PAPER

Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

To cite this article: Elena Beretta et al 2017 Inverse Problems 33 035013

View the article online for updates and enhancements.

Related content

Morassi et al.

- Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non-flat interfaces
 Elena Beretta, Elisa Francini, Antonino
- <u>Stable determination of an inclusion for a</u> <u>class of anisotropic conductivities</u> Michele Di Cristo and Yong Ren
- <u>Uniqueness for the electrostatic inverse</u> <u>boundary value problem with piecewise</u> <u>constant anisotropic conductivities</u> Giovanni Alessandrini, Maarten V de Hoop and Romina Gaburro

Recent citations

- <u>Reciprocity-gap misfit functional for</u> <u>distributed acoustic sensing, combining</u> <u>data from passive and active sources</u> Florian Faucher *et al*
- <u>Lipschitz stability for an inverse source</u> scattering problem at a fixed frequency Peijun Li *et al*
- <u>Uniqueness, stability and global</u> <u>convergence for a discrete inverse elliptic</u> <u>Robin transmission problem</u> Bastian Harrach

IOP ebooks[™]

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Inverse Problems 33 (2017) 035013 (27pp)

doi:10.1088/1361-6420/aa5bef

Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves

Elena Beretta¹, Maarten V de Hoop², Elisa Francini³, Sergio Vessella³ and Jian Zhai^{2,4}

¹ Dipartimento di Matematica 'F. Brioschi', Politecnico di Milano, Via Edoardo Bonardi, 20133 Milano, Italy

² Department of Computational and Applied Mathematics, Rice University, Houston, TX, 77005, United States of America

³ Dipartimento di Matematica e Informatica 'U. Dini', Università di Firenze, Viale Morgagni, 67A 50134 Firenze, Italy

E-mail: elena.beretta@polimi.it, mdehoop@rice.edu, elisa.francini@unifi.it, sergio.vessella@unifi.it and jian.zhai@rice.edu

Received 27 June 2016, revised 10 January 2017 Accepted for publication 25 January 2017 Published 15 February 2017

Abstract

We consider the inverse problem of determining the Lamé parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on a given domain partition.

Keywords: inverse boundary value problem, uniqueness, Lipschitz stability, time-harmonic elastic waves

(Some figures may appear in colour only in the online journal)

1. Introduction

We study the inverse boundary value problem for time-harmonic elastic waves. We consider isotropic elasticity, and allow partial boundary data. The Lamé parameters and the density are assumed to be piecewise constants on a given partitioning of the domain. The system of equations describing time-harmonic elastic waves is given by,

$$\begin{cases} \operatorname{div}(\mathbb{C}\hat{\nabla}u) + \rho\omega^2 u = 0 & \text{in } \Omega \subset \mathbb{R}^3, \\ u = \psi & \text{on } \partial\Omega, \end{cases}$$
(1)

⁴ Author to whom any correspondence should be addressed.

1361-6420/17/035013+27\$33.00 © 2017 IOP Publishing Ltd Printed in the UK

where Ω is an open and bounded domain with smooth boundary, $\hat{\nabla} u$ denotes the strain tensor, $\hat{\nabla} u := \frac{1}{2} (\nabla u + (\nabla u)^T), \psi \in H^{1/2}(\partial \Omega)$ is the boundary displacement or source, and $\mathbb{C} \in L^{\infty}(\Omega)$ denotes the isotropic elasticity tensor with Lamé parameters λ, μ :

$$\mathbb{C} = \lambda I_3 \otimes I_3 + 2\mu \mathbb{I}_{sym}$$
, a.e. in Ω ,

where I_3 is 3×3 identity matrix and \mathbb{I}_{sym} is the fourth order tensor such that $\mathbb{I}_{sym}A = \hat{A}$, $\rho \in L^{\infty}(\Omega)$ is the density, and ω is the frequency. Here, we make use of the following notation for matrices and tensors: for 3×3 matrices A and B we set $A : B = \sum_{i,j=1}^{3} A_{ij}B_{ij}$ and $\hat{A} = \frac{1}{2}(A + A^T)$. We assume that

$$0 < \alpha_0 \leq \mu \leq \alpha_0^{-1}, \ \lambda \leq \alpha_0^{-1}, \ 2\mu + 3\lambda \geq \beta_0 > 0 \text{ a.e. in } \Omega,$$
(2)

$$\gamma_0 \leqslant \rho \leqslant \gamma_0^{-1}. \tag{3}$$

The Dirichlet-to-Neumann map, $\Lambda_{\mathbb{C},\rho}$, is defined by

$$\Lambda_{\mathbb{C},\rho}: H^{1/2}(\partial \Omega) \ni \psi \to (\mathbb{C}\hat{\nabla} u)\nu|_{\partial \Omega} \in H^{-1/2}(\partial \Omega),$$

where ν is the outward unit normal to $\partial \Omega$. We consider the inverse problem:

determine \mathbb{C} , ρ from $\Lambda_{\mathbb{C},\rho}$.

For the static case (that is, $\omega = 0$) of our problem, Imanuvilov and Yamamoto [IY] proved, in dimension two, a uniqueness result for C^{10} Lamé parameters. In dimension three, Nakamura and Uhlmann [NU] proved uniqueness assuming that the Lamé parameters are C^{∞} and that μ is close to a positive constant. Eskin and Ralston [ER] proved a similar result. Global uniqueness of the inverse problem in dimension three assuming general Lamé parameters remains an open problem. One key difficulty here is that there are two metrics involved in the elastic tensor. Beretta *et al* proved the uniqueness when the Lamé parameters are assumed to be piecewise constant. They proved a Lipschitz stability when interfaces of subdomains contain flat parts [BFV]; later, they extended this result to non-flat interfaces [BFMRV]. Alessandrini *et al* [AdCMR] proved a logarithmic stability estimate for the inverse problem of identifying an inclusion, where constant Lamé parameters are different from the background ones.

The time-harmonic problem under our consideration has a more practical setting. The key application we have in mind is (reflection) seismology, where Lamé parameters and density need to be recovered from the Dirichlet-to-Neumann map. In actual seismic acquisition, raw vibroseis data are modeled by the local Neumann-to-Dirichlet map: the boundary values are given by the normal traction underneath the base plate of a vibroseis and are zero ('free surface') elsewhere, while the particle displacement (in fact, velocity) is measured by geophones located in a subset of the boundary (Earth's surface). The applied signal is essentially time-harmonic (suppressing the sweep); see [B, 2.52 and (2.53)]. (The displacement needs to be measured also underneath the base plate.) The results presented here do not only hold for the Dirichlet-to-Neumann map, but also for the Neumann-to-Dirichlet map as the data (requiring only minor modifications of the proofs).

We consider piecewise constant Lamé parameters and density of the form

$$\mathbb{C}(x) = \sum_{j=1}^{N} (\lambda_j I_3 \otimes I_3 + 2\mu_j \mathbb{I}_{sym}) \chi_{D_j}(x), \quad \rho(x) = \sum_{j=1}^{N} \rho_j \chi_{D_j}(x),$$

where the D_j 's, $j = 1, \dots, N$ are known disjoint Lipschitz domains and $\lambda_j, \mu_j, \rho_j, j = 1, \dots, N$ are unknown constants. We establish uniqueness of the above mentioned inverse boundary value problem. We actually derive a Lipschitz stability estimate, and the uniqueness follows immediately. The method of proof follows the ideas introduced by Alessandrini and Vessella [AV] in the study of electrical impedance tomography (EIT) problems. The counterpart for scalar waves, that is, the inverse boundary value problem for the Helmholtz equation, was analyzed by Beretta *et al* [BdHQ].

The existence and the 'blow up' behavior of singular solutions close to a flat discontinuity are utilized in our proof. The quantitative estimate of unique continuation for elliptic systems, which is derived from a three spheres inequality, play an essential role in the procedure. We directly prove a log-type stability estimate for the Lamé parameters and the density combined by alternatingly estimating them along a walkway of subdomains. Uniqueness then follows from the stability estimate. From the restriction that the parameters to be recovered lie in a finite-dimensional space, a Lipschitz stability estimate is obtained.

A key complication addressed in this paper is the multiparameter aspect of this inverse problem. For the acoustic waves modeled by the equation

$$\nabla \cdot (\gamma \nabla u) + q\omega^2 u = 0, \tag{4}$$

Nachman [N] proved the unique recovery of $\gamma \in C^2$ and $q \in L^{\infty}$ with Dirichlet-to-Neumann maps at two different admissible frequencies ω_1, ω_2 . For the optical tomography problem, that is, recovering simultaneously a > 0 and c > 0 in the partial differential equation

$$-\nabla \cdot (a\nabla u) + cu = 0,$$

from all possible boundary Dirichlet and Neumann pairs, Arridge and Lionheart [AL] demonstrated the non-uniqueness for general a and c. However, when a is piecewise constant and c is piecewise analytic, Harrach [H] proved the uniqueness of this inverse problem. In this paper, we prove, for our problem, that recovering a higher order coefficient and a lower order coefficient jointly, that are assumed to be piecewise constant, only needs single frequency data also. If we assume γ , q to be piecewise constant in (4), we can establish the uniqueness with single frequency data, following the methods of proof in this paper.

With the conditional Lipschitz stability which we obtain here, we can invoke iterative methods with guaranteed convergence for local reconstruction, such as the nonlinear Landweber iteration [dHQS1] and the nonlinear projected steepest descent algorithm [dHQS2] (including a stopping criterion which allows inaccurate data). For a numerical realization, we refer to [BdHFS]. In reflection seismology, iterative methods for solving inverse problems, casting these into optimization problems, have been collectively referred to as Full Waveform Inversion (FWI) through the use of the adjoint state method. These methods were introduced in this field of application by Chavent [C], Lailly [L] and Tarantola & Valette [T, TV] albeit for scalar waves. An early study of stability in dimension one can be found in Bamberger et al [BCL]. Mora [M] developed the adjoint state formulation for the case of elastic waves and carried out computational experiments; Crase et al [CPNMT] then carried out applications to field data. Advantages of using time-harmonic data, following specific workflows, were initially pointed out by Pratt and collaborators [P-PW]; Bunks et al [BKB] developed an important insight in the use of strictly finite-frequency data. In recent years, there has been a significant effort in further developing and applying these approaches (with emphasis on iterative Gauss-Newton methods)-in the absence of a notion of (conditional) uniqueness, stability or convergence-often in combination with intuitive strategies for selecting parts of the data. In exploration seismology, we mention the work of Gélis *et al* [GVG], Choi [CMS], Brossier *et al* [BOV1, BOV2] and Xu & McMechan [XM]; in global seismology, we mention the work of Tromp *et al* [TTL] and Fichtner & Trampert [FT].

The paper is organized as follows: in section 2, we summarize the main results. In section 3, we construct the singular solutions and establish the unique continuation for the system describing time-harmonic elastic waves. We also prove the Fréchet differentiability of the forward map, $(\mathbb{C}, \rho) \rightarrow \Lambda_{\mathbb{C}, \rho}$. In section 4, we prove the main result.

2. Main result

2.1. Direct problem

We summarize some results concerning the well-posedness of problem (1). For the proof, we follow the lines of [BdHQS].

Proposition 2.1. Let Ω be a bounded Lipschitz domain in \mathbb{R}^3 , $f \in H^{-1}(\Omega)$ and $g \in H^{1/2}(\partial \Omega)$. Assume that λ , μ , ρ satisfy (2) and (3). Let λ_1^0 be the smallest Dirichlet eigenvalue of the operator $-\operatorname{div}(\mathbb{C}_0 \hat{\nabla} u)$ in Ω , where $\mathbb{C}_0 = \frac{\beta_0 - 3\alpha_0}{2}I_3 \otimes I_3 + 2\alpha_0\mathbb{I}_{sym}$. Then, for any $\omega^2 \in (0, \frac{\gamma_0\lambda_1^0}{2}]$ there exists a unique solution of

$$\begin{cases} \operatorname{div}(\mathbb{C}\hat{\nabla}u) + \rho\omega^2 u = f & \text{in } \Omega \subset \mathbb{R}^3, \\ u = g & \text{on } \partial\Omega, \end{cases}$$
(5)

satisfying

$$\|u\|_{H^{1}(\Omega)} \leq C(\|g\|_{H^{1/2}(\partial\Omega)} + \|f\|_{H^{-1}(\Omega)}), \tag{6}$$

where C depends on α_0 , β_0 , γ_0 and λ_1^0 .

Proof. Without loss of generality, we let g = 0. Indeed, we can always introduce a $w = u - \tilde{g}$ where $\tilde{g} \in H^1(\Omega)$ is such that $\tilde{g} = g$ on $\partial \Omega$, which satisfies (5) with g = 0. We recall that

$$\lambda_{1}^{0} = \min\left\{ \int_{\Omega} \mathbb{C}_{0} \hat{\nabla} u : \hat{\nabla} u \middle| u \in H^{1}(\Omega), ||u||_{L^{2}(\Omega)} = 1 \right\},$$
(7)

and observe that $\mathbb{C} \ge \mathbb{C}_0$, that is, $(\mathbb{C} - \mathbb{C}_0)\hat{A} : \hat{A} \ge 0$ for any 3×3 matrix A.

We consider on $H_0^1(\Omega)$ the bilinear form

$$a(u,v) = \int_{\Omega} \mathbb{C}\hat{\nabla} u : \hat{\nabla} v dx - \int_{\Omega} \omega^2 \rho u \cdot v dx.$$

Then we can write problem (5) (for g = 0) in the weak form,

$$a(u, v) = -\langle f, v \rangle \quad \forall v \in H_0^1(\Omega).$$

Clearly $a(\cdot, \cdot)$ is continuous. We check now that $a(\cdot, \cdot)$ is coercive. To this aim, we recall the Korn inequality

$$\int_{\Omega} |\hat{\nabla}u|^2 \,\mathrm{d}x \leq 2 \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x \tag{8}$$

for any $u \in H_0^1(\Omega)$ (using the matrix norm, $|A|^2 = A$: A for any 3×3 matrix A). Furthermore,

$$\begin{aligned} a(u,u) &= \int_{\Omega} \mathbb{C}\hat{\nabla}u : \hat{\nabla}u \,dx - \int_{\Omega} \omega^2 \rho |u|^2 \,dx \\ &\geqslant \int_{\Omega} \mathbb{C}_0 \hat{\nabla}u : \hat{\nabla}u \,dx - \omega^2 \gamma_0^{-1} \int_{\Omega} |u|^2 \,dx \\ &= \frac{1}{2} \int_{\Omega} \mathbb{C}_0 \hat{\nabla}u : \hat{\nabla}u \,dx + \frac{1}{2} \left\{ \int_{\Omega} \mathbb{C}_0 \hat{\nabla}u : \hat{\nabla}u \,dx - 2\omega^2 \gamma_0^{-1} \int_{\Omega} |u|^2 \,dx \right\}. \end{aligned}$$

By (7), the strong convexity of \mathbb{C}_0 , the Korn inequality (8) and the Poincaré inequality, we have

$$\begin{aligned} a(u,u) \geq \frac{\xi_0}{4} \int_{\Omega} |\nabla u|^2 \mathrm{d}x + \frac{1}{2} \left\{ \int_{\Omega} \mathbb{C}_0 \hat{\nabla} u : \hat{\nabla} u \mathrm{d}x - 2\omega^2 \gamma_0^{-1} \int_{\Omega} |u|^2 \mathrm{d}x \right\} \\ \geq \frac{\xi_0 C_P}{4} \|u\|_{H^1(\Omega)}^2 \end{aligned}$$

indeed, where ξ_0 depends on α_0 and β_0 only and C_P is the Poincaré constant of Ω . By the Lax– Milgram lemma there exists a unique solution $u \in H_0^1(\Omega)$ to problem (5), and (6) holds.

Remark 2.2. We note that whenever ω is not in a particular countable subset of real numbers (the set of eigenfrequencies), problem (5) has a unique solution and estimate (6) holds with the constant *C* depending also on ω .

We let Σ be an open portion of $\partial \Omega$. We denote by $H_{co}^{1/2}(\Sigma)$ the space

$$H_{co}^{1/2}(\Sigma) := \{ \phi \in H^{1/2}(\partial \Omega) \mid \text{supp } \phi \subset \Sigma \}$$

and by $H_{co}^{-1/2}(\Sigma)$ the topological dual of $H_{co}^{1/2}(\Sigma)$. We denote by $\langle \cdot, \cdot \rangle$ the dual pairing between $H_{co}^{1/2}(\Sigma)$ and $H_{co}^{-1/2}(\Sigma)$ based on the $L^2(\Sigma)$ inner product. By proposition 2.1 it follows that for any $\psi \in H_{co}^{1/2}(\Sigma)$ there exists a unique vector-valued function $u \in H^1(\Omega)$ that is a weak solution of the Dirichlet problem (1). We define the local Dirichlet-to-Neumann map $\Lambda_{\mathbb{C},\rho}^{\Sigma}$ as

$$\Lambda^{\Sigma}_{\mathbb{C},\rho}: H^{1/2}_{co}(\Sigma) \ni \psi \to (\mathbb{C}\hat{\nabla}u)\nu|_{\Sigma} \in H^{-1/2}_{co}(\Sigma).$$

We have $\Lambda_{\mathbb{C},\rho} = \Lambda_{\mathbb{C},\rho}^{\partial\Omega}$. The map $\Lambda_{\mathbb{C},\rho}^{\Sigma}$ can be identified with the bilinear form on $H_{co}^{1/2}(\Sigma) \times H_{co}^{-1/2}(\Sigma)$,

$$\hat{\Lambda}^{\Sigma}_{\mathbb{C},\rho}(\psi,\phi) := \langle \Lambda^{\Sigma}_{\mathbb{C},\rho}\psi,\phi\rangle = \int_{\Omega} (\mathbb{C}\hat{\nabla}u:\hat{\nabla}v-\rho\omega^{2}u\cdot v)\mathrm{d}x,\tag{9}$$

for all $\psi, \phi \in H_{co}^{1/2}(\Sigma)$, where *u* solves (1) and *v* is any $H^1(\Omega)$ function such that $v = \phi$ on $\partial \Omega$. We shall denote by $\|\cdot\|_*$ the norm in $\mathcal{L}(H_{co}^{1/2}(\Sigma), H_{co}^{-1/2}(\Sigma))$ defined by

$$\|T\|_{\star} = \sup\{\langle T\psi, \phi \rangle \mid \psi, \phi \in H^{1/2}_{co}(\Sigma), \|\psi\|_{H^{1/2}_{co}(\Sigma)} = \|\phi\|_{H^{1/2}_{co}(\Sigma)} = 1\}.$$

2.2. Notation and definitions

For every $x \in \mathbb{R}^3$ we set $x = (x', x_3)$ where $x' \in \mathbb{R}^2$ and $x_3 \in \mathbb{R}$. For every $x \in \mathbb{R}^3$, *r* and *L* positive real numbers we denote by $B_r(x)$, $B'_r(x')$ and $Q_{r,L}$ the open ball in \mathbb{R}^3 centered at *x* of radius *r*, the open ball in \mathbb{R}^2 centered at *x'* of radius *r* and the cylinder $B'_r(x') \times (x_3 - Lr, x_3 + Lr)$, respectively; $B_r(0)$, $B'_r(0)$ and $Q_{r,L}(0)$ will be denoted by B_r , B'_r and $Q_{r,L}$, respectively. We will

also write $\mathbb{R}^3_+ = \{(x', x_3) \in \mathbb{R}^3 : x_3 > 0\}, \mathbb{R}^3_- = \{(x', x_3) \in \mathbb{R}^3 : x_3 < 0\}, B^+_r = B_r \cap \mathbb{R}^3_+$, and $B^-_r = B_r \cap \mathbb{R}^3_-$. For any subset *D* of \mathbb{R}^3 and any h > 0, we let

$$(D)_h = \{ x \in D \mid \operatorname{dist}(x, \mathbb{R}^3 \setminus D) > h \}.$$

Definition 2.3. Let Ω be a bounded domain in \mathbb{R}^3 . We say that a portion $\Sigma \subset \partial \Omega$ is of Lipschitz class with constants $r_0 > 0, L \ge 1$ if for any point $P \in \Sigma$, there exists a rigid transformation of coordinates under which P = 0 and

$$\Omega \cap Q_{r_0,L} = \{ (x', x_3) \in Q_{r_0,L} \mid x_3 > \psi(x') \},\$$

where ψ is a Lipschitz continuous function in B'_{r_0} such that

$$\psi(0) = 0$$
 and $\|\psi\|_{C^{0,1}(B'_{rev})} \leq Lr_0$.

We say that Ω is of Lipschitz class with constants r_0 and L if $\partial \Omega$ is of Lipschitz class with the same constants.

2.3. Main assumptions

Let $A, L, \alpha_0, \beta_0, \gamma_0, N$ be given positive numbers such that $N \in \mathbb{N}$, $\alpha_0 \in (0, 1)$, $\beta_0 \in (0, 2)$, $\gamma_0 \in (0, 1)$ and L > 1. We shall refer to them as the prior data.

In the sequel we will introduce a various constants that we will always denote by C. The values of these constants might differ from one another, but we will always have C > 1.

Assumption 2.4. ([BFV]). The domain $\Omega \subset \mathbb{R}^3$ is open and bounded with

 $|\Omega| \leqslant A,$

and

$$\bar{\Omega} = \bigcup_{i=1}^{N} \bar{D}_{i},$$

where $D_j, j = 1, ..., N$ are connected and pairwise non-overlapping open subdomains of Lipschitz class with constants 1,*L*. Moreover, there exists a region, say D_1 , such that $\partial D_1 \cap \partial \Omega$ contains an open flat part, Σ , and that for every $j \in \{2, ..., N\}$ there exist $j_1, ..., j_M \in \{1, ..., N\}$ such that

$$D_{j_1} = D_1, \quad D_{j_M} = D_1$$

and, for every k = 2, ..., M

$$\partial D_{j_{k-1}} \cap \partial D_{j_k}$$

contains a flat portion Σ_k such that

$$\Sigma_k \subset \Omega$$
, for all $k = 2, ..., M$.

Furthermore, for k = 1, ..., M, there exists $P_k \in \Sigma_k$ and a rigid transformation of coordinates such that $P_k = 0$ and

$$\Sigma_k \cap Q_{1/3,L} = \{ x \in Q_{1/3,L} : x_3 = 0 \},\$$

Figure 1. A domain partition including D_1 .

$$D_{j_k} \cap Q_{1/3,L} = \{ x \in Q_{1/3,L} : x_3 < 0 \},$$
$$D_{j_{k-1}} \cap Q_{1/3,L} = \{ x \in Q_{1/3,L} : x_3 > 0 \};$$

here, we set $\Sigma_1 = \Sigma$. We will refer to $D_{j_1}, ..., D_{j_M}$ as a chain of subdomains connecting D_1 to D_j . For any $k \in \{1, ..., M\}$ we will denote by n_k the exterior unit vector to ∂D_k at P_k .

An example of such a domain partition with Lipschitz class subdomains is an unstructured tetrahedral mesh as shown in figure 1.

Assumption 2.5. The stiffness tensor, \mathbb{C} , is isotropic and piecewise constant, that is,

$$\mathbb{C} = \sum_{j=1}^{N} \mathbb{C}_{j} \chi_{D_{j}}(x), \quad \mathbb{C}_{j} = \lambda_{j} I_{3} \otimes I_{3} + 2\mu_{j} \mathbb{I}_{\text{sym}},$$

where the constants λ_j and μ_j satisfy (see (2))

$$0 < \alpha_0 \leq \mu_j \leq \alpha_0^{-1}, \quad \lambda_j \leq \alpha_0^{-1}, \quad 2\mu_j + 3\lambda_j \geq \beta_0 > 0, \ j = 1, ..., N.$$
(10)

The density, ρ , is of the form,

$$\rho = \sum_{j=1}^{N} \rho_j \chi_{D_j}(x),$$

where the constants ρ_i satisfy (see (3))

$$\gamma_0 \leqslant \rho_j \leqslant \gamma_0^{-1}, \ j = 1, \dots, N.$$

Assumption 2.6. Let λ_1^0 be the smallest Dirichlet eigenvalue of operator

 $-\operatorname{div}(\mathbb{C}_0\hat{\nabla}u)$ in Ω as before,

$$\omega^2 \leqslant \frac{\gamma_0 \lambda_1^0}{2}.$$

2.4. Statement of the main result

We define for any set $D \in \mathbb{R}^3$,

 $d_D((\mathbb{C}^1, \rho^1), (\mathbb{C}^2, \rho^2)) = \max\{\|\lambda^1 - \lambda^2\|_{L^{\infty}(D)}, \|\mu^1 - \mu^2\|_{L^{\infty}(D)}, \|\rho^1 - \rho^2\|_{L^{\infty}(D)}\}.$

Theorem 2.7. Let $(\mathbb{C}^{1,2}, \rho^{1,2})$ satisfy assumption 2.5. Let Ω and Σ satisfy assumption 2.4 and ω satisfy assumption 2.6. If $\Lambda_{\mathbb{C}^2,\rho^2}^{\Sigma} = \Lambda_{\mathbb{C}^1,\rho^1}^{\Sigma}$ then $\mathbb{C}^1 = \mathbb{C}^2$ and $\rho^1 = \rho^2$. Moreover, there exists a positive constant *C* depending on *L*, *A*, *N*, α_0 , β_0 , γ_0 and λ_1^0 only, such that

$$d_{\Omega}((\mathbb{C}^{1},\rho^{1}),(\mathbb{C}^{2},\rho^{2})) \leqslant C \|\Lambda_{\mathbb{C}^{1},\rho^{1}}^{\Sigma} - \Lambda_{\mathbb{C}^{2},\rho^{2}}^{\Sigma}\|_{\star}.$$
(11)

In preparation of the proof, we introduce the forward map associated with the inverse problem. We let $\underline{L} := (\lambda_1, ..., \lambda_N, \mu_1, ..., \mu_N, \rho_1, ..., \rho_N)$ denote a vector in \mathbb{R}^{3N} and \mathcal{A} stand for the open subset of \mathbb{R}^{3N} defined by

$$\mathcal{A} := \left\{ \underline{L} \in \mathbb{R}^{3N} \mid \frac{\alpha_0}{2} < \mu_j < \frac{2}{\alpha_0}, \lambda_j < \frac{2}{\alpha_0}, 2\mu_j + 3\lambda_j > \frac{\beta_0}{2}, \frac{\gamma_0}{2} < \rho_j < \frac{2}{\gamma_0}, j = 1, \dots, N \right\}.$$
(12)

For each vector $\underline{L} \in \mathcal{A}$ we can define a piecewise constant stiffness tensor $\mathbb{C}_{\underline{L}}$, and a density ρ_L , with

$$\|\underline{L}\|_{\infty} = \max_{j=1,\ldots,N} \{\sup\{|\lambda_j|, \mu_j, |\rho_j|\}\}.$$

The forward map is defined as

$$F: \mathcal{A} \to \mathcal{L}(H_{co}^{1/2}(\Sigma), H_{co}^{-1/2}(\Sigma)), \quad \underline{L} \to F(\underline{L}) = \Lambda_{\mathbb{C}_{\underline{L}}, \rho_{\underline{L}}}^{\Sigma}.$$
(13)

We can identify F with a map $\tilde{F} : \mathcal{A} \to \mathcal{B}$ upon identifying $\tilde{F}(\underline{L})$ with the bilinear form, $\tilde{\Lambda}_{\mathbb{C}_{L},\rho_{L}}^{\Sigma}$, on $H_{co}^{1/2}(\Sigma) \times H_{co}^{-1/2}(\Sigma)$ (see (9)); \mathcal{B} is the Banach space of this bilinear form with the standard norm. In the sequel, we will write F and $\Lambda_{\mathbb{C}_{L},\rho_{L}}^{\Sigma}$ instead of \tilde{F} and $\tilde{\Lambda}_{\mathbb{C}_{L},\rho_{L}}^{\Sigma}$. We denote

$$\mathbf{K} := \{ \underline{L} \in \mathcal{A} \mid \alpha_0 \leq \mu_j \leq \alpha_0^{-1}, \lambda_j \leq \alpha_0^{-1}, 2\mu_j + 3\lambda_j \geq \beta_0, \gamma_0 \leq \rho_j \leq \gamma_0^{-1}, j = 1, \dots, N \}.$$

Then the stability estimate in theorem 2.7 can be stated as follows:

$$\|\underline{L}^{1} - \underline{L}^{2}\|_{\infty} \leq C \|F(\underline{L}^{1}) - F(\underline{L}^{2})\|_{\star},$$

for every $\underline{L}^1, \underline{L}^2$ in **K**. We note that theorem 2.7 implies that *F* is injective and that its inverse is Lipschitz continuous.

Remark 2.8. Assumption 2.6 in theorem 2.7 can be relaxed to include any ω that is not in the set of eigenfrequencies. Then the constant *C* will also depend on the distance between ω and the set of eigenfrequencies.

Remark 2.9. We emphasize here that the Lipschitz constant C in the stability estimate (11) grows exponentially with N, the number of subdomains. For such behaviors of this type of inverse problems, we refer to [BdHQ] and [Ron].

3. Preliminary results

Here, we follow Beretta et al [BFMRV, BFV]. We summarize the relevant results in their work and adapt them to the time-harmonic problem. We begin this section with Alessandrini's identity [A, I]. We let u_k be solutions to

$$\operatorname{div}(\mathbb{C}^k \widehat{\nabla} u_k) + \rho^k \omega^2 u_k = 0 \quad \text{in } \Omega$$

for k = 1, 2, where \mathbb{C}^k , ρ^k satisfy assumption 2.5. Then

$$\int_{\Omega} ((\mathbb{C}^{1} - \mathbb{C}^{2})\hat{\nabla}u_{1} : \hat{\nabla}u_{2} - (\rho^{1} - \rho^{2})\omega^{2}u_{1} \cdot u_{2})\mathrm{d}x = \langle (\Lambda_{\mathbb{C}^{1},\rho^{1}} - \Lambda_{\mathbb{C}^{2},\rho^{2}})u_{1}, u_{2}\rangle.$$
(14)

3.1. Fréchet differentiability of F

Here, we prove the Fréchet differentiability of the forward map, F.

Proposition 3.1. *Under assumptions* 2.4–2.6, *the map*

$$F: \mathcal{A} \to \mathcal{L}(H_{co}^{1/2}(\Sigma), H_{co}^{-1/2}(\Sigma))$$

is Frechét differentiable in A and

$$\langle DF(\underline{L})[\underline{H}]\psi,\phi\rangle = \int_{\Omega} \left(\mathbb{H}\hat{\nabla}u_{\underline{L}}:\hat{\nabla}v_{\underline{L}} - h\omega^{2}u_{\underline{L}}\cdot v_{\underline{L}}\right) \mathrm{d}x,\tag{15}$$

where $\mathbb{H} = \mathbb{C}_{\underline{H}}, h = \rho_{\underline{H}}$. Moreover, $DF : \mathcal{A} \to \mathcal{L}(\mathbb{R}^{3N}, \mathcal{L}(H^{1/2}_{co}(\Sigma), H^{-1/2}_{co}(\Sigma)))$ is Lipschitz continuous with Lipschitz constant C_{DF} depending on $A, L, \alpha_0, \beta_0, \gamma_0, \lambda_1^0$ only.

Proof. Fix $\underline{L} \in \mathcal{A}$ and let $\underline{H} \in \mathbb{R}^{3N}$ such that $||\underline{H}||_{\infty}$ is sufficiently small. By (14) we have

$$\langle (F(\underline{L}+\underline{H})-F(\underline{L}))\psi,\phi\rangle = \int_{\Omega} \mathbb{H}\hat{\nabla}u_{\underline{L}+\underline{H}} : \hat{\nabla}v_{\underline{L}}dx - \int_{\Omega}h\omega^{2}u_{\underline{L}+\underline{H}} \cdot v_{\underline{L}}dx.$$

. . . .

Hence, by setting

$$\eta := \langle (F(\underline{L} + \underline{H}) - F(\underline{L}))\psi, \phi \rangle - \int_{\Omega} \mathbb{H}\hat{\nabla}u_{\underline{L}} : \hat{\nabla}v_{\underline{L}}dx + \int_{\Omega} h\omega^{2}u_{\underline{L}} \cdot v_{\underline{L}}dx$$
$$= \int_{\Omega} \mathbb{H}\hat{\nabla}(u_{\underline{L}+\underline{H}} - u_{\underline{L}}) : \hat{\nabla}v_{\underline{L}}dx - \int_{\Omega} h\omega^{2}(u_{\underline{L}+\underline{H}} - u_{\underline{L}}) \cdot v_{\underline{L}}dx,$$
(16)

we find that

$$|\eta| \leq C \|\underline{H}\|_{\infty} \|\nabla(u_{\underline{L}+\underline{H}} - u_{\underline{L}})\|_{L^{2}(\Omega)} \|\phi\|_{H^{1/2}_{\infty}(\Sigma)},\tag{17}$$

where C depends on A, L, α_0 , β_0 , γ_0 , λ_1^0 only. We estimate $\|\nabla(u_{L+H} - u_L)\|_{L^2(\Omega)}$. We observe that $w := u_{\underline{L}+\underline{H}} - u_{\underline{L}}$ is the solution to

$$\begin{cases} \operatorname{div}(\mathbb{C}_{\underline{L}}\hat{\nabla}w) + \rho\omega^2 w = -\operatorname{div}\left(\mathbb{H}\hat{\nabla}u_{\underline{L}+\underline{H}}\right) - h\omega^2 u_{\underline{L}+\underline{H}} & \text{in } \Omega, \\ w = 0 & \text{on } \partial\Omega. \end{cases}$$
(18)

By proposition 2.1, we have

$$\begin{split} \|\nabla w\|_{L^{2}(\Omega)} &\leq C \|w\|_{H^{1}(\Omega)} \\ &\leq C \|\operatorname{div}\left(\mathbb{H}\hat{\nabla} u_{\underline{L}+\underline{H}}\right)\|_{H^{-1}(\Omega)} + C \|h\omega^{2}u_{\underline{L}+\underline{H}}\|_{H^{-1}(\Omega)} \\ &\leq C \|\mathbb{H}\hat{\nabla} u_{\underline{L}+\underline{H}}\|_{L^{2}(\Omega)} + C \|h\omega^{2}u_{\underline{L}+\underline{H}}\|_{H^{-1}(\Omega)} \\ &\leq C \|\underline{H}\|_{\infty} \|u_{\underline{L}+\underline{H}}\|_{H^{1}(\Omega)} + C \|\underline{H}\|_{\infty} \|u_{\underline{L}+\underline{H}}\|_{L^{2}(\Omega)} \\ &\leq C \|\underline{H}\|_{\infty} \|\psi\|_{H^{1/2}_{co}(\Sigma)}, \end{split}$$
(19)

where C depends on A, L, α_0 , β_0 , γ_0 , λ_1^0 . By inserting (19) into (17) we get

$$|\eta| \leq C \|\underline{H}\|_{\infty}^{2} \|\psi\|_{H^{1/2}_{m}(\Sigma)} \|\phi\|_{H^{1/2}_{m}(\Sigma)}, \tag{20}$$

that yields (15).

We now prove the Lipschitz continuity of *DF*. Let $\underline{L}^1, \underline{L}^2 \in \mathcal{A}$ and set

$$\begin{split} \xi &:= \langle (DF(\underline{L}^2) - DF(\underline{L}^1))[\underline{H}]\psi, \phi \rangle \\ &= \int_{\Omega} (\mathbb{H}\hat{\nabla}u_{\underline{L}^2} : v_{\underline{L}^2} - \mathbb{H}\hat{\nabla}u_{\underline{L}^1} : v_{\underline{L}^1}) dx + \int_{\Omega} (h\omega^2 u_{\underline{L}^2} \cdot v_{\underline{L}^2} - h\omega^2 u_{\underline{L}^1} \cdot v_{\underline{L}^1}) dx \\ &= \int_{\Omega} \mathbb{H}(\hat{\nabla}u_{\underline{L}^2} - \hat{\nabla}u_{\underline{L}^1}) : \hat{\nabla}v_{\underline{L}^2} dx + \int_{\Omega} \mathbb{H}\hat{\nabla}u_{\underline{L}^1} : (\hat{\nabla}v_{\underline{L}^2} - \hat{\nabla}v_{\underline{L}^1}) dx \\ &+ \int_{\Omega} h\omega^2 (u_{\underline{L}^2} - u_{\underline{L}^1}) \cdot v_{\underline{L}^2} dx + \int_{\Omega} h\omega^2 u_{\underline{L}^1} \cdot (v_{\underline{L}^2} - v_{\underline{L}^1}) dx. \end{split}$$

By reasoning as we did to derive (20) we obtain

$$|\xi| \leq C_{DF} ||\underline{H}||_{\infty} ||\underline{L}^2 - \underline{L}^1||_{\infty} ||\psi||_{H^{1/2}_{co}(\Sigma)} ||\phi||_{H^{1/2}_{co}(\Sigma)},$$

where C_{DF} depends on $A, L, \alpha_0, \beta_0, \gamma_0, \lambda_1^0$.

3.2. Further notation and definitions

Construction of an augmented domain and extension of \mathbb{C} **and** ρ **.** First we extend the domain Ω to a new domain Ω_0 such that $\partial \Omega_0$ is of Lipschitz class and $B_{1/C}(P_1) \cap \Sigma \subset \Omega_0$, for some suitable constant $C \ge 1$ depending only on *L*. We proceed as in [ARRV]. We set

$$\eta_1 = 1/C_L$$
, where $C_L = \frac{3\sqrt{1+L^2}}{L}$, (21)

and define, for every $x' \in B'_{\frac{1}{3}}$

$$\psi^{+}(x') = \begin{cases} \frac{\eta_{1}}{2} & \text{for } |x'| \leq \frac{\eta_{1}}{4L} \\ \eta_{1} - 2L|x'| & \text{for } \frac{\eta_{1}}{4L} < |x'| \leq \frac{\eta_{1}}{2L} \\ 0 & \text{for } |x'| > \frac{\eta_{1}}{2L}. \end{cases}$$

We observe that for every $x' \in B'_{1/3}$, $|\psi^+(x')| \leq \frac{\eta_1}{2}$ and $|\nabla_{x'}\psi^+(x')| \leq 2L$. Next, we denote by

 $D_0 = \{ x = (x', x_3) \in Q_{1/3, L} \mid 0 \leq x_3 < \psi^+(x') \},\$

$$\Omega_0 = \Omega \cup D_0.$$

We have

(i) Ω_0 has a Lipschitz boundary with constants $\frac{1}{3}$, 3*L*; (ii)

 $\Omega_0 \supset Q_{1/4LC_L,L}$

Let \mathbb{C} be an isotropic tensor that satisfies assumption 2.5. We extend \mathbb{C} to Ω_0 such that $\mathbb{C}|_{D_0} = \mathbb{C}_0$. We also extend ρ such that $\rho|_{D_0} = 1$. Then \mathbb{C}, ρ are of the form

$$\mathbb{C} = \sum_{j=0}^{N} \mathbb{C}_{j} \chi_{D_{j}}(x), \tag{22}$$

$$\rho = \sum_{j=0}^{N} \rho_j \,\chi_{D_j}(x).$$
(23)

Construction of a walkway. We fix $j \in \{1, ..., N\}$ and let $D_{j_1}, ..., D_{j_M}$ be a chain of domains connecting D_1 to D_j . We set $D_k = D_{j_k}$, k = 1, ..., M. By [ARRV] proposition 5.5, there exists $C'_L \ge 1$ depending on L only, such that $(D_k)_h$ is connected for every $k \in \{1, ..., M\}$ and every $h \in (0, 1/C'_L)$. We introduce

$$h_0 = \min\left\{\frac{1}{6}, \frac{1}{C'_L}, \frac{\eta_1}{8\sqrt{1+4L^2}}\right\}$$
(24)

where η_1 is as in (21).

Furthermore

(i) Q_(k), k = 1,..., M, is the cylinder centered at P_k such that by a rigid transformation of coordinates under which P_k = 0 and Σ_k belongs to the plane {(x', 0)}, and Q_(k) = Q_{η1}/4L,L. We also denote Q_(M)⁻ = Q_(M) ∩ D_{M-1};

(ii) \mathcal{K} is the interior part of the set $\bigcup_{k=1}^{M-1} \bar{D}_i$;

(iii) $\mathcal{K}_h = \bigcup_{k=1}^{M-1} (D_i)_h$, for every $h \in (0, h_0)$; (iv)

$$\tilde{\mathcal{K}}_h = \mathcal{K}_h \cup \mathcal{Q}_{(M)}^- \cup \bigcup_{k=1}^{M-1} \mathcal{Q}_{(k)};$$
(25)

(v)

$$K_0 = \left\{ x \in D_0 \mid \operatorname{dist}(x, \partial \Omega) > \frac{\eta_1}{8} \right\}$$

It is straightforward to verify that \tilde{K}_h is connected and of Lipschitz class for every $h \in (0, h_0)$ and that

Figure 2. A path of the walkway.

$$K_0 \supset B'_{\eta_l/4L}(P_1) \times \left(\frac{\eta_1}{8}, \frac{\eta_1}{4}\right).$$
(26)

A path of the walkway is exhibited in Figure 2.

3.3. Existence of singular solutions

Next, we construct singular solutions to the system describing time-harmonic elastic waves. We prove the stability estimates for our inverse problems by studying the behavior of singular solutions.

3.3.1. Static fundamental solution in the biphase laminate. In order to construct singular solutions, we make use of special fundamental solutions constructed by Rongved [Rong] for isotropic biphase laminates. Consider

$$\mathbb{C}_b = \mathbb{C}^+ \chi_{\mathbb{R}^3} + \mathbb{C}^- \chi_{\mathbb{R}^3},$$

where \mathbb{C}^+ and \mathbb{C}^- are constant isotropic stiffness tensors given by

$$\mathbb{C}^+ = \lambda I_3 \otimes I_3 + 2\mu \mathbb{I}_{\text{sym}}, \ \mathbb{C}^- = \lambda' I_3 \otimes I_3 + 2\mu' \mathbb{I}_{\text{sym}},$$

with λ , μ and λ' , μ' satisfying (10).

By [Rong], there exists a fundamental solution Γ : { $(x, y) | x \in \mathbb{R}^3, y \in \mathbb{R}^3, x \neq y$ } $\rightarrow \mathbb{R}^{3 \times 3}$ such that

$$\operatorname{div}(\mathbb{C}_b\widehat{\nabla}\Gamma(\cdot,y)) = -\delta_y I_{3}.$$

Here δ_y is the Dirac distribution concentrated at y. We point out some properties of Γ . First of all, it is a fundamental solution, in the sense that $\Gamma(x, y)$ is continuous in $\{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 \mid x \neq y\}$, $\Gamma(x, \cdot)$ is locally integrable in \mathbb{R}^3 for all $x \in \mathbb{R}^3$, and, for every vector valued function $\phi \in C_0^{\infty}(\mathbb{R}^3)$, we have

$$\int_{\mathbb{R}^3} \mathbb{C}_b \hat{\nabla} \Gamma(\cdot, y) : \hat{\nabla} \phi \, \mathrm{d} x = \phi(y).$$

Furthermore, for every $x, y \in \mathbb{R}^3, x \neq y$, we have

$$|\Gamma(x,y)| \leqslant \frac{C}{|x-y|}$$

5)

and

$$|\nabla \Gamma(x, y)| \leq \frac{C}{|x-y|^2},$$

while for any r > 0,

$$\|\nabla\Gamma(\cdot, y)\|_{L^2(\mathbb{R}^3 \setminus B_r(y))} \leq \frac{C}{r^{1/2}},\tag{27}$$

where C depends on α_0 , β_0 only.

3.3.2. *Time-harmonic singular solutions*. Let \mathfrak{F} denote the union of the flats parts of $\bigcup_{j=1}^{N} \partial D_j$. Let $\mathcal{G} = \bigcup_{j=0}^{N} \partial D_j \setminus \mathfrak{F}$. Let $\mathbb{C} = \sum_{j=0}^{N} \mathbb{C}_j \chi_{D_j}$ where the tensors \mathbb{C}_j satisfy assumption 2.5. Let $y \in \Omega_0 \setminus \mathcal{G}$ and let $r = \min(1/4, \operatorname{dist}(y, \mathcal{G} \cup \partial \Omega_0))$. Then, in the ball $B_r(y)$, either \mathbb{C} is constant, $\mathbb{C} = \mathbb{C}_j$ or $\mathbb{C} = \mathbb{C}_j + (\mathbb{C}_{j+1} - \mathbb{C}_j)\chi_{\{x_3>a\}}$ for some a with |a| < r. We write

$$\mathbb{C}_{y} = \begin{cases} \mathbb{C}_{j} \text{ if } \mathbb{C} = \mathbb{C}_{j} \text{ in } B_{r}(y), \\ \mathbb{C}_{j} + (\mathbb{C}_{j+1} - \mathbb{C}_{j})\chi_{\{x_{3} > a\}} \text{ otherwise} \end{cases}$$

and consider the biphase fundamental solution satisfying

 $\operatorname{div}(\mathbb{C}_{y}\hat{\nabla}\Gamma(\cdot, y)) = -\delta_{y}I_{3} \text{ in } \mathbb{R}^{3}.$

Proposition 3.2. Let Ω_0 , \mathbb{C} and ω satisfy assumptions 2.4–2.6. Then, for $y \in \Omega_0 \setminus \mathcal{G}$, there exists only one function $G(\cdot, y)$, which is continuous in $\Omega \setminus \{y\}$, such that

$$\int_{\Omega_0} (\mathbb{C}\hat{\nabla}G(\cdot, y) : \hat{\nabla}\phi - \rho\omega^2 G(\cdot, y) \cdot \phi) dx = \phi(y), \ \forall \phi \in C_0^{\infty}(\Omega_0),$$
(28)

and

$$G(\cdot, y) = 0 \text{ on } \partial \Omega_0.$$

Furthermore, if dist(
$$y, \mathcal{G} \cup \partial \Omega_0$$
) $\geq \frac{1}{c_1}$ for some $c_1 > 1$ then

$$\|G(\cdot, y) - \Gamma(\cdot, y)\|_{H^1(\Omega_0)} \leqslant C,\tag{29}$$

$$\|G(\cdot, y)\|_{H^{1}(\Omega_{0} \setminus B_{r}(y))} \leq Cr^{-1/2},$$
(30)

$$\|G(\cdot, y)\|_{L^2(\Omega_0)} \leqslant C,\tag{31}$$

where C depends on α_0 , β_0 , A, L, γ_0 , λ_1^0 and on c_1 .

The proof of above proposition is similar to the proof of proposition 3.1 in [BFV].

3.4. Unique continuation for the system describing time-harmonic elastic waves

We state a quantitative estimate of unique continuation. We will omit the proof of this estimate since it is a minor modification of the proof of a similar estimate for the Lamé system of elasticity [BFV].

$$\operatorname{div}(\mathbb{C}\hat{\nabla}v) + \rho\omega^2 v = 0 \text{ in } \mathcal{K},$$

such that

 $\|v\|_{L^{\infty}(K_0)} \leq \epsilon_1$

and

$$|v(x)| \leq E_1(\operatorname{dist}(x, \Sigma_M))^{-1/2} \text{ for every } x \in \mathcal{K}_{h/2}.$$
(32)

Then

$$|v(\tilde{x})| \leq Cr^{-3/2 - \gamma} \epsilon_1^{\tau_r} (E_1 + \epsilon_1)^{1 - \tau_r}, \tag{33}$$

where $r \in (0, \frac{1}{C})$, $\tilde{x} = P_M + rn_M$, $\tau_r = \tilde{\theta} r^{\delta}$,

and C, δ and $\tilde{\theta}$ with $0 < \tilde{\theta} < 1$ depend on A, L, α_0 , β_0 , γ_0 and N.

Therefore, if the solution to the system of time-harmonic elastic waves is small in a subdomain of \mathcal{K} , and has *a priori* bound (32), then it is also small in \mathcal{K} . The above proposition gives a quantitative estimates on how the smallness propagates.

4. Proof of the main result

In this section we prove the main result that consists of showing the uniform continuity for DF and F^{-1} , and establishing a lower bound for DF. These results together with the Fréchet differentiability of F establish theorem 2.7 by proposition 5 of [BV]:

Proposition 4.1. ([*BV***], proposition 5).** Let M_1 and M_2 be positive numbers and $d \in \mathbb{N}$. Let **A** and *K* be an open subset and a compact subset of \mathbb{R}^d respectively. Assume that $K \subset \mathbf{A}$,

dist $(K, \mathbb{R}^d \setminus \mathbf{A}) \ge M_1$, and $K \subset B_{M_2}(0)$.

Let \mathcal{B} be a Banach space and let $T : \mathbf{A} \to \mathcal{B}$ be such that:

- (i) T is Frechét differentiable;
- (ii) the Frechét derivative $T' : \mathbf{A} \to \mathcal{L}(\mathbb{R}^d, \mathcal{B})$ is uniformly continuous with a modulus of continuity $\sigma_1(\cdot)$;

(iii) T_K is injective;

- (iv) $(T_K)^{-1}$: $T(K) \to K$ is uniformly continuous with a modulus of continuity $\sigma_2(\cdot)$;
- (v) T' is injective in K, namely there is a positive number q_0 such that

$$\min_{x\in K, |h|=1} \|T'(x)[h]\|_{\mathcal{B}} \geq q_0;$$

then we have

$$||x_1 - x_2||_{\mathbb{R}^d} \leq C ||T(x_1) - T(x_2)||_{\mathcal{B}}$$
 for every $x_1, x_2 \in K$,

where $C = \max\{\frac{2M_1}{\sigma_2^{-1}(\delta_1)}, \frac{2}{q_0}\}$, for $\delta_1 = \frac{1}{2}\min\{\delta_0, M_2\}$ with $\delta_0 = \sigma_1^{-1}(\frac{q_0}{2})$.

4.1. Injectivity of $F|_{\mathbf{K}}$ and uniform continuity of $(F|_{\mathbf{K}})^{-1}$

Let

$$\sigma(t) = \begin{cases} |\log t|^{-\frac{1}{8\delta}} \text{ for } 0 < t < \frac{1}{e} \\ t - \frac{1}{e} + 1 \text{ for } t \ge \frac{1}{e} \end{cases}$$
(34)

and

$$\sigma_{\rm l}(t) = (\sigma(t))^{1/5}.$$

Theorem 4.2. For every $\underline{L}^1, \underline{L}^2 \in \mathbf{K}$ the following inequality holds true,

$$\|\underline{L}^{1} - \underline{L}^{2}\|_{\infty} \leqslant C_{*}\sigma_{1}^{N}(\|F(\underline{L}^{1}) - F(\underline{L}^{2})\|_{\star})$$

$$(35)$$

where C_* is a constant depending on $A, L, \alpha_0, \beta_0, \gamma_0, \lambda_1^0, N$. Here $\sigma_1^N(\cdot)$ is the composition of the function σ_1 with itself N times.

Let $j \in \{1, ..., N\}$ be such that

$$d_{D_{j}}((\mathbb{C}_{\underline{L}^{1}},\rho_{\underline{L}^{1}}),(\mathbb{C}_{\underline{L}^{2}},\rho_{\underline{L}^{2}})) = d_{\Omega_{0}}((\mathbb{C}_{\underline{L}^{1}},\rho_{\underline{L}^{1}}),(\mathbb{C}_{\underline{L}^{2}},\rho_{\underline{L}^{2}})),$$

and let $D_{j_1}, ..., D_{J_M}$ be a chain of domains connecting D_1 to D_j . For the sake of simplicity of notation, set $D_k = D_{j_k}$. Let $\mathcal{W}_k = \text{Int}(\bigcup_{j=0}^k \overline{D_j})$, $\mathcal{U}_k = \Omega_0 \setminus \mathcal{W}_k$, for k = 1, ..., M - 1. The stiffness tensors $\mathbb{C}_{\underline{L}^1}$ and $\mathbb{C}_{\underline{L}^2}$ are extended as in (22) to all of Ω_0 . The densities $\rho_{\underline{L}^1}$ and ρ_{L^2} are extended as in (23). We set $\mathbb{C} := \mathbb{C}_{\underline{L}^1}$, $\overline{\mathbb{C}} := \mathbb{C}_{\underline{L}^2}$, $\rho := \rho_{\underline{L}^1}$ and $\overline{\rho} := \rho_{\underline{L}^2}$. Finally, let $\tilde{K}_k = \tilde{K}_h \cap \mathcal{W}_k$ and for $y, z \in \tilde{K}_k$ define the matrix-valued function

$$\mathcal{S}_{k}(y,z) := \int_{\mathcal{U}_{k}} ((\mathbb{C} - \bar{\mathbb{C}})\hat{\nabla}G(x,y) : \hat{\nabla}\bar{G}(x,z) - (\rho - \bar{\rho})\omega^{2}G(x,y) \cdot \bar{G}(x,z))dx,$$

the entries of which are given by

$$\mathcal{S}_{k}^{(p,q)}(y,z)$$

:= $\int_{\mathcal{U}_{k}} ((\mathbb{C} - \bar{\mathbb{C}})\hat{\nabla}G^{(p)}(x,y) : \hat{\nabla}\bar{G}^{(q)}(x,z) - (\rho - \bar{\rho})\omega^{2}G^{(p)}(x,y) \cdot \bar{G}^{(q)}(x,z)) \mathrm{d}x$

p, q = 1, 2, 3, where $G^{(p)}(\cdot, y)$ and $\overline{G}^{(q)}(z)$ denote respectively the *p*th columns and the *q*th columns of the singular solutions corresponding to \mathbb{C}, ρ and $\overline{\mathbb{C}}, \overline{\rho}$. From (30) we have that

$$|\mathcal{S}_k^{(p,q)}(y,z)| \leq C(d(y)d(z))^{-1/2}$$
 for all $y, z \in \mathcal{K}_k$

where the constant C depends on the *a priori* parameters only and $d(y) = d(y, U_k)$ and $d(z) = d(z, U_k)$.

First, following a similar argument in [BFV], we have the following two propositions:

Proposition 4.3. For all $y, z \in \tilde{\mathcal{K}}_k$ we have that $\mathcal{S}_k^{(\cdot,q)}(\cdot, z)$, $\mathcal{S}_k^{(p,\cdot)}(y, \cdot)$, belong to $H^1_{\text{loc}}(\tilde{\mathcal{K}}_k)$ and for any $q \in \{1, 2, 3\}$,

$$\operatorname{div}(\mathbb{C}\hat{\nabla}\mathcal{S}_{k}^{(\cdot,q)}(\cdot,z)) + \rho\omega^{2}\mathcal{S}_{k}^{(\cdot,q)}(\cdot,z) = 0 \text{ in } \tilde{\mathcal{K}}_{k},$$
(36)

and for any $p \in \{1, 2, 3\}$ *,*

$$\operatorname{div}(\bar{\mathbb{C}}\hat{\nabla}\mathcal{S}_{k}^{(p,\cdot)}(y,\cdot)) + \bar{\rho}\omega^{2}\mathcal{S}_{k}^{(p,\cdot)}(y,\cdot) = 0 \text{ in }\tilde{\mathcal{K}}_{k}.$$
(37)

Proposition 4.4. *If for a positive* ϵ_0 *and for some* $k \in \{1, ..., M - 1\}$

$$|\mathcal{S}_k(y,z)| \leq \epsilon_0 \text{ for every } (y,z) \in K_0 \times K_0, \tag{38}$$

then

$$\left|\mathcal{S}_{k}(y_{r}, z_{\bar{r}})\right| \leq Cr^{-5/2}\bar{r}^{-2} \left(\frac{\epsilon_{0}}{C_{1} + \epsilon_{0}}\right)^{\tau_{r}\tau_{\bar{r}}},\tag{39}$$

where $y_r = P_{k+1} + rn_{k+1}$, $z_{\bar{r}} = P_{k+1} + \bar{r}n_{k+1}$, $P_{k+1} \in \Sigma_{k+1}$, $r, \bar{r} \in (0, 1/C)$, $\tau_r = \bar{\theta}r^{\delta}$, $\tau_{\bar{r}} = \bar{\theta}\bar{r}^{\delta}$ and $C, C_1, \delta, \bar{\theta} \in (0, 1)$ depend on $A, L, \alpha_0, \beta_0, \gamma_0$ only.

We can also prove the following

Proposition 4.5. If (38) holds, then

$$\left|\partial_{y_{l}}\partial_{z_{l}}\mathcal{S}_{k}(y_{r}, z_{\bar{r}})\right| \leqslant Cr^{-9/2}\bar{r}^{-3} \left(\frac{\epsilon_{0}}{C_{l} + \epsilon_{0}}\right)^{\tau_{r}\tau_{\bar{r}}},\tag{40}$$

where $y_r = P_{k+1} + rn_{k+1}$, $z_{\bar{r}} = P_{k+1} + \bar{r}n_{k+1}$, $P_{k+1} \in \Sigma_{k+1}$, $r, \bar{r} \in (0, 1/C)$, $\tau_r = \bar{\theta}r^{\delta}$, $\tau_{\bar{r}} = \bar{\theta}\bar{r}^{\delta}$ and $C, C_1, \delta, \bar{\theta} \in (0, 1)$ depend on $A, L, \alpha_0, \beta_0, \gamma_0$ only.

We note that, in the above, ∂_{y_1} and ∂_{z_1} denote derivatives in directions lying on the interface Σ_{k+1} .

Proof of proposition 4.5. Fix $z \in K_0$ and consider the function $v(y) := S^{(\cdot,q)}(y,z)$, for fixed *q*. By proposition 4.3 we know that *v* is a solution of

$$\operatorname{div}(\mathbb{C}\hat{\nabla}v(\cdot)) + \rho\omega^2 v(\cdot) = 0 \text{ in } \tilde{\mathcal{K}}_k.$$

Moreover, from proposition 3.2, we get

$$|v(y)| \leq C_{\mathrm{l}}d(y)^{-\frac{1}{2}}, y \in \tilde{\mathcal{K}}_k,$$

where C_1 depends on $A, L, \alpha_0, \beta_0, \gamma_0, \omega, \lambda_1^0$. Then, applying proposition 3.3 for $\epsilon_1 = \epsilon_0$ and $E_1 = C_1$, we have

$$|v(y_r)| = |\mathcal{S}_k^{(\cdot,q)}(y_r,z)| \leqslant Cr^{-2} \left(\frac{\epsilon_0}{C_1 + \epsilon_0}\right)^{\gamma_r}$$

for all $y \in B_{r/2}(y_r)$. By the gradient estimate for an elliptic system (see for example [LN]), we obtain

$$|\partial_{y_1}v(y_r)| \leq Cr^{-3} \left(\frac{\epsilon_0}{C_1+\epsilon_0}\right)^{\tau_r}.$$

We note that $\partial_{y_1} G(x, y_r) = \partial_{y_1} \Gamma_{k+1}(x, y_r) + \partial_{y_1} w(x, y_r)$, where $\partial_{y_1} w(x, y_r)$ satisfies

$$\begin{cases} \operatorname{div}(\mathbb{C}\hat{\nabla}_{x}(\partial_{y_{1}}w(x,y_{r}))) + \rho\omega^{2}\partial_{y_{1}}w(x,y_{r}) = \operatorname{div}((\mathbb{C}_{b}^{k+1} - \mathbb{C})\hat{\nabla}_{x}(\partial_{y_{1}}\Gamma_{k+1}(x,y_{r}))) \\ -\rho\omega^{2}\partial_{y_{1}}\Gamma_{k+1}(x,y_{r}) & \text{in }\Omega_{0}, \\ \partial_{y_{1}}w(x,y_{r}) = -\partial_{y_{1}}\Gamma_{k+1}(x,y_{r}) & \text{on }\partial\Omega_{0} \end{cases}$$

where Γ_{k+1} is the biphase fundamental solution for stiffness tensor

$$\mathbb{C}_b^{k+1} = \mathbb{C}_k \chi_{\mathbb{R}^3_+} + \mathbb{C}_{k+1} \chi_{\mathbb{R}^3_-}.$$

Thus $\partial_{y_1} w(\cdot, y_r) \in H^1(\mathcal{U}_k)$ and

$$\|\partial_{y_1} w(\cdot, y_r)\|_{H^1(\mathcal{U}_k)} \leqslant C.$$

$$\tag{41}$$

Moreover,

$$\begin{split} \partial_{y_{l}} v(y_{r}) &= \partial_{y_{l}} \mathcal{S}_{k}^{(\cdot,q)}(y_{r},z) \\ &= \int_{\mathcal{U}_{k}} ((\mathbb{C} - \bar{\mathbb{C}}) \hat{\nabla}(\partial_{y_{l}} G(x,y_{r})) : \hat{\nabla} \bar{G}(x,z) \\ &- (\rho - \bar{\rho}) \omega^{2} (\partial_{y_{l}} G(x,y_{r})) \cdot \bar{G}(x,z)) \mathrm{d}x, \end{split}$$

while

$$\bar{v}(z) = \partial_{y_1} \mathcal{S}_k^{(p,\cdot)}(y_r, z),$$

is a solution to

$$\operatorname{div}(\bar{\mathbb{C}}\hat{\nabla}v(\cdot)) + \bar{\rho}\omega^2 v(\cdot) = 0 \text{ in } \tilde{\mathcal{K}}_k,$$

by the same reasoning as in proposition 4.3. By (41) and the estimates,

$$\|\partial_{y_{1}}\Gamma_{k+1}(\cdot, y)\|_{L^{2}(\mathbb{R}^{3}\setminus B_{r}(y))} \leqslant Cr^{-1/2},$$

$$\|\nabla(\partial_{v_{1}}\Gamma_{k+1}(\cdot, y))\|_{L^{2}(\mathbb{R}^{3}\setminus B_{r}(y))} \leqslant Cr^{-3/2}$$
(42)

$$\| \nabla (\mathcal{O}_{y_1} \mathbf{1}_{k+1} (\cdot, y)) \|_{L^2(\mathbb{R}^3 \setminus B_r(y))} \leqslant Cr \quad ,$$
(43)

we find that

$$|\bar{v}(z)| \leq Cr^{-\frac{3}{2}d(z)^{-\frac{1}{2}}}.$$

Applying proposition 3.3 with $\epsilon_1 = r^{-3} \left(\frac{\epsilon_0}{C_1 + \epsilon_0} \right)^{\tau_r}$ and $E_1 = Cr^{-\frac{3}{2}}$, we have $|\bar{v}(z)| \leq C\bar{r}^{-2}r^{-\frac{9}{2}} \left(\frac{\epsilon_0}{C_1 + \epsilon_0} \right)^{\tau_r \tau_{\bar{r}}}$,

for all $z \in B_{\bar{r}/2}(z_{\bar{r}})$. Then, again, by the gradient estimate,

$$\left|\partial_{z_1} \bar{v}(z_{\bar{r}})\right| \leq C \bar{r}^{-3} r^{-\frac{9}{2}} \left(\frac{\epsilon_0}{C_1 + \epsilon_0}\right)^{\tau_r \tau_{\bar{r}}}.$$

Arguing in a similar way, it also follows that

$$\begin{split} \partial_{z_l} \partial_{y_l} \mathcal{S}_k(y_r, z_{\bar{r}}) &= \partial_{z_l} \bar{v}(z_{\bar{r}}) \\ &= \int_{\mathcal{U}_k} \left((\mathbb{C} - \bar{\mathbb{C}}) \hat{\nabla} (\partial_{y_l} G(x, y_r)) : \hat{\nabla} (\partial_{z_l} \bar{G}(x, z_{\bar{r}})) \right. \\ &- \left(\rho - \bar{\rho} \right) \omega^2 (\partial_{y_l} G(x, y_r)) \cdot \left(\partial_{z_l} \bar{G}(x, z_{\bar{r}}) \right)] dx. \end{split}$$

This completes the proof of (40).

Proof of theorem 4.2. We follow a walkway and alternate between estimates for Lamé parameters and for the density. Observe that $\|F(\underline{L}^1) - F(\underline{L}^2)\|_* = \|\Lambda_{\mathbb{C},\rho} - \Lambda_{\overline{\mathbb{C}},\overline{\rho}}\|$. We write

$$\epsilon := \|F(\underline{L}^1) - F(\underline{L}^2)\|_{\star}.$$

Then using (14), we derive that for every $y, z \in K_0$ and for |l|, |m| = 1,

$$\left|\int_{\Omega} \left(\left(\mathbb{C} - \bar{\mathbb{C}}\right)(x)\hat{\nabla}G(x,y)l : \hat{\nabla}\bar{G}(x,z)m - (\rho - \bar{\rho})(x)\omega^2 G(x,y)l \cdot \bar{G}(x,z)m \right) \mathrm{d}x \right| \leq C\epsilon,$$
(44)

where C depends on $\alpha_0, \beta_0, \gamma_0, \omega, A, L$. Let

$$\delta_k := \max_{0 \leq j \leq k} \{ \max\{ |\lambda_j - \bar{\lambda_j}|, |\mu_j - \bar{\mu_j}|, |\rho_j - \bar{\rho_j}| \} \},$$

where $k \in \{0, 1, ..., M\}$.

We will prove that for a suitable, increasing sequence $\{\omega_k(\epsilon)\}_{0 \le k \le M}$ satisfying $\epsilon \le \omega_k(\epsilon)$ for every k = 0, ..., M we have

$$\delta_k \leq \omega_k(\epsilon) \Longrightarrow \delta_{k+1} \leq \omega_{k+1}(\epsilon)$$
, for every $k = 0, ..., M - 1$.

Without loss of generality we can choose $\omega_0(\epsilon) = \epsilon$. Suppose now that for some $k = \{1, ..., M - 1\}$ we have

$$\delta_k \leqslant \omega_k(\epsilon). \tag{45}$$

In the following, we estimate δ_{k+1} by first estimating $|\lambda_{k+1} - \bar{\lambda}_{k+1}|$, $|\mu_{k+1} - \bar{\mu}_{k+1}|$ and then $|\rho_{k+1} - \bar{\rho}_{k+1}|$. Consider

$$\mathcal{S}_{k}(y,z) := \int_{\mathcal{U}_{k}} ((\mathbb{C} - \bar{\mathbb{C}})(x)\hat{\nabla}G(x,y) : \hat{\nabla}\bar{G}(x,z) - (\rho - \bar{\rho})(x)\omega^{2}G(x,y) \cdot \bar{G}(x,z))dx,$$

and fix $z \in K_0$. From proposition 3.2 and from (44) we get that, for $y, z \in K_0$,

$$|\mathcal{S}_k(y,z)| \leq C(\epsilon + \omega_k(\epsilon)),$$

where *C* depends on *A*, *L*, α_0 , β_0 , γ_0 , λ_1^0 , ω . By (39) and choosing $\bar{r} = cr$ with $c \in [1/4, 1/2]$, we find that there are constants C_0 , $\delta \in (0, 1)$ and θ_* depending on *A*, *L*, α_0 , β_0 , γ_0 , ω and *M*, such that for any $r < 1/C_0$ and fixed $l, m \in \mathbb{R}^3$ with |l| = |m| = 1,

$$\left|\mathcal{S}_{k}(y_{r}, z_{\bar{r}})m \cdot l\right| \leqslant Cr^{-9/2}\varsigma(\omega_{k}(\epsilon), r), \tag{46}$$

where

$$\varsigma(t,s) = \left(\frac{t}{1+t}\right)^{\theta_s s^{2\delta}}.$$

(50)

We choose $l = m = e_3$ and decompose

$$S_k(y_r, z_{\bar{r}})e_3 \cdot e_3 = I_1 + I_2, \tag{47}$$

where

$$I_{1} = \int_{B_{r_{1}} \cap D_{k+1}} ((\mathbb{C} - \bar{\mathbb{C}})(x)\hat{\nabla}G(x, y_{r})e_{3} : \hat{\nabla}\bar{G}(x, z_{\bar{r}})e_{3} - (\rho - \bar{\rho})(x)\omega^{2}G(x, y_{r})e_{3} \cdot \bar{G}(x, z_{\bar{r}})e_{3})dx,$$
(48)

$$I_{2} = \int_{\mathcal{U}_{k+1} \setminus (B_{r_{1}} \cap D_{k+1})} ((\mathbb{C} - \bar{\mathbb{C}})(x) \hat{\nabla} G(x, y_{r}) e_{3} : \hat{\nabla} \bar{G}(x, z_{\bar{r}}) e_{3} - (\rho - \bar{\rho})(x) \omega^{2} G(x, y_{r}) e_{3} \cdot \bar{G}(x, z_{\bar{r}}) e_{3}) dx,$$

$$(49)$$

with $r_1 = \frac{1}{4LC_L}$. Then, from proposition 3.2, we derive immediately that $|I_2| \leq C$.

By (31), we have

.

$$\left|\int_{B_{r_1}\cap D_{k+1}} (\rho-\bar{\rho})(x)\omega^2 G(x,y_r)e_3\cdot \bar{G}(x,z_{\bar{r}})e_3\mathrm{d}x\right|\leqslant C,$$

where C depends on A, L, α_0 , β_0 , γ_0 , λ_1^0 . Using (29) and (30), we get

$$|I_{l}| \ge \left| \int_{B_{r_{l}} \cap D_{k+1}} (\mathbb{C}_{b}^{k+1} - \mathbb{C}_{b}^{k+1})(x) \hat{\nabla} \Gamma_{k+1}(x, y_{r}) e_{3} : \hat{\nabla} \bar{\Gamma}_{k+1}(x, z_{\bar{r}}) e_{3} \mathrm{d}x \right| - C \left(\frac{1}{\sqrt{r}} + 1\right),$$
(51)

where Γ_{k+1} and $\overline{\Gamma}_{k+1}$ are the biphase fundamental solutions introduced in section 3.3 corresponding to the stiffness tensors \mathbb{C}_{b}^{k+1} and $\overline{\mathbb{C}}_{b}^{k+1}$ given by

$$\mathbb{C}_b^{k+1} = \mathbb{C}_k \chi_{\mathbb{R}^3_+} + \mathbb{C}_{k+1} \chi_{\mathbb{R}^3_-},$$
$$\overline{\mathbb{C}}_b^{k+1} = \overline{\mathbb{C}}_k \chi_{\mathbb{R}^3_+} + \overline{\mathbb{C}}_{k+1} \chi_{\mathbb{R}^3_-},$$

up to a rigid coordinate transformation that maps the flat part of Σ_{k+1} into $x_3 = 0$. Furthermore by (46), (47) and (50) we obtain

$$|I_1| \le C(r^{-9/2}\varsigma(\omega_k(\epsilon), r) + 1),$$
 (52)

where *C* depends on *A*, *L*, α_0 , β_0 , γ_0 , λ_1^0 . Hence, by (51) and (52) and by performing the change of variables x = rx' in the integral, we get

$$\left| \int_{B_{r_{1}/r}^{-}} (\mathbb{C}_{b}^{k+1} - \bar{\mathbb{C}}_{b}^{k+1})(x') \hat{\nabla} \Gamma_{k+1}(x', e_{3}) e_{3} : \hat{\nabla} \bar{\Gamma}_{k+1}(x', ce_{3}) e_{3} \mathrm{d}x' \right| \leq \delta_{0}(r), \quad (53)$$

where

$$\delta_0(r) = C \left[r^{-7/2} \varsigma(\omega_k(\epsilon), r) + r^{1/2} \right].$$

We then follow the procedure of [BFV] pp 632-4, and obtain

$$|\lambda_{k+1} - \bar{\lambda}_{k+1}| \leq C\sigma(\omega_k(\epsilon)), \quad |\mu_{k+1} - \bar{\mu}_{k+1}| \leq C\sigma(\omega_k(\epsilon)).$$
(54)

Next, we estimate $|\rho_{k+1} - \bar{\rho}_{k+1}|$. By proposition 4.5, there are constants C_0 , $\delta \in (0, 1)$ and θ_* depending on $A, L, \alpha_0, \beta_0, \gamma_0, \omega$ and, increasingly, on M, such that for any $r < 1/C_0$ and fixed $l, m \in \mathbb{R}^3$ such that |l| = |m| = 1,

$$\left|\partial_{y_1}\partial_{z_1}\mathcal{S}_k(y_r, y_r)m \cdot l\right| \leqslant Cr^{-15/2}\varsigma(\omega_k(\epsilon), r).$$
(55)

We choose $l = m = e_3$, again, and decompose

$$\partial_{y_1}\partial_{z_1}\mathcal{S}_k(y_r, y_r)e_3 \cdot e_3 = J_1 + J_2, \tag{56}$$

where

$$J_{1} = \int_{B_{r_{1}}\cap D_{k+1}} ((\mathbb{C} - \bar{\mathbb{C}})(x)\hat{\nabla} (\partial_{y_{1}}G(x, y_{r}))e_{3} : \hat{\nabla}(\partial_{z_{1}}\bar{G}(x, y_{r}))e_{3} - (\rho - \bar{\rho})(x)\omega^{2}(\partial_{y_{1}}G(x, y_{r}))e_{3} \cdot (\partial_{z_{1}}\bar{G}(x, y_{r}))e_{3})dx,$$
(57)

$$J_{2} = \int_{\mathcal{U}_{k+1} \setminus (B_{r_{1}} \cap D_{k+1})} ((\mathbb{C} - \bar{\mathbb{C}})(x)\hat{\nabla} (\partial_{y_{1}}G(x, y_{r}))e_{3} : \hat{\nabla}(\partial_{z_{1}}\bar{G}(x, y_{r}))e_{3} - (\rho - \bar{\rho})(x)\omega^{2}(\partial_{y_{1}}G(x, y_{r}))e_{3} \cdot (\partial_{z_{1}}\bar{G}(x, y_{r}))e_{3})dx.$$
(58)

Then, with (41)–(43) we derive that

$$|J_2| \leqslant C. \tag{59}$$

By estimates (41)–(43), and using that $|\lambda_k - \bar{\lambda}_k| \leq C\omega_k(\epsilon)$, $|\mu_k - \bar{\mu}_k| \leq C\omega_k(\epsilon)$, $|\lambda_{k+1} - \bar{\lambda}_{k+1}| \leq C\sigma(\omega_k(\epsilon))$ and $|\mu_{k+1} - \bar{\mu}_{k+1}| \leq C\sigma(\omega_k(\epsilon))$, we get

$$\begin{aligned} |J_{l}| \geq \left| \int_{B_{r_{l}} \cap D_{k+1}} (\rho_{k+1} - \bar{\rho}_{k+1}) \frac{\partial}{\partial y_{l}} \Gamma_{k+1}(x, y_{r}) e_{3} \cdot \frac{\partial}{\partial y_{l}} \Gamma_{k+1}(x, y_{r}) e_{3} dx \right| \\ - C \left(\frac{1}{\sqrt{r}} + \frac{\sigma(\omega_{k}(\epsilon))}{r^{3}} \right) \\ \geq |\rho_{k+1} - \bar{\rho}_{k+1}| \int_{B_{r_{l}} \cap D_{k+1}} \left| \frac{\partial}{\partial y_{l}} \Gamma_{k+1}(x, y_{r}) e_{3} \right|^{2} dx - C \left(\frac{1}{\sqrt{r}} + \frac{\sigma(\omega_{k}(\epsilon))}{r^{3}} \right), \end{aligned}$$

$$(60)$$

where we have used that

$$\int_{B_{r_1}\cap D_{k+1}} \left| \frac{\partial}{\partial y_1} \Gamma_{k+1}(x, y_r) e_3 \right| \left| \frac{\partial}{\partial y_1} \Gamma_{k+1}(x, y_r) e_3 - \frac{\partial}{\partial y_1} \overline{\Gamma}_{k+1}(x, y_r) e_3 \right| dx \leqslant C \frac{\sigma(\omega_k(\epsilon))}{r}.$$

Furthermore, by (55),(56) and (59) we obtain

$$|J_1| \leq C(r^{-15/2}\varsigma(\omega_k(\epsilon), r) + 1).$$
 (61)

By (60) and by performing the change of variables x = rx' in the integral, we have

$$\begin{aligned} r^{-1}|\rho_{k+1} - \bar{\rho}_{k+1}| \int_{\mathcal{B}_{r_1/r}^-} \left| \frac{\partial}{\partial y_1} \Gamma_{k+1}(x', e_3) e_3 \right|^2 \mathrm{d}x' \\ \leqslant C \bigg((r^{-15/2} \varsigma(\omega_k(\epsilon), r) + 1) + \frac{1}{\sqrt{r}} + \frac{\sigma(\omega_k(\epsilon))}{r^3} \bigg) \end{aligned}$$

Since $r_1/r \ge C/4LC_L$ when $r \in (0, 1/C)$, we have

$$\int_{B_{r_1/r}} \left| \frac{\partial}{\partial y_1} \Gamma_{k+1}(x', e_3) e_3 \right|^2 \mathrm{d}x' \ge \int_{B_{C/4LC_L}} \left| \frac{\partial}{\partial y_1} \Gamma_{k+1}(x', e_3) e_3 \right|^2 \mathrm{d}x' \ge C,$$

for some positive C. Then

$$|\rho_{k+1} - \bar{\rho}_{k+1}| r^{-1} \leq C \left((r^{-15/2} \varsigma(\omega_k(\epsilon), r) + 1) + \frac{1}{\sqrt{r}} + \frac{\sigma(\omega_k(\epsilon))}{r^3} \right)$$

and thus

$$\left|\rho_{k+1} - \bar{\rho}_{k+1}\right| \leqslant \delta_1(r),\tag{62}$$

where

$$\delta_{\mathrm{l}}(r) = C \bigg[r^{-13/2} \varsigma(\omega_k(\epsilon), r) + \sqrt{r} + rac{\sigma(\omega_k(\epsilon))}{r^2} \bigg].$$

If $\omega_k(\epsilon) < 1/e$, we choose

$$r = \frac{|\sigma(\omega_k(\epsilon))|^{2/5}}{C},$$

and then

$$|\rho_{k+1} - \bar{\rho}_{k+1}| \leqslant C |\sigma(\omega_k(\epsilon))|^{1/5}.$$
(63)

Otherwise, if $\omega_k(\epsilon) \ge 1/e$, since $|\rho_{k+1} - \bar{\rho}_{k+1}|$ is bounded, we get (63) trivially. By (54) and (63), we follow the weakest estimate to get

$$\delta_{k+1} \leq \omega_{k+1}(\epsilon) := C\sigma_{\mathbf{l}}(\omega_k(\epsilon)).$$

Following the way of alternatingly estimating $|\lambda - \bar{\lambda}|$, $|\mu - \bar{\mu}|$ and $|\rho - \bar{\rho}|$ along the walkay $D_1, D_2, ..., D_M$, and recalling that $\omega_0(\epsilon) = \epsilon$, we get (35).

The uniqueness statement in theorem 2.7 is an immediate consequence of the proposition above.

4.2. Injectivity of $DF(\underline{L})$ and estimate from below of $DF|_{\mathbf{K}}$

Proposition 4.6. Let

$$q_0 := \min\{\|DF(\underline{L})[\underline{H}]\|_* \mid \underline{L} \in \mathbf{K}, \underline{H} \in \mathbb{R}^{3N}, \|\underline{H}\|_{\infty} = 1\};$$

we have

$$(\sigma_1^N)^{-1}(1/C_\star) \leqslant q_0, \tag{64}$$

where $C_* > 1$ depends on $A, L, \alpha_0, \beta_0, \gamma_0, \lambda_1^0$ and N only.

Proof. By the definition of q_0 there exists an $\underline{L}_0 \in \mathbf{K}$ and

$$\underline{H}_0 = (h_{0,1}, \dots, h_{0,N}, k_{0,1}, \dots, k_{0,N}, l_{0,1}, \dots, l_{0,N}), \ \|\underline{H}_0\|_{\infty} = 1,$$

such that

$$\|DF(\underline{L}_0)[\underline{H}_0]\|_{\star} = q_0. \tag{65}$$

Therefore, by (15), (65), we have

$$\left|\int_{\Omega} \mathbb{H}(x)(\hat{\nabla}G(x,y)l:\hat{\nabla}G(x,z)m - h(x)\omega^2 G(x,y)l\cdot G(x,z)m)\mathrm{d}x\right| \leq Cq_0 \quad (66)$$

for every $y, z \in \mathcal{K}_0$, where *C* depends on $\alpha_0, \beta_0, \gamma_0, \omega, A, L$, $\mathbb{H} = \mathbb{C}_{\underline{H}_0}, h = \rho_{\underline{H}_0}$ and $G(\cdot, y)$ denotes the singular solution corresponding to $\mathbb{C}_{\underline{L}}, \rho_L$. From now on the vector

$$(0, h_{0,1}, \ldots, h_{0,N}, 0, k_{0,1}, \ldots, k_{0,N}, 0, l_{0,1}, \ldots, l_{0,N}),$$

will still be denoted by \underline{H}_0 .

We fix $j \in \{1, ..., N\}$ and let $D_{j_1}, ..., D_{j_M}$ be a chain of domains connecting D_1 to D_j , where $\max\{|h_{0,j}|, |k_{0,j}|, |l_{0,j}|\} = ||\underline{H}_0||_{\infty} = 1.$

Now, let

$$\eta_i := \max_{0 \le j \le i} \{ \max\{ |h_{0,j}|, |k_{0,j}|, |l_{0,j}| \} \},\$$

where $i \in \{0, 1, ..., M\}$.

We will prove that for a suitable increasing sequence $\{\omega_i(q_0)\}_{0 \le i \le M}$ satisfying $\epsilon \le \omega_i(q_0)$ for every k = 0, ..., M, we have

$$\delta_k \leq \omega_i(q_0) \Longrightarrow \delta_{i+1} \leq \omega_{k+1}(q_0)$$
 for every $i = 0, ..., M - 1$.

Without loss of generality we can choose $\omega_0(q_0) = q_0$. Suppose now that for some $i = \{1, ..., M - 1\}$ we obtain (65). Let $\mathcal{Y}_i(y, z) = \{\mathcal{Y}_i^{(p,q)}(y, z)\}_{1 \le p,q \le 3}$ be the matrix valued function the elements of which are given by

$$\mathcal{Y}_{i}^{(p,q)}(y,z) := \int_{\mathcal{U}_{i}} (\mathbb{H}(x)\hat{\nabla}G^{(p)}(x,y) : \hat{\nabla}G^{(q)}(x,z) - h(x)\omega^{2}G^{(p)}(x,y) \cdot G^{(q)}(x,z)) \mathrm{d}x,$$

 $|\mathcal{Y}_i(y,z)| \leq C(q_0 + \omega_i(q_0)),$

where *C* depends on *A*, *L*, α_0 , β_0 , γ_0 , λ_1^0 . Choosing $\bar{r} = cr$ with $c \in [1/4, 1/2]$, as in proposition 4.4, we have that there exists a constant C_2 such that for every $r \in (0, 1/C_2)$,

$$\left|\mathcal{Y}_{i}(y_{r}, z_{\bar{r}})\right| \leqslant Cr^{-9/2}\varsigma(\omega_{i}(q_{0}, r)),\tag{67}$$

where

$$\varsigma(t,s) = \left(\frac{t}{1+t}\right)^{\theta_s s^{2\delta}}.$$

We choose $l = m = e_3$, again, and decompose

$$\mathcal{Y}_k(y_r, z_{\bar{r}})e_3 \cdot e_3 = I_1 + I_2,$$
 (68)

where

$$I_{1} = \int_{B_{r_{1}} \cap D_{i+1}} (\mathbb{H}(x)\hat{\nabla}G(x, y_{r})e_{3} : \hat{\nabla}G(x, z_{\bar{r}})e_{3} - h(x)\omega^{2}\bar{G}(x, y_{r})e_{3} \cdot G(x, z_{\bar{r}})e_{3})dx,$$
(69)

$$I_{2} = \int_{\mathcal{U}_{i+1} \setminus (B_{r_{1}} \cap D_{i+1})} (\mathbb{H}(x)\hat{\nabla}G(x, y_{r})e_{3} : \hat{\nabla}G(x, z_{\bar{r}})e_{3} - h(x)\omega^{2}G(x, y_{r})e_{3} \cdot G(x, z_{\bar{r}})e_{3})dx,$$

$$(70)$$

and $r_1 = \frac{1}{4LC_L}$. Then, from proposition 3.2, we derive that $|I_2| \leq C$.

Using (31), we find that

$$\left|\int_{B_{r_1}\cap D_{k+1}}h(x)\omega^2G(x,y_r)e_3\cdot G(x,z_F)e_3\mathrm{d}x\right|\leqslant C,$$

where C depends on A, L, α_0 , β_0 , γ_0 , λ_1^0 . Then, by (29) and (30) we get

$$|I_{1}| \ge \left| \int_{B_{r_{1}} \cap D_{i+1}} \mathbb{H}(x) \hat{\nabla} \Gamma_{i+1}(x, y_{r}) e_{3} : \hat{\nabla} \Gamma_{i+1}(x, z_{\bar{r}}) e_{3} \mathrm{d}x \right| - C \left(\frac{1}{\sqrt{r}} + 1 \right).$$
(72)

With (67), (68) and (71) we obtain

$$|I_1| \le C(r^{-9/2}\varsigma(\omega_i(q_0), r) + 1), \tag{73}$$

where C depends on A, L, α_0 , β_0 , γ_0 , λ_1^0 . Following the procedure of [BFV] pp. 635-637, we get

$$|h_{0,i+1}| \leq C\sigma(\omega_i(q_0)), \quad |k_{0,i+1}| \leq C\sigma(\omega_i(q_0)). \tag{74}$$

(71)

Similar to proposition 4.5, we find that there are constants C_2 , $\delta \in (0, 1)$ and θ_* depending on $A, L, \alpha_0, \beta_0, \gamma_0, \omega$ and, increasingly, on M, such that for any $r < 1/C_2$

$$\left|\partial_{y_1}\partial_{z_1}\mathcal{Y}_i(y_r, y_r)e_3 \cdot e_3\right| \leqslant Cr^{-15/2}\varsigma(\omega_i(q_0, r)).$$

$$\tag{75}$$

We decompose

$$\partial_{y_1}\partial_{z_1}\mathcal{Y}_i(y_r, y_r)e_3 \cdot e_3 = J_1 + J_2, \tag{76}$$

where

$$J_{1} = \int_{B_{r_{1}} \cap D_{i+1}} (\mathbb{H}(x)\hat{\nabla}(\partial_{y_{1}}G(x, y_{r}))e_{3} : \hat{\nabla}(\partial_{z_{1}}G(x, y_{r}))e_{3} - h(x)\omega^{2}(\partial_{y_{1}}G(x, y_{r}))e_{3} \cdot (\partial_{z_{1}}G(x, y_{r}))e_{3})dx,$$
(77)

$$J_{2} = \int_{\mathcal{U}_{i+1} \setminus (B_{r_{1}} \cap D_{i+1})} (\mathbb{H}(x)\hat{\nabla}(\partial_{y_{1}}G(x, y_{r}))e_{3} : \hat{\nabla} (\partial_{z_{1}}G(x, y_{r}))e_{3} - h(x)\omega^{2}(\partial_{y_{1}}G(x, y_{r}))e_{3} \cdot (\partial_{z_{1}}G(x, y_{r}))e_{3})dx.$$

$$(78)$$

Using (41)-(43) and (74), we get

$$|J_2| \leqslant C \tag{79}$$

and

$$|J_{1}| \geq \left| \int_{B_{r_{1}} \cap D_{i+1}} l_{0,i+1} \frac{\partial}{\partial y_{1}} \Gamma_{i+1}(x, y_{r}) e_{3} \cdot \frac{\partial}{\partial y_{1}} \Gamma_{i+1}(x, y_{r}) e_{3} dx \right| - C \left(\frac{1}{\sqrt{r}} + \frac{\sigma(\omega_{i}(\epsilon))}{r^{3}} \right)$$

$$= |l_{0,i+1}| \int_{B_{r_{1}} \cap D_{i+1}} \left| \frac{\partial}{\partial y_{1}} \Gamma_{i+1}(x, y_{r}) e_{3} \right|^{2} dx - C \left(\frac{1}{\sqrt{r}} + \frac{\sigma(\omega_{i}(q_{0}))}{r^{3}} \right).$$

$$(80)$$

Furthermore by (75), (76) and (79), we obtain

$$|J_1| \leq C(r^{-15/2}\varsigma((\omega_i(q_0)), r) + 1).$$
(81)

Hence, by (80) and upon performing the change of variables x = rx' in the integral, we obtain

$$r^{-1}|l_{0,i+1}| \int_{B_{r_1/r}^-} \left| \frac{\partial}{\partial y_1} \Gamma_{i+1}(x', e_3) e_3 \right|^2 \mathrm{d}x' \\ \leqslant C \bigg((r^{-15/2} \zeta(\omega_i(q_0), r) + 1) + \frac{1}{\sqrt{r}} + \frac{\sigma(\omega_i(q_0))}{r^3} \bigg).$$

Since $r_1/r \ge C/4LC_L$ when $r \in (0, 1/C)$, we have

$$\int_{B_{r_1/r}^-} \left| \frac{\partial}{\partial y_1} \Gamma_{i+1}(x', e_3) e_3 \right|^2 \mathrm{d}x' \ge \int_{B_{C/ALC_L}^-} \left| \frac{\partial}{\partial y_1} \Gamma_{i+1}(x', e_3) e_3 \right|^2 \mathrm{d}x' \ge C.$$

Then

$$l_{0,i+1}|r^{-1} \leq C \left((r^{-15/2}\varsigma((\omega_i(q_0)), r) + 1) + \frac{1}{\sqrt{r}} + \frac{\sigma(\omega_i(q_0))}{r^3} \right)$$

and thus

$$|l_{0,i+1}| \leqslant \delta_1(r),\tag{82}$$

where

$$\delta_{\mathbf{l}}(r) = C \left[r^{-13/2} \varsigma(\omega_i(q_0), r) + \sqrt{r} + \frac{\sigma(\omega_i(q_0))}{r^2} \right].$$

If $\omega_i(q_0) < 1/e$, we choose

$$r = \frac{|\sigma(\omega_i(q_0))|^{2/5}}{C}$$

so that

$$|l_{0,i+1}| \leq C |\sigma(\omega_i(q_0))|^{1/5}.$$
(83)

Otherwise, if $\omega_i(q_0) \ge 1/e$, because $|l_{0,i+1}|$ is bounded, we get (83) trivially. Then, by (74) and (83) we get

$$\eta_{i+1} \leq \omega_{i+1}(q_0) := C\sigma_1(\omega_i(q_0)).$$

Finally, by alternating the estimates for $|\lambda - \bar{\lambda}|$, $|\mu - \bar{\mu}|$ and $|\rho - \bar{\rho}|$, we get

$$1 = \eta_M \leqslant C\sigma_1^M(q_0) \leqslant C\sigma_1^N(q_0),$$

and the statement follows.

References

- [A] Alessandrini G 1988 Stable determination of conductivity by boundary Appl. Anal. 27 153–72
- [AdCMR] Alessandrini G, di Cristo M, Morassi A and Rosset E 2014 Stable determination of an inclusion in an elastic body by boundary measurements SIAM J. Math. Anal. 46 2692–729
 - [ARRV] Alessandrini G, Rondi L, Rosset E and Vessella S 2009 The stability for the Cauchy problem for elliptic equations *Inverse Problems* **25** 1–47
 - [AV] Alessandrini A and Vessella S 2005 Lipschitz stability for the inverse conductivity problem Adv. Appl. Math. 35 207–41
 - [AL] Arridge S and Lionheart W 1998 Nonuniqueness in diffusion-based optical tomography Opt. Lett. 23 882–4
 - [BV] Bacchelli V and Vessella S 2006 Lipschitz stability for a stationary 2D inverse problem with unknown polygonal boundary *Inverse Problems* 22 1627–58
 - [B] Baeten G 1989 Theoretical and practical aspects of the Vibroseis method *PhD Thesis* Technische Universiteit Delft
 - [BCL] Bamberger A, Chavent G and Lailly P 1979 About the stability of the inverse problem in 1D wave equations—application to the interpretation of seismic profiles *Appl. Math. Optim.* 5 1–47

- [BdHFS] Beretta E, de Hoop M V, Faucher F and Scherzer O 2016 Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates Siam J. Math. Anal. 48 3962–83
- [BdHQ] Beretta E, de Hoop M V and Qiu L 2013 Lipschitz stability of an inverse boundary value problem for a Schrödinger type equation *SIAM J. Math. Anal.* **45** 679–99
- [BdHQS] Beretta E, de Hoop M V, Qiu L and Scherzer E 2014 Inverse boundary value problem for the Helmholtz equation: multi-level approach and iterative reconstruction (arXiv:1406.2391)
- [BFMRV] Beretta E, Francini E, Morassi A, Rosset E and Vessella S 2014 Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces *Inverse Problems* 30 125005
 - [BFV] Beretta E, Francini E and Vessella S 2014 Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements *Inverse Problems Imaging* 8 611–44
 - [BOV1] Brossier R, Operto S and Virieux J 2009 Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion *Geophysics* 74 WCC105–18
 - [BOV2] Brossier R, Operto S and Virieux J 2010 Which data residual norm for robust elastic frequency-domain full waveform inversion? *Geophysics* 75 R37–46
 - [BKB] Butzer S, Kurzmann A and Bohlen T 2013 3D elastic full-waveform inversion of smallscale heterogeneities in transmission geometry *Geophys. Prospect.* 61 1238–51
 - [C] Chavent G 1983 Local stability of the output least square parameter estimation technique *Math. Appl. Comp.* **2** 3–22
 - [CMS] Choi Y, Min D and Shin C 2008 Frequency-domain elastic full waveform inversion using the new pseudo-Hessian matrix: experience of elastic Marmousi-2 synthethic data *Bull. Seismol. Soc. Am.* 98 2402–15
- [CPNMT] Crase E, Pica A, Noble M, McDonald J and Tarantola A 1990 Robust elastic nonlinear waveform inversion: application to real data *Geophysics* 55 527–38
- [dHQS1] de Hoop M V, Qiu L and Scherzer O 2012 Local analysis of inverse problems: Hólder stability and iterative reconstruction *Inverse Problems* 28 045001
- [dHQS2] de Hoop M V, Qiu L and Scherzer O 2015 An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints *Numer. Math.* 129 127–48
 - [ER] Eskin G and Ralston J 2002 On the inverse boundary value problem for linear isotropic elasticity *Inverse Problems* 18 907–21
 - [GVG] Gélis C, Virieux J and Grandjean G 2007 Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain *Geophys. J. Int.* 168 605–33
 - [FT] Fichtner A and Trampert J 2011 Hessian kernels of seismic data functionals based upon adjoint techniques *Geophys. J.* 185 775–98
 - [H] Harrach B 2009 On uniqueness in diffuse optical tomography *Inverse problems* 25 055010
 - [IY] Imanuvilov O and Yamamoto M 2015 Global uniqueness in inverse boundary value problems for Navier–Stokes equations and Lamé system in two dimensions *Inverse Problems* 31 035004
 - [I] Isakov V 2006 Inverse Problems for Partial Differential Equations 2nd edn (Berlin: Springer)
 - [L] Lailly P 1983 The seismic inverse problem as a sequence of before stack migrations Conference on Inverse Scattering: Theory and Application (Philadelphia: Society for Industrial and Applied Mathematics) pp 206–20
 - [LN] Li Y and Nirenberg L 2003 Estimates for elliptic systems from composition materials Commun. Pure Appl. Math. 56 892–925
 - [M] Mora P 1987 Nonlinear two dimensional elastic inversion of multioffset seismic data Geophysics 52 1211–28
 - [N] Nachman A 1988 Reconstructions from boundary measurements *Ann. Math.* **128** 531–76

- [NU] Nakamura G and Uhlmann G 2003 Erratum: global uniqueness for an inverse boundary value problem arising in elasticity *Invent. Math.* **152** 205–7
 - Nakamura G and Uhlmann G 1994 Erratum to Invent. Math. 118 457–74
 - [P] Pratt R 1999 Seismic waveform inversion in the frequency domain, part 1: theory and verification in a physical scale model *Geophysics* 64 888–901
- [PSH] Pratt R, Shin C and Hicks G 1996 Gauss-Newtwon and full Newton methods in frequency-space seismic waveform inversion *Geophys. J. Int.* 133 341–62
- [PW] Pratt R and Worthington M 1990 Inverse theory applied to multi-source cross-hole tomography. part 1: acoustic wave-equation method *Geophys. Prospect.* 38 287–310
- [Ron] Rondi L 2006 A remark on a paper by Alessandrini and Vessella *Adv. Appl. Math.* **36** 67–9
- [Rong] Rongved L 1955 Force interior to one of two joined semi-infinite solids Proc. 2nd Midwestern Conf. Solid Mech pp 1–13
 - [T] Tarantola A 1984 Linearized inversion of seismic reflection data *Geophys. Prospect.* 32 998–1015
- [TV] Tarantola A and Valette B 1982 Generalized nonlinear inverse problem solved using the least squares criterion *Rev. Geophys. Space Phys.* 20 219–32
- [TTL] Tromp J, Tape C and Liu Q 2005 Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels *Geophys. J. Int.* 160 195–216
- [XM] Xu K and McMechan G 2014 2D frequency-domain elastic full-waveform inversion using time-domain modeling and a multisteplength gradient approach *Geophysics* 79 R41–53