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Abstract

For scalar semilinear wave equations, we analyze the interaction of two (distorted) plane waves at an interface between media of 
different nonlinear properties. We show that new waves are generated from the nonlinear interactions, which might be responsible 
for the observed nonlinear effects in applications. Also, we show that the incident waves and the nonlinear responses determine 
the location of the interface and some information of the nonlinear properties of the media. In particular, for the case of a jump 
discontinuity at the interface, we can determine the magnitude of the jump.
© 2018 
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1. Introduction

Let g be a smooth Riemannian metric on R3. In local coordinates x = (x1, x2, x3), the (positive) Laplace–Beltrami 
operator is given by

!g = − 1√
detg

3∑

i,j=1

∂

∂xi
(
√

detggij ∂

∂xj
).

We shall work with the associated wave operator

P = ∂2
t + !g.

However, one can consider P with lower order perturbations to which the results of this work apply as well. For 
example, one can consider wave operators with variable sound speed and density
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P̃ = ∂2
t − c2(t, x)ρ(t, x)∇ · ( 1

ρ(t, x)
∇u),

where c(t, x) is the sound speed and ρ(t, x) is the density of the medium.
Consider the following semilinear wave equation

Pu(t, x) + a(t, x)u2(t, x) = 0, in (−∞ × T ) × R3,

u(t, x) = u0(t, x), in (−∞,0) × R3,
(1.1)

with T > 0. Suppose that the incident wave u0 consists of progressing plane waves with conormal singularities to two 
characteristic surfaces S1 and S2 for P which do not intersect for t < 0. When a is smooth and the spatial dimension 
is two, the interaction of waves was studied in Bony [3], Melrose–Ritter [21] and others. In particular, as a special 
case of [21, Theorem 1], we know that the solution is conormal to S1 and S2 after the interaction and no new wave is 
produced. Melrose and Ritter [21, Theorem 2] showed that the interaction of three progressing waves could generate 
new waves. Explicit examples when the new waves are indeed produced have been constructed by various authors; 
see Rauch–Reed [24] and the text book by Beals [2]. For a smooth and spatial dimension three, such phenomena have 
also been analyzed and the newly generated waves have played an important role in the inverse problem for nonlinear 
hyperbolic equations in [17,18,20].

In this work, we are interested in the interactions of two progressive waves at an interface of media with difference 
nonlinear properties. In particular, we assume that a(t, x) has conormal singularities at a co-dimension one subman-
ifold S0 (the interface) of R4 not characteristic for P . A useful example to keep in mind is a(t, x) = a(x) conormal 
to some Y ⊂ R3 regarded as the interface. For example, a(x) or its derivatives have jump discontinuities across Y . If 
S1, S2 and S0 intersect in t ∈ (0, T ) for some T > 0 small, we show in Theorem 4.3 that a new wave is produced due 
to the nonlinear interactions; see Fig. 1 for an illustration of this interaction. In some sense, the nonlinear coefficient 
a(t, x) plays the role of the third wave in the result mentioned above.

The main motivation of our analysis comes from the study of nonlinear interaction of waves related to conormal 
discontinuities (“interfaces”) in the nonlinearities of the elastic moduli in sedimentary rocks. Nonlinear properties of 
such rocks are commonly associated with material damage. Nonlinear properties of solids have been extensively stud-
ied in the laboratory by Rollins, Taylor and Todd [25], Johnson, Shankland, O’Connell and Albricht [15], Johnson 
and Shankland [14], and many others. In the context of this paper, we are concerned with so-called fast nonlinear 
dynamics (Johnson and McCall [13]). Traditionally, the nonlinear interaction, in the absence of singularities in the 
nonlinearities of the elastic moduli, has been studied using monochromatic incident waves aiming to observe the 
generation of combined harmonics; for an early analysis, see Jones and Kobett [16]. (The experimental counterpart 
to our problem in some sense is the one of two incident non-collinear beams generating a new beam at their differ-
ence frequency.) This is also the underlying principle in the scalar-wave formulation – which we consider here – for 
vibro-acoustography [7,8] based on ultrasound-stimulated acoustic emission. However, the use of transient incident 
waves and the generation (emission) of a new transient wave that we analyze, here, has so far not been considered in 
applications and experiments.1 Indeed, the generation of this wave opens new ways for nonlinear imaging in Earth’s 
subsurface, which we elucidate here in the form of an inverse problem. Studying the interaction with conormal singu-
larities in the nonlinearities of the elastic moduli was motivated by the work of Kuvshinov, Smit and Campman [19]. 
In a forthcoming paper, we extend the results of this paper pertaining to scalar waves to the elastic case.

We consider in Section 6 an inverse problem and we apply the results of the previous sections. We send two 
distorted plane waves concentrated along geodesics that meet at the interface. We observe the nonlinear response. We 
show that from this information we can determine the interface and the principal symbol of a(t, x). In particular, in 
the case that a(t, x) has a jump type singularity we can determine the magnitude of the jump. For a precise statement 
of the problem and the results see Theorem 6.1.

The paper is organized as follows. In Section 2, we review the theory for linear wave equations and construct 
distorted plane waves as in [17]. We establish local well-posedness of the nonlinear wave equation with a non-smooth 
nonlinear term in Section 3. In Section 4, we analyze the nonlinear responses after the interactions. In Section 5, 
we compare the linear and nonlinear responses in case the linear operator P also has conormal singularities. We 

1 P.A. Johnson, personal communication.
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Fig. 1. Evolution of two plane waves interacting at an interface. In Figure (i), S1, S2 represent the wave fronts (singular supports) of two progressing 
waves in R3 and S0 represents the singular support of a(t, x). The picture shows the projective view on a plane R2 before the wave meets. The 
arrows indicate the directions of the wave propagation. Figure (ii) shows the intersection of the two waves at S0 before they meet together. The 
dashed surfaces represent the reflected waves. Figure (iii) illustrates various waves during the interaction of the two waves at S0. The wave front 
of the newly generated wave is demonstrated by the disk denoted by $. The figure to the right shows the wave front in R3 which is the surface 
of a cone. Figure (iv) shows the waves after the interaction is complete. The wave front $ actually becomes the surface of a truncated cone in R3

(picture to the right).

demonstrate that the conic wave is a distinctive feature of the nonlinear response. Finally, in Section 6 we formulate 
and study the inverse problem.
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2. The linear wave equation and distorted plane waves

We know (e.g. from [1]) that for the linear wave equation

Pv = (∂2
t + !g)v = f,
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there exists a fundamental solution (causal inverse) Q such that QP = Id on the space of distributions D ′(R4). We 
review the structure of the Schwartz kernel of the causal inverse.

In the following, we use x = (xi)3
i=0 as the local coordinates of R4 with x0 = t . The dual variables in the cotangent 

bundle are denoted by ζ = (τ, ξ), τ ∈ R, ξ ∈ R3. Let p(x, ζ ) = −τ 2 + |ξ |2g∗ be the symbol of P , where g∗ = g−1 =
(gij ) is the dual metric. We denote by (P = {(x, ζ ) ∈ T ∗R4 : p(x, ζ ) = 0} the characteristic set for P and (P,x

.=
(P ∩ T ∗

x R4 for any x ∈ R4. The Hamilton vector field of p(x, ζ ) is denoted by Hp and in local coordinates

Hp =
3∑

i=0

(
∂p

∂ζi

∂

∂xi
− ∂p

∂xi

∂

∂ζi
).

The integral curves of Hp in (P are called null bicharacteristics. Sometimes it is convenient to view these curves on 
the Lorentzian manifold (R4, g̃ = −dt2 + g). Then the set (P consists of light-like vectors of g̃ and the projections 
of null bicharacteristics to R4 are light-like geodesics.

Let Diag = {(x, x′) ∈ R4 × R4 : x = x′} be the diagonal of the product manifold and

N∗Diag = {(x, ζ, x′, ζ ′) ∈ T ∗(R4 × R4)\0 : x = x′, ζ ′ = −ζ }
be the conormal bundle of Diag minus the zero section. By abuse of notations, we let (P = {(x, ζ, x′, ζ ′) ∈ T ∗R4 ×
T ∗R4 : p(x, ζ ) = p(x′, ζ ′) = 0}. Then we define $P to be the Lagrangian submanifold of T ∗(R4 × R4) obtained by 
flowing out N∗Diag ∩ (P under Hp . Here, we also regarded p(z, ζ ) as a function on the product manifold T ∗(R4 ×
R4).

For two Lagrangian submanifolds $0, $1 ⊂ T ∗(R4 × R4) intersecting cleanly at a co-dimension k submanifold 
) .= $0 ∩ $1, the space of paired Lagrangian distributions associated with ($0, $1) is denoted by Ip,l($0, $1), 
see [5,22,12] for details. A useful fact is that for u ∈ Ip,l($0, $1), we have u ∈ Ip+l ($0\)) and u ∈ Ip($1\)) as 
Lagrangian distributions which is recalled in the next paragraph. We know from the results of Melrose–Uhlmann [22]
that the Schwartz kernel of the causal inverse Q = P −1 is a paired Lagrangian distribution in I− 3

2 ,− 1
2 (N∗Diag, $P ). 

From [5, Prop. 5.6], we also know that Q : Hm
comp(R4) → Hm+1

loc (R4) is continuous for m ∈ R.
Let $ be a smooth conic Lagrangian submanifold of T ∗R4\0. Following the standard notation, we denote by Iµ($)

the space of Lagrangian distributions of order µ associated with $, see [11, Definition 25.1.1]. Such distributions can 
be represented locally as follows. For U open in X, let φ(x, ξ) : U × RN → R be a smooth non-degenerate phase 
function that locally parametrizes $ that is, {(x, dxφ) : x ∈ U, dξ φ = 0} ⊂ $. Then u ∈ Iµ($) can be locally written 
as a finite sum of oscillatory integrals

∫

RN

eiφ(x,ξ)a(x, ξ)dξ, a ∈ Sµ+ n
4 − N

2 (U × RN),

where S•(•) denotes the standard symbol class, see [10, Section 18.1]. For u ∈ Iµ($), the wave front set WF(u) ⊂ $

and u ∈ Hs(R4) for any s < −µ − 1. The principal symbol σ (u) of u ∈ Iµ($) is invariantly defined as section of a 
half-density bundle tensored with the Maslov bundle on $, see [11, Section 25.1]. In local coordinates, these bundles 
can be trivialized. We remark that we do not specify the order of the principal symbol in the notation but refer to the 
distribution space for the order.

A class of Lagrangian distributions especially important for our purpose is the one of conormal distributions. For a 
co-dimension k submanifold Y ⊂ R4, the conormal bundle

N∗Y = {(y, ζ ) ∈ T ∗R4\0 : y ∈ Y, ζ |TyY = 0}
is a conic Lagrangian submanifold. The space of conormal distributions to Y of order µ are denoted by Iµ(N∗Y). An 
equivalent definition is that Iµ(N∗Y) consists of u ∈ D ′(R4) such that

L1L2 · · ·LNu ∈ ∞H loc
−µ−1(R

4),

where Li, i = 1, · · · , N are first order differential operators with smooth coefficients tangential to Y and ∞H loc
• (R4)

denotes the Besov space, see [10, Definition 18.2.6] for details. Such distributions can be represented locally as 
oscillatory integrals as well. We know, e.g. from [12, Section 1], that Iµ(N∗Y) ⊂ L

p
loc(R4) for µ < − k

2 + k
p − 1. 
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Fig. 2. Distorted plane waves in R3. The two shaded ovals represent the singular support of f at t = t0 and of v at t = t1 > t0.

Examples of conormal distributions are the delta distribution δY on Y , which is in I
k
2 −1(N∗Y), and a distribution with 

Heaviside type singularity at Y , which is in I− k
2 −1(N∗Y).

We restate [12, Prop. 2.1] for the conormal case below.

Proposition 2.1. Let Y be a submanifold of M such that N∗Y intersects (P transversally and each bicharacteristics 
of P intersects N∗Y a finite number of times. For f ∈ Iµ(N∗Y), we have

v = Q(f ) ∈ Iµ− 3
2 ,− 1

2 (N∗Y,$1)

where $1 = $P ◦ N∗Y is the flow-out from N∗Y ∩ (P . Furthermore, for (x, ζ ) ∈ $1\N∗Y ,

σ (v)(x, ζ ) =
∑

j

σ (Q)(x, ζ, yj ,ηj )σ (f )(yj ,ηj )

where (yj , ηj ) ∈ N∗Y is joined to (x, ζ ) by bicharacteristics.

We use the above proposition to construct distorted plane waves. These are generalizations of progressing plane 
waves but supported near a fixed geodesic. The construction is based on that of [17]. For any (x′, ζ ′) ∈ (P , we 
denote the bicharacteristics from (x′, ζ ′) by .x′,ζ ′ . Their projections to R4 are denoted by γx′,ζ ′ , which are light-like 
geodesics on the Lorentzian manifold (R4, g̃). Here, by abuse of notations, we take ζ ′ to be the tangent vector at 
x′ corresponding to ζ ′ ∈ T ∗

x′R4. This is valid because the non-degenerate metric g induces an isomorphism between 
Tx′R4 and T ∗

x′R4. For s0 > 0 a small parameter, we let

S(x′, ζ ′; s0)
.= {γx′,ζ (θ) ∈ R4 : ζ ∈ (P,x′ ,∥ζ − ζ ′∥ < s0, θ > 0},

where the norm is defined using the positive definite metric ĝ = dt2 + g on R4. Notice that as s0 → 0, S(x′, ζ ′; s0)

tends to the geodesic γx′,ζ ′ . For t0 > 0, we let

Y(x′, ζ ′; t0, s0)
.= S(x′, ζ ′; s0) ∩ {t = t0}, (2.1)

which is a 2-dimensional surface. See Fig. 2. Then we let

$(x′, ζ ′; t0, s0)
.= $P ◦ (N∗S(x′, ζ ′; s0) ∩ N∗Y(x′, ζ ′; t0, s0)) (2.2)

be the flow out. For convenience, we assume that there is no conjugation point on (R3, g). We remark that since 
we essentially consider a local problem in this work, this is not restrictive. Then S(x′, ζ ′; s0) is a co-dimension 1
submanifold near γx′,ζ ′ and

$(x′, ζ ′; t0, s0) = N∗S(x′, ζ ′; s0).

When it is clear from the background, we shall abbreviate the above notations by dropping the dependency on 
x′, ζ ′, t0, s0. For f ∈ Iµ(N∗Y), using Proposition 2.1, we obtain that v = Qf ∈ Iµ− 3

2 ($) away from the subman-
ifold Y . We conclude that v is conormal to S and we call v a distorted plane wave.
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3. Local well-posedness of the nonlinear equation

For T > 0 fixed and ϵ > 0 small, we consider the well-posedness of the inhomogeneous Cauchy problem

Pu(t, x) + a(t, x)u2(t, x) = ϵF(t, x), (0, T ) × X

u(0, x) = ϵf (x), ∂t u(0, x) = ϵg(x).

In this section, we use x ∈ R3 for spatial variables. There is an extensive literature on local and global well-posedness 
of semilinear wave equations, typically for smooth or power-type nonlinear terms, see e.g. Sogge [27]. Here, the 
problem is that we have a non-smooth nonlinear term. If a(t, x) is sufficiently regular, e.g. in H 3(R4) which is 
an algebra, it is relatively straightforward to prove the existence for f, g, F sufficiently regular and ϵ sufficiently 
small, see for example [18, Appendix B]. However, we would like to consider a(t, x) ∈ L∞(R4) which includes 
the jump discontinuity. Then the solution is expected to be of only low regularity. We shall give a well-posedness 
result following the standard argument using Strichartz type estimates. We remark that we do not intend to pursue the 
optimal or general result here.

We recall the Strichartz estimates for the Cauchy problem from [23] valid for the wave operator on compact Rie-
mannian manifolds without boundary. This is sufficient as we only consider the local problem. Consider the solution 
u to the Cauchy problem

(∂2
t + !g)u(t, x) = 0, (0, T ) × R3

u(0, x) = f (x), ∂t u(0, x) = g(x).

Assume that f, g are supported in a compact set K ⊂ R3. For 4 ≤ q < ∞ and 2 ≤ r < ∞, Corollary 3.3 of [23] tells 
that

∥u∥Lr((0,T );Lq(R3)) ≤ CT (∥f ∥H γ (R3) + ∥g∥H γ−1(R3)), (3.1)

with γ = 3(1/2 − 1/q) − 1/r and CT depending on T > 0. Here, the norm of the (inhomogeneous) Sobolev spaces 
are defined by

∥f ∥Hα(R3) = (2π)−
3
2 (

∫

R3

(1 + |ξ |2)α|f̂ (ξ)|2dξ)
1
2 , α ∈ R,

where f̂ denotes the Fourier transform of f . Below, we also need the homogeneous Sobolev space Ḣ α(R3) with norm

∥f ∥Ḣα(R3) = (2π)−
3
2 (

∫

R3

|ξ |2α|f̂ (ξ)|2dξ)
1
2 .

For our purpose, we shall take q = r = 4 in (3.1) so that γ = 1
2 . Then we get

∥u∥L4((0,T )×R3) ≤ CT (∥f ∥
H

1
2 (R3)

+ ∥g∥
H

− 1
2 (R3)

). (3.2)

It is known that the homogeneous Strichartz estimates imply inhomogeneous estimates from a lemma of Christ and 
Kiselev [4]. Consider

(∂2
t + !g)u(t, x) = F(t, x), (0, T ) × R3

u(0, x) = f (x), ut (0, x) = g(x), at t = 0

where f, g, F are supported in K . From [26, Theorem 3.2 ] and (3.2), we get

∥u∥L4((0,T )×R3) ≤ CT (∥f ∥
H

1
2 (R3)

+ ∥g∥
H

− 1
2 (R3)

+ ∥F∥
L

4
3 ((0,T )×R3)

),

with CT a generic constant depending on T . Together with the conservation of energy for linear wave equations

∥u(·, T )∥
Ḣ

1
2 (R3)

+ ∥∂t u(·, T )∥
Ḣ

− 1
2 (R3)

= ∥f ∥
Ḣ

1
2 (R3)

+ ∥g∥
Ḣ

− 1
2 (R3)

,

we obtain
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∥u∥L4((0,T )×R3) + ∥u(·, T )∥
Ḣ

1
2 (R3)

+ ∥∂t u(·, T )∥
Ḣ

− 1
2 (R3)

≤ CT (∥f ∥
H

1
2 (R3)

+ ∥g∥
H

− 1
2 (R3)

+ ∥F∥
L

4
3 ((0,T )×R3)

).
(3.3)

Proposition 3.1. Suppose that f (x) ∈ H
1
2 (R3), g(x) ∈ H− 1

2 (R3), F(t, x) ∈ L
4
3 ((0, T ) × R3) are supported in x ∈

K ⊂⊂ R3. Consider the Cauchy problem

Pu(t, x) + a(t, x)u2(t, x) = ϵF(t, x), (0, T ) × R3

u(0, x) = ϵf (x), ∂t u(0, x) = ϵg(x),
(3.4)

where a ∈ L∞((0, T ) × R3), ϵ ≥ 0. For T > 0 fixed, there exists ϵ0 > 0 so that for ϵ ∈ [0, ϵ0), there is a unique 
solution u such that

(u, ∂t u) ∈ C0((0, T ); Ḣ 1
2 (R3) × Ḣ− 1

2 (R3)) and u ∈ L4((0, T ) × R3).

Moreover, there exists a constant C depending on K, T such that

∥u∥L4((0,T )×R3) ≤ Cϵ(∥f ∥
H

1
2 (R3)

+ ∥g∥
H

− 1
2 (R3)

+ ∥F∥
L

4
3 ((0,T )×R3)

).

For later reference, we shall denote the solution space by

X
.= {f ∈ L4((0, T ) × R3) : (f, ∂t f ) ∈ C0((0, T ); Ḣ 1

2 (R3) × Ḣ− 1
2 (R3))}. (3.5)

Proof. We follow a standard argument in the proof of [27, Theorem 4.1]. Consider the existence part. Let u−1 = 0. 
We define a sequence um, m = 0, 1, 2, · · · by

Pum(t, x) + a(t, x)u2
m−1(t, x) = ϵF(t, x), (0, T ) × R3

um(0, x) = ϵf (x), ∂t um(0, x) = ϵg(x).
(3.6)

It follows from the finite speed of propagation that all um are compactly supported in (0, T ) × R3. Let

Am(T ) = ∥um∥L4((0,T )×R3), Bm(T ) = ∥um − um−1∥L4((0,T )×R3).

We claim that there exists ϵ0 > 0 so that

Am(T ) ≤ 2A0(T ), Bm+1(T ) ≤ 1
2
Bm(T ) if 2A0(T ) ≤ ϵ0.

For m, j = 0, 1, 2, · · · , we obtain from (3.6) that

P(um(t, x) − uj (t, x)) + a(t, x)[u2
m−1(t, x) − u2

j−1(t, x)] = 0, (0, T ) × R3

um(0, x) − uj (0, x) = 0, ∂t [um(0, x) − uj (0, x)] = 0.
(3.7)

It follows from the Strichartz estimates (3.3) and Hölder’s inequality that

∥um − uj∥L4((0,T )×R3) ≤ C∥u2
m−1 − u2

j−1∥
L

4
3 ((0,T )×R3)

≤ C∥um−1 + uj−1∥L2((0,T )×R3)∥um−1 − uj−1∥L4((0,T )×R3)

≤ 1
2
∥um−1 − uj−1∥L4((0,T )×R3),

provided C[∥um−1∥L2((0,T )×R3) +∥uj−1∥L2((0,T )×R3)] ≤ 1
2 . Hereafter, C denotes a generic constant. Suppose that the 

first part of the claim is true. Using the fact that um are compactly supported, we derive

∥um∥L2((0,T )×R3) ≤ C∥um∥L4((0,T )×R3) = CAm(T ) ≤ 2CA0(T ).

If we take ϵ0 = 1/(4C), we proved that Bm(T ) ≤ 1
2Bm−1(T ).

Next we prove by induction that Am(T ) ≤ 2A0(T ). Suppose this is true for Ak(T ), k ≤ m − 1. Taking j = 0 in 
(3.7), we obtain the estimate
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∥um − u0∥L4((0,T )×R3) ≤ 1
2
∥um−1∥L4((0,T )×R3) ≤ A0(T ). (3.8)

It follows easily that ∥um∥L4((0,T )×R3) ≤ 2A0(T ). This completes the proof of the claim.
Now we show that the sequence um converges to u in L4((0, T ) × R3). From the Strichartz estimates for u0

∥u0∥L4((0,T )×R3) ≤ CT ϵ(∥f ∥
H

1
2 (R3)

+ ∥g∥
H

− 1
2 (R3)

+ ∥F∥
L

4
3 ((0,T )×R3)

), (3.9)

we can choose ϵ = ϵ0 to satisfy the requirement in the claim. Then it follows that um converges to some u in L4, 
hence in the sense of distribution. Next, it is straightforward to see that

∥au2
m − au2

m−1∥
L

4
3 ((0,T )×R3)

≤ C∥um + um−1∥L2((0,T )×R3)∥um − um−1∥L4((0,T )×R3)

≤ Cϵ0∥um − um−1∥L4((0,T )×R3) ≤ Cϵ02−m.

Thus au2
m converges to au2 in L

4
3 hence also in the sense of distribution. Thus we proved that u ∈ L4((0, T ) × R3) is 

a weak solution to the Cauchy problem (3.4). It follows from (3.8) and (3.9) that

∥um∥L4((0,T )×R3) ≤ CT ϵ(∥f ∥
H

1
2 (R3)

+ ∥g∥
H

− 1
2 (R3)

+ ∥F∥
L

4
3 ((0,T )×R3)

)

for all m ≥ 1, so the estimates for ∥u∥L4((0,T )×R3) follows.
For the regularity of u, observe that for f, g ∈ C∞

0 (R3), the um defined in (3.6) are all smooth and compactly 
supported. We can slightly modify the argument for the existence part to show that (um, ∂t um) is a Cauchy se-
quence in C0((0, T ); Ḣ 1

2 (R3) × Ḣ− 1
2 (R3)) converging to (u, ∂t u) ∈ C0((0, T ); Ḣ 1

2 (R3) × Ḣ− 1
2 (R3)). Finally, for 

f ∈ H
1
2 (R3), g ∈ H− 1

2 (R3), we use approximation by compactly supported functions to conclude that the solution 
u ∈ X .

At last, consider the uniqueness of the solution. Suppose that u, w are two solutions and let U = u − w. Then we 
have

PU + a(t, x)(u + w)U = 0, (0, T ) × R3

U = 0, ∂tU = 0.

The Strichartz estimates (3.3) imply that

∥U∥L4((0,T )×R3) ≤ C(∥u∥L2 + ∥v∥L2)∥U∥L4((0,T )×R3) ≤ Cϵ0∥U∥L4((0,T )×R3).

If ∥U∥L4((0,T )×R3) ≠ 0, we reach a contradiction when ϵ0 is sufficiently small. Thus the solution is unique in 
L4((0, T ) × R3). ✷

We also obtain the following asymptotic expansion.

Corollary 3.2. Let f ∈ Iµ(N∗Y) be the (compactly supported) source function constructed in the end of Section 2. 
Also, take µ < − 1

2 so that f (t, x) ∈ L
4
3 ((0, T ) × R3). Consider

Pu(t, x) + a(t, x)u2(t, x) = ϵf (t, x), (0, T ) × R3

u(0, x) = 0, ∂t u(0, x) = 0, (−∞,0) × R3 (3.10)

where a ∈ L∞((0, T ) × R3), ϵ ≥ 0. For T > 0 fixed, there exists ϵ0 > 0 so that for ϵ ∈ [0, ϵ0), there is a unique 
solution u ∈ L4((0, T ) × R3) and u has the following expansion

u = ϵv + ϵ2w + h,

where v = Q(f ) ∈ L4((0, T ) × R3) is the distorted plane wave, w = −Q(av2) ∈ L4((0, T ) × R3) and h = O(ϵ3) in 
L4((0, T ) × R3).
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Proof. The statements about v and w follow from the Strichartz estimates for P . Now let h = u − ϵv − ϵ2w. We have 
that Pv = f and Pw = −av2 so the equation for h is

Ph = Pu − ϵPv − ϵ2Pw = ϵf − a(h + ϵv + ϵ2w)2 − ϵf + ϵ2av2

=⇒ Ph + 2(ϵv + ϵ2w)h + ah2 = ϵ3H,

where the term H is in L
4
3 ((0, T ) × R3). Also, h satisfies the initial conditions h(0, x) = 0, ∂t h(0, x) = 0. Now the 

proof is finished by following the same arguments in Proposition 3.1 with minor modifications to include the linear 
terms. ✷

4. The nonlinear responses

It is convenient to work with a more general setup which includes both the source problem and the Cauchy problem.

Setup 4.1. Consider the semilinear wave equation

P(t, x)u + a(t, x)u2 = 0, in (0, T ) × R3. (4.1)

We make the following assumptions.

(1) a ∈ Iµ0(N∗S0) ∩ L∞(R4) for a co-dimension one submanifold S0 of R4 non-characteristic for P and a is sup-
ported in t > 0.

(2) u = u(ϵ; t, x) ∈ C∞((0, ϵ0); X ) is a smooth family of solutions to (4.1) and u possesses the following asymptotic 
expansion

u = ϵv + ϵ2w + o(ϵ2), (4.2)

where the o(ϵ2) term is in L4((0, T ) × R3). We shall call v the linear response and w the nonlinear response.
(3) We assume that in (4.2), v = v1 + v2 where vi satisfies Pvi = 0 in (0, T ) × R3 and vi ∈ Iµi (N∗Si), µi < −1, i =

1, 2, in which Si are co-dimension one submanifolds of R4 characteristic for P .
(4) We assume that Si intersects Sj , 0 ≤ i < j ≤ 2 transversally at co-dimension 2 submanifolds Sij , namely TpSi +

TpSj = TpR4, ∀p ∈ Si ∩ Sj . Also, S12 and S0 intersect at a co-dimension 3 submanifold S012 ⊂ (0, T ) × R3. 
Roughly speaking, we assume that the singular supports of a, v1, v2 intersect at S012 in a transversal way.

Observe that in the above setup, the interaction of two waves and the interface only appears in t > 0. Our main 
result Theorem 4.3 is to describe the singularities of w in t > 0. We assumed in (1) that a is supported in t > 0 for 
clarity. Then the equation (4.1) is linear for t < 0 and one has u = ϵv for t < 0. Otherwise, the nonlinear response w
may be non-trivial in t < 0. However, because the triple interaction appears only in t > 0 by (4), the singularities of 
w only come from the two wave interactions and one wave interacting with the interface in t < 0, which follow from 
our analysis below.

We remark that the above setup naturally arises from the source problem

Pu(t, x) + a(t, x)u2(t, x) = ϵf (t, x), in (0, T ) × R3,

u = 0, (−∞,0) × R3,

with ϵ a small parameter and f constructed in Section 2 with compact support. In particular, if f is compactly 
supported in (0, T1) ⊂ (0, T ), the solution u has the expansion in ϵ as shown in Corollary 3.2. So one has the setup of 
4.1 for the equation in (T1, T0) × R3. In this case, the linearized solution v = v1 + v2 where vi, i = 1, 2 are distorted 
plane waves.

Now we write (4.2) as u = ϵv + ϵ2w + h and h = o(ϵ2) in L4((0, 4) × R3). Using equation (4.1) and asymptotic 
expansion, we derive that

P(ϵ2w) = −ϵ2[av2
1 + av2

2 + 2av1v2]
=⇒ w = −[Q(av2

1) + Q(av2
2) + 2Q(av1v2)].

(4.3)
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We shall analyze the singularities in the nonlinear response w, which is a linear combination of

X1 = Q(av2
1), X2 = Q(av2

2), X12 = Q(av1v2).

We use some methods in [20] to analyze the singularities of these terms in two subsections.

4.1. Singularities in X1, X2

For these two terms, we claim that the waves can be split into transmitted waves and reflected waves, see Fig. 1. 
We start with

Lemma 4.2. Let S be a co-dimension one submanifold of R4. For v ∈ Iµ(N∗S) with µ < −1, we have v2 ∈
I 2µ+ 3

2 (N∗S).

Proof. For any p0 ∈ N∗S, we can choose local coordinates x = (xi)3
i=0 so that S = {x0 = 0} near p0. Let ξ = (ξi )

3
i=0

be the dual coordinates on T ∗R3. We have N∗S = {x0 = 0, ξ1 = ξ2 = ξ3 = 0}. Then we can write v ∈ Iµ(N∗S) near 
p0 as an oscillatory integral

v(x) =
∫

R

eix0ξ0a(x, ξ0)dξ0

with a(x, ξ0) ∈ Sm(R4 × R), m = µ + 1
2 . Therefore, we get

v2(x) =
∫

R

∫

R

eix0ξ0eix0η0a(x, ξ0)a(x,η0)dξ0dη0 =
∫

R

eix0ζ0b(x, ζ0)dζ0,

where ζ0 = η0 + ξ0 and

b(x, ζ0) =
∫

R

a(x, ξ0)a(x, ζ0 − ξ0)dξ0.

Let η = ξ0/⟨ζ0⟩. We have

∂α
x ∂

β
ζ0

b(x, ζ0) = ⟨ζ0⟩2m+1−|β| ∑

α0+α1=α

∫

R

∂
α0
x a(x, ⟨ζ0⟩η)

⟨ζ0⟩m
·
∂

α1
x ∂

β
ζ0

a(x, ζ0 − ⟨ζ0⟩η)

⟨ζ0⟩m−|β| dη.

Since a is a symbol of order m, we have |∂α
x ∂

β
ξ0

a(x, ξ0)| ≤ C⟨ξ0⟩m−|β|. Hereafter, C denotes a generic constant. Thus, 
we estimate

|∂α
x ∂

β
ζ0

b(x, ζ0)| ≤ C⟨ζ0⟩2m+1−|β|
∫

R

⟨⟨ζ0⟩η⟩m
⟨ζ0⟩m

· ⟨ζ0 − ⟨ζ0⟩η⟩m−|β|

⟨ζ0⟩m−|β| dη.

For m < − 1
2 , the integrand is bounded by C⟨η⟩2m (uniformly for ζ0) hence the integral is finite. Thus, we showed that 

b(x, ζ0) ∈ S2m+1(R4 × R) which implies v2 ∈ I 2µ+ 3
2 (N∗S) for µ < −1. ✷

In our setup, we shall take µi < −1 and obtain v2
i ∈ I 2µi+ 3

2 (N∗Si), i = 1, 2 using the lemma. From standard wave 
front analysis, e.g. [6, Theorem 1.3.6], we obtain that av2

i is a well-defined distribution and

WF(av2
i ) ⊂ (N∗Si + N∗S0) ∪ N∗Si ∪ N∗S0 = N∗S0i ∪ N∗Si ∪ N∗S0.

Here, we used the transversal intersection assumption to get N∗Si + N∗S0 = N∗S0i . More precisely, we can apply 
[12, Lemma 1.1] to get

av2
i ∈ I 2µi+ 3

2 ,µ0+1(N∗S0i ,N
∗Si) + Iµ0,2µi+ 5

2 (N∗S0i ,N
∗S0). (4.4)

We note that the orders here have different meanings to those in [12, Lemma 1.1].
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Now consider Xi, i = 1, 2 and recall that WF(Q) ⊂ N∗Diag ∪ $P . Away from the intersections S0i , we have

WF(Xi) ⊂ ($P ◦ N∗S0i ) ∪ ($P ◦ N∗S0) ∪ N∗Si.

Here, we used the fact that Si are characteristic for P to get $P ◦ N∗Si = N∗Si . Observe that this part of WF(Xi)

corresponds to the transmitted wave. Next, we know that N∗S0 ∩ (P = ∅ because S0 is not characteristic for P . So it 
suffices to consider $i

.= $P ◦ N∗S0i , i = 1, 2 and describe these Lagrangians.
For some p ∈ S0i , consider the normal vectors (1, α) ∈ N∗

pSi and (s, β) ∈ N∗
pS0, where g∗(α, α) = 1 and s2 =

g∗(β, β) ̸= 1. Consider their linear combination

ζ = a(1,α) + b(s,β) = a(1 + bs/a,α + b/aβ) ∈ N∗
pS0i , a, b ∈ R\0.

Without loss of generality, we can take a = 1 and find b so that ζ ∈ (P from solving a quadratic equation. Now for 
the Lorentzian metric g̃, we have

g̃∗(ζ, (s,β)) = −s(1 + bs) + g∗(α + bβ,β)

= −s − bs2 + g∗(α,β) + bg∗(β,β) = g̃∗((1,α), (s,β))

Thus the vector ζ corresponds to the reflected directions after the interaction at S0. Finally, we conclude that 
WF(Xi) ⊂ $i ∪ N∗Si, i = 1, 2, with the transmitted waves on N∗Si and reflected waves on $i .

Away from N∗S0 and N∗Si , we obtain from (4.4) that av2
i ∈ Iµ0+2µi+ 5

2 (N∗S012). Therefore, using [12, Prop. 2.1]
and wave front analysis, we know that away from N∗S0 ∪ N∗Si ,

Xi = Q(av2
i ) ∈ Iµ0+2µi+1,− 1

2 (N∗S012,$i ).

Thus Xi ∈ Iµ0+2µi+1($i ) away from N∗S0 ∪ N∗Si ∪ N∗S0i and this is the reflected wave in the nonlinear responses.

4.2. Singularities in X12

The singularities in X12 are analyzed in [17] and [20] when S0 is also characteristic for P . In particular, a conic 
type singularity is generated. We adapt the analysis to S0 not characteristic for P . We start with a wave front analysis 
to locate the singularities of X12.

For vi ∈ Iµi (N∗Si), i = 1, 2, we can apply [12, Lemma 1.1] to get

v1v2 ∈ Iµ1,µ2+1(N∗S12,N
∗S1) + Iµ2,µ1+1(N∗S12,N

∗S2).

By standard wave front analysis, we know that

WF(av1v2) ⊂ N∗S1 ∪ N∗S2 ∪ N∗S12 ∪ N∗S0 ∪ N∗S01 ∪ N∗S02 ∪ N∗S012,

where we used N∗S12 + N∗S0 = N∗S012 as a consequence of the transversal intersection assumptions. Now consider 
WF(X12). We already know that $P ◦ N∗S0i = $i ∪ N∗Si . Since Si are characteristic for P , the normal vectors 
in N∗Si are light-like vectors for g̃. As S1, S2 intersect transversally, it is a fact that the linear combination of two 
light-like vectors do not give new light like vectors that is, N∗S12 ∩ (P = N∗S1 ∪ N∗S2. Thus it remains to consider 
$ .= $P ◦ N∗S012.

We claim that S012 must be a space-like curve, namely the tangent vectors to S012 are space-like for g̃. Consider 
tangent vectors (a, θ), a ∈ R, θ ∈ R3 to S012 at p. If a = 0, the vector is space-like. Otherwise, one can rescale the vec-
tor so it suffices to consider (1, θ), θ ∈ R3. Observe that light-like vectors (1, α) ∈ N∗

pS1, (1, β) ∈ N∗
pS2, g∗(α, α) =

g∗(β, β) = 1 should be normal to S012. So we get

−1 + g(α, θ) = 0

where α becomes the corresponding tangent vector in TpR4. Since g(α, α) = 1, we conclude that g(θ, θ) ≥ 1 so 
that either (1, θ) is space-like or θ = α. The latter is impossible because the same argument tells θ = β but α, β are 
linearly independent. So we conclude that g(θ, θ) > 1 so (1, θ) is space-like. Now let’s consider all light-like vectors 
(1, η), g(η, η) = 1 at p normal to (1, θ). They should satisfy −1 + g(η, θ) = 0. Because g(θ, θ) > 1, we conclude 
that the solution set of η is a one-dimensional subset of TpR4. Hence N∗S012 ∩ (P at p is a two dimensional subset 
and $\(N∗S1 ∪ N∗S2) is non-empty. Away from the intersections S01, S02, S12 and S012, we have
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WF(X12) ⊂ N∗S1 ∪ N∗S2 ∪ $1 ∪ $2 ∪ $.

We summarize the results above and prove the main result of the paper.

Theorem 4.3. Consider the problem described in Setup 4.1. We have the following conclusions for the nonlinear 
response w away from the intersection sets S01, S02, S12 and S012

(1) WF(w) ⊂ $1 ∪ $2 ∪ N∗S1 ∪ N∗S2 ∪ $.
(2) Away from $1 ∪ $2 ∪ N∗S1 ∪ N∗S2, w ∈ Iµ($) with µ = ∑2

i=0 µi + 1
2 .

(3) $ ∩ WF(w) ̸= ∅ if the principal symbols σ (vi) and σ (a) are non-vanishing at S012.

Proof. (1). The statement summarizes the results we obtained above.
(2) and (3). It remains to show w ∈ Iµ($), in particular, to show that Q(av1v2) ∈ Iµ($) because X1, X2 terms are 

smooth near $.
By our assumptions on the intersections of Si, i = 0, 1, 2, for any p ∈ S012, we can find local coordinates x =

(xi)3
i=0 such that Si = {xi = 0} and S012 = {x0 = x1 = x2 = 0}. We use ζ = (ζi )

3
i=0 as the dual variables to x. Then 

we can express for example N∗S0 = {x0 = 0, ζ1 = ζ2 = ζ3 = 0} and N∗S012 = {x0 = x1 = x2 = 0, ζ3 = 0}. In this 
local coordinates, we can write down the conormal distributions as

v1(x) =
∫

R

eix1ζ1b1(x, ζ1)dζ1, v2(x) =
∫

R

eix2ζ2b2(x, ζ2)dζ2,

a(x) =
∫

R

eix0ζ0b0(x, ζ0)dζ0,

where bi ∈ Sµi+ 1
2 (R4 × R), i = 0, 1, 2 are standard symbols. Then we have the multiplication

a(x)v1(x)v2(x) =
∫

R3

ei(x0ζ0+x1ζ1+x2ζ2)b0(x, ζ0)b1(x, ζ1)b2(x, ζ2)dζ0dζ1dζ2.

We denote c(x, ζ̃ ) = b0(x, ζ0)b1(x, ζ1)b2(x, ζ2) with ζ̃ = (ζ0, ζ1, ζ2) ∈ R3.
Now we let φ(t), t ≥ 0 be a smooth cut-off function such that φ(t) = 1 for t ≥ 1 and φ(t) = 0 for t < 1

2 . For δ > 0, 
we define

χδ(ζ̃ ) =
2∏

i=0

φ(
|ζi |
δ|ζ̃ |

).

Then χδ is supported on {ζ̃ ∈ R3 : δ|ζ̃ | ≤ 2|ζi |, i = 0, 1, 2}. We conclude that χδc is a symbol because

|∂α
x ∂

β0
ζ0

∂
β1
ζ1

∂
β2
ζ2

(χδ(ζ̃ )c(x, ζ̃ ))| ≤ Cχ,δ(1 + |ζ0|)µ0+ 1
2 −β0(1 + |ζ1|)µ1+ 1

2 −β1(1 + |ζ2|)µ2+ 1
2 −β2

≤ Cχ,δ(1 + |ζ̃ |)µ0+µ1+µ2+ 3
2 −|β|

where we used µi < −1, i = 1, 2 and also µ0 < −1 because a in particular belongs to Lp
loc(R4) for all p > 0. We split 

av1v2 as

a(x)v1(x)v2(x) =
∫

R3

ei(x0ζ0+x1ζ1+x2ζ2)χδ(ζ̃ )c(x, ζ̃ )dζ0dζ1dζ2

+
∫

R3

ei(x0ζ0+x1ζ1+x2ζ2)(1 − χδ(ζ̃ ))c(x, ζ̃ )dζ0dζ1dζ2
.= U1 + U2.

(4.5)

Thus near S012 and for any δ > 0, U1 ∈ Iµ(N∗S012) with µ = ∑2
i=0 µi + 2 and U2 is a distribution with WF(U2)

contained in a δ neighborhood of N∗S1 ∪ N∗S2 ∪ N∗S0 ∪ N∗S12 ∪ N∗S01 ∪ N∗S02. It is clear from the expression 



M. de Hoop et al. / Ann. I. H. Poincaré – AN 36 (2019) 347–363 359

that the symbol of U1 is non-vanishing if bi, i = 0, 1, 2 are non-vanishing. Finally, w = Q(av1v2) = Q(U1) +Q(U2). 
By Proposition 2.1, we know that Q(U1) ∈ Iµ− 3

2 ($) away from N∗S012 and the symbol is non-vanishing on $. For 
the other piece, we know that WF(Q(U2)) is contained in a small neighborhood of $1 ∪ $2 ∪ N∗S1 ∪ N∗S2 and 
N∗S01 ∪ N∗S02 ∪ N∗S12 ∪ N∗S012. This finishes the proof. ✷

From the two subsections, we know that the nonlinear responses consist of reflected waves Xi ∈ I 2µi+µ0+1($i ), i =
1, 2 and the new wave X12 = Iµ1+µ2+µ0+ 1

2 ($). These can be distinguished in terms of the order of Lagrangian dis-
tributions when µ1 − µ2 ≠ ± 1

2 .

5. Linear responses versus nonlinear responses

For equation (4.1), we have analyzed the singularities in the asymptotic expansion terms in (4.2). Comparing the 
wave front sets of the linear response v and the nonlinear response w, we find that the differences are the reflected 
waves on $i , i = 1, 2 and the conic wave on $. In this section, we demonstrate that if the linear properties of the 
materials are also different across S0, the linear response may also contain reflected waves, hence the nonlinear 
responses on $i are potentially indistinguishable. For this reason, it is reasonable to think of the new conic wave at $
as the observable nonlinear effect.

We continue using the notations in Section 4. We consider a perturbation problem of (4.1)

Pu(t, x) + δq(t, x)u(t, x) + a(t, x)u2(t, x) = 0, in (0, T ) × R3,

u(t, x) = ϵ(u1(t, x) + u2(t, x)), t < 0,
(5.1)

where ϵ, δ > 0 are two small parameters. For ease of elaboration, we lower the regularity requirements as follows. 
We assume that q, a ∈ Iµ0(N∗S0) are compactly supported in t > 0 with µ0 < −3 so that q, a ∈ Hs(R4), s = −µ0 −
1 > 2 which is an algebra. We also assume that the incoming waves ui ∈ Iµi (N∗Si), µi < −3 and Pui = 0. Thus 
ui ∈ Hs(R4) as well.

We remark that the potential q depending on another small parameter simplifies our argument because it allows 
us to analyze the singularities in the leading term instead of the full solution. In the linear setting when the metric g
has a conormal singularity across a submanifold so that the coefficient of !g has conormal singularities, de Hoop, 
Uhlmann and Vasy studied the transmitted and reflected waves carefully in [5]. Also, in the backscattering setting 
when the potential has a conormal singularity, a similar problem is studied by Greenleaf and Uhlmann [12]. However, 
both papers require quite complicated analysis to clarify the singularities in the full solution.

Under our regularity assumptions, the local well-posedness of equation (5.1) is essentially known, see e.g. [18, 
Appendix B]. In particular, for ϵ sufficiently small, there is a unique solution u ∈ Hs

loc((0, T ) × R3). We also have 
u = ϵv + ϵ2w + o(ϵ2) where the o(ϵ2) term is small in Hs . Moreover, since the potential depends on δ, v and w
actually have expansions in δ as well. Our goal is to analyze the wave front sets of the asymptotic terms of v, w.

Proposition 5.1. Consider equation (5.1) with the above assumptions. For δ, ϵ > 0 sufficiently small, there is a unique 
solution u ∈ Hs

loc((0, T ) × R3) which can be written as

u = ϵ(u1 + u2 + δV ) + ϵ2δW + O(ϵδ2) + O(ϵ3),

where the remainder terms are in Hs
loc((0, T ) × R3). Moreover, away from the sets S0, S12, we have

(1) WF(u1 + u2 + δV ) ⊂ N∗S1 ∪ $1 ∪ N∗S2 ∪ $2.
(2) WF(W) ⊂ N∗S1 ∪ $1 ∪ N∗S2 ∪ $2 ∪ $.

Proof. Since v satisfies the linearized equation, we can write v = v1 + v2 so that

Pvi(t, x) + δq(t, x)vi(t, x) = 0, in (0, T ) × R3,

vi(t, x) = ui(t, x), t < 0.

It suffices to analyze the singularities of v1. Let v̄ = v1 − u1. We get
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P v̄(t, x) + δq(t, x)v̄(t, x) = −q(t, x)u1(t, x), in (0, T ) × R3,

v̄(t, x) = 0, t < 0.

Using the causal inverse Q = P −1, we get v̄ + Q(δqv̄) = −Q(δqu1), from which we derive

v̄ =
∞∑

n=0

(−1)nδn(QMq)nQ(−δqu1), (5.2)

where Mq denotes the operator of multiplication by q . Since q ∈ Hs(R4), s > 2, we know that Mq : Hk(R4) →
Hk(R4) is continuous for 0 ≤ k ≤ s, see e.g. [9, Section 3.2]. We recall that u1 ∈ Hs(R4) and Q : Hs

comp(R4) →
Hs+1

loc (R4) is continuous. From the finite speed of propagation (for the linearized equation), we know that each term 
of (5.2) is supported in a compact set of (0, T ) ×R3. For δ sufficiently small, we obtain that the series (5.2) converges 
in Hs+1(R4), and

v1 = u1 − δQ(qu1) + O(δ2),

where the remainder term is in Hs+1(R4).
Now we find the singularities in Q(qu1). Since q ∈ Iµ0(N∗S0), u1 ∈ Iµ1(N∗S1) and S0 intersects S1 transversally, 

we use [12, Lemma 1.1] to get

qu1 ∈ Iµ1,µ0+1(N∗S01,N
∗S0) + Iµ0,µ1+1(N∗S01,N

∗S1).

More precisely, we can write qu1 = 61 +62 so that 61 ∈ Iµ1,µ0+1(N∗S01, N∗S0) microlocally supported away from 
N∗S1 and 62 ∈ Iµ0,µ1+1(N∗S01, N∗S1) microlocally supported away from N∗S0. Now consider the action of Q on 
qu1. Using [12, Proposition 2.1, 2.2] we obtain that

Q(62) ∈ Iµ0−1,µ1(N∗S01,N
∗S1) + Iµ0+µ1− 1

2 ,− 1
2 (N∗S01,$1).

On the other hand, Q acts on 61 as a pseudo-differential operator of order −2 so that Q(61) ∈ Iµ1−2,µ0+1(N∗S01,

N∗S0). We conclude that the wave front set of Q(qu1) is contained in N∗S01 ∪ N∗S0 ∪ N∗S1 ∪ $1. The analysis for 
v2 is the same. So we conclude that

v = u1 + u2 + δV + O(δ2)

where the wave front set WF(V ) ⊂ N∗S01 ∪N∗S0 ∪N∗S1 ∪$1 ∪N∗S02 ∪N∗S2 ∪$2. Therefore, the linear responses 
contain reflected and transmitted waves.

Next, we follow the same lines to analyze the nonlinear response w which satisfies the equation

Pw(t, x) + δq(t, x)w(t, x) = −a(t, x)v2(t, x), in (0, T ) × R3,

w(t, x) = 0, t < 0.

Since v ∈ Hs(R4) and a ∈ Hs(R4), we know that av2 ∈ Hs(R4) is well-defined. Similarly, we obtain that

w =
∞∑

n=0

(−1)nδn(QMq)nQ(−δav2)

which converges in Hs+1(R4) for δ sufficiently small. So we have

w = δW + O(δ2), W = −Q(a(u1 + u2)
2).

From wave front analysis as in Section 4, we know that WF(W) is contained in

N∗S012 ∪ N∗S01 ∪ N∗S02 ∪ N∗S12 ∪ $1 ∪ $2 ∪ N∗S1 ∪ N∗S2 ∪ $.

This completes the proof of the proposition. ✷
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Fig. 3. Illustration of Theorem 6.1. The left picture shows the setup of the theorem. The two top ovals represent the singular supports of the sources 
f1, f2 and the rest represent the singular supports of distorted plane waves v1, v2. Similar to Fig. 2, they propagate and concentrate along the 
geodesics from p1, p2 (dashed curves). The right picture shows the nonlinear response on $ after the nonlinear interactions at p0, ignoring the 
transmitted and reflected waves.

6. The inverse problem

As an application of our main results, we address the inverse problem of determining the location of S0 and the 
principal symbol of a(t, x) using the nonlinear response. We consider a source problem using the construction in 
Section 2.

We take two points (pi, ζi ) ∈ (P , i = 1, 2 such that the corresponding geodesics γpi,ζi for the Lorentzian metric 
g̃ = −dt2 + g intersect at p0 ∈ R4. See the left picture of Fig. 3. For s0, t0 > 0, let fi ∈ Iµi+ 3

2 (N∗Yi(pi, ζi , s0, t0))
and vi ∈ Iµi (N∗Si(pi, ζi , s0)), i = 1, 2 be constructed as in Section 2. Let S0 be a co-dimension one submanifold of 
R4 not characteristic for P , and a ∈ Iµ0(N∗S0) ∩ L∞(R4). As in Section 4, we suppose that S0, S1, S2 intersect in a 
transversal way when they intersect. We use the notations $1, $2 in Section 4 to denote the Lagrangian submanifolds 
carrying the reflected waves. Their projections to R4 are denoted by ̂S1, ̂S2 respectively. We denote S .= (

⋃2
i=0 Si) ∪

Ŝ1 ∪ Ŝ2. In particular, we know that this set contains the singular supports of the reflected and transmitted waves in 
the nonlinear response.

For fixed T > 0 and ϵ1, ϵ2 ∈ (0, ϵ0), we consider the following source problem

Pu(t, x) + a(t, x)u2(t, x) = ϵ1f1 + ϵ2f2, in (−∞, T ) × R3,

u(t, x) = 0, in (−∞,0) × R3.
(6.1)

We assume that the exponents µi, i = 0, 1, 2 and ϵ0 are chosen such that the well-posedness result Theorem 3.1 holds 
for (6.1). The data set we use for the inverse problem is

Da(f1, f2)
.= {u(ϵ1, ϵ2) : u(ϵ1, ϵ2) ∈ X is the unique solution to (6.1) for ϵ1, ϵ2 ∈ (0, ϵ0)}.

We remark that the data set depends on the choice of (pi, ζi ) and fi, i = 1, 2. However, once they are chosen, the data 
set is a two parameter family of solutions to (6.1).

Theorem 6.1. Suppose that the principal symbols σ (fi) ̸= 0, i = 1, 2 on γpi,ζi , respectively. Under the above assump-
tions, we have

(1) p0 ∈ S0 if and only if ∂ϵ1∂ϵ2u(ϵ1, ϵ2)|ϵ1=ϵ2=0 is not smooth away from S for all s0 small.
(2) If p0 ∈ S0, the principal symbol σ (a) at p0 is uniquely determined by Da(f1, f2). More precisely, suppose u(i) are 

solutions to (6.1) with a(i) ∈ Iµ
(i)
0 (N∗S0), i = 1, 2. If u(1)(ϵ1, ϵ2) = u(2)(ϵ1, ϵ2) on $, then the orders µ(1)

0 = µ
(2)
0

and the principal symbols σ (a(1)) = σ (a(2)) at (p0, ξ0) ∈ N∗S0.

Proof. (1). We observed from the remark after Assumptions 4.1 that the source problem (6.1) can be reduced to the 
setup of Theorem 4.3. Following the successive approximation in Section 4, we obtain that

∂ϵ1∂ϵ2u(ϵ1, ϵ2)|ϵ1=ϵ2=0 = −2Q(a(x)v1(x)v2(x)).
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So the conclusion follows from Theorem 4.3 when S0, S1, S2 intersect at p0. If they do not intersect, the wave front 
analysis in Section 4 shows that WF(Q(a(x)v1(x)v2(x))) is contained in (

⋃2
i=0 N∗Si) ∪ N∗S12 ∪ $1 ∪ $2 hence the 

term is smooth away from the set S .
(2). If σ (fj ) ̸= 0, j = 1, 2 on γpj ,ζj , we know from Proposition 2.1 that σ (vj ) ̸= 0 at (p0, ξj ) ∈ (P . Also, if 

u(1)(ϵ1, ϵ2) = u(2)(ϵ1, ϵ2) on $, we know from Theorem 4.3 that U (i) .= ∂ϵ1∂ϵ2u
(i)(ϵ1, ϵ2)|ϵ1=ϵ2=0, i = 1, 2 are La-

grangian distributions of the same order on $ away from $1 ∪ $2 ∪ N∗S12 ∪ (
⋃2

i=0 N∗Si) with the same principal 
symbols at (x, ζ ) ∈ $. By Proposition 2.1, we know that the principal symbols of U (i) at (p0, ξ) ∈ (P are the 
same because the matrix σ (Q)(x, ζ, p0, ξ) is invertible. In the proof of Theorem 4.3, we can read the order and the 
principal symbols of U (i) at (p0, ξ) in terms of the principal symbols of a, v1, v2 at (p0, ξ0), (p0, ξ1), (p0, ξ2) re-
spectively with ξ = ∑2

i=0 ξi , see equation (4.5). This implies that the order µ(1)
0 = µ

(2)
0 and the principal symbols 

σ (a(1))(p0, ξ0) = σ (a(2))(p0, ξ0). ✷

The nonlinear term can be determined in a special case of piecewise constant functions. The corollary below 
follows from Theorem 6.1 directly.

Corollary 6.2. In addition to the assumptions in Theorem 6.1, we assume that ) is a simply connected, bounded open 
subset of R3 such that ∂) is a co-dimension one submanifold of R3. Let S0 = R × ∂) and a(t, x) .= αχ)(x), α ∈ R, 
which is conormal to S0 and in L∞(R4). If p0 ∈ S0, then α is uniquely determined by Da(f1, f2).
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