 0, the operator WM N(y′, Dy′) can be chosen
such that(7.5) is valid to all orders.

In principle the operatorsWM N(y′, Dy′) can be used to obtain a quantitative cri-
terion of how well the data line up. Symes [28] discusses such criteria for acoustic
media using the offset coordinate.

Appendix: Notation

We use the Einstein summation convention (summation over repeated indices)
unless explicitly mentioned. We use the notationQ(x, D) for a pseudodifferential
operator with symbolQ(x, ξ), Q(x, x0) for its distribution kernel, andQprin(x, ξ)
for its principal symbol.
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Index of Notation
General
δi j Kronecker delta
n p. 261
x p. 261
X ⊂ R

n p. 261
t p. 262
Y′, y′ ∈ Y′ p. 262
z = (z′, zn) p. 276
e ∈ E p. 288
ξ, η, ζ, τ, ε cotangent vectors

for x, y, z, t,e
πX, πY′ p. 287

Field Quantities
ρ(x) p. 265
ci jkl (x) p. 265
δci jkl (x), δρ(x) p. 281
gα(x) p. 286
ui (x, t) p. 266
fi (x, t) p. 266
uM (x, t), fM (x, t) p. 266
uM,±(x, t), fM,±(x, t) p. 269
Va(x, t) p. 277
Vµ(x, t) p. 278
dM N(y

′) p. 297
r M N(x, e) p. 296

Subscripts
i, j, k, l pp. 261, 265
M, N p. 266
I , J p. 270
xI p. 270
a p. 277
µ, ν p. 276

Pseudodifferential Operators
Pil p. 266
Ail p. 266
Qi M (x, D) p. 266
PM (x, D) p. 266
AM (x, D) p. 267
BM (x, D) p. 269
R0
µν(z, Dz′ , Dt ) p. 277

Rµν(z, Dz′ , Dt ) p. 277
NM N;αβ(x, D) p. 286
WM N(y

′, Dy′) p. 298

FIOs and Related
xM (x0, ξ0, t), ξM (x0, ξ0, t) p. 270
CM,±,CM pp. 270, 271
φM,±, φM p. 271
AM,±(xI , . . . ),AM (. . . ) p. 271
GM p. 269
GM,± p. 270
δGil , δGM N p. 282
FM N;i jkl , FM N;0 p. 284
FM N;α p. 286
8M N p. 282
BM N , wM N;i jkl , wM N;0 p. 282
30,M N p. 283
3M N p. 285
L p. 287
MM N p. 293
9M N p. 293
HM N p. 296
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