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Abstract
We consider the inverse problem of determining the Lamé parameters and 
the density of a three-dimensional elastic body from the local time-harmonic 
Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of 
this inverse problem when the Lamé parameters and the density are assumed 
to be piecewise constant on a given domain partition.

Keywords: inverse boundary value problem, uniqueness, Lipschitz stability, 
time-harmonic elastic waves

(Some figures may appear in colour only in the online journal)

1. Introduction

We study the inverse boundary value problem for time-harmonic elastic waves. We consider 
isotropic elasticity, and allow partial boundary data. The Lamé parameters and the density are 
assumed to be piecewise constants on a given partitioning of the domain. The system of equa-
tions describing time-harmonic elastic waves is given by,

⊂ρω
ψ
∇ + = Ω

= ∂Ω
C R⎧

⎨
⎩

u u

u

div 0 in ,

on ,

2 3( ˆ )  
 

 (1)
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where Ω is an open and bounded domain with smooth boundary, ∇uˆ  denotes the strain tensor, 

∇ = ∇ + ∇u u u: T1

2
ˆ ( ( ) ), ψ∈ ∂ΩH1 2( )/  is the boundary displacement or source, and ∈ Ω∞C L ( ) 
denotes the isotropic elasticity tensor with Lamé parameters λ µ, :

   λ µ= ⊗ + ΩC II I 2 , a.e. in ,3 3 sym

where I3 is ×3 3 identity matrix and Isym is the fourth order tensor such that =I A Asym
ˆ, 

ρ∈ Ω∞L ( ) is the density, and ω is the frequency. Here, we make use of the following nota-

tion for matrices and tensors: for ×3 3 matrices A and B we set = ∑ =A B A B: i j ij ij, 1
3  and 

= +A A AT1

2
ˆ ( ). We assume that

α µ α λ α µ λ β< + > Ω− −0 , , 2 3 0 a.e. in ,0 0
1

0
1

0⩽ ⩽   ⩽   ⩾       (2)

γ ρ γ− .0 0
1⩽ ⩽ (3)

The Dirichlet-to-Neumann map, Λ ρC, , is defined by

ψ νΛ ∂Ω ∇ | ∈ ∂Ωρ ∂Ω
−� CC H u H: ,,

1 2 1 2( ) → ( ˆ ) ( )/ /

where ν is the outward unit normal to ∂Ω. We consider the inverse problem:

ρ Λ ρC Cdetermine , from .,     

For the static case (that is, ω = 0) of our problem, Imanuvilov and Yamamoto [IY] proved, 
in dimension two, a uniqueness result for C10 Lamé parameters. In dimension three, Nakamura 
and Uhlmann [NU] proved uniqueness assuming that the Lamé parameters are ∞C  and that μ 
is close to a positive constant. Eskin and Ralston [ER] proved a similar result. Global unique-
ness of the inverse problem in dimension three assuming general Lamé parameters remains 
an open problem. One key difficulty here is that there are two metrics involved in the elastic 
tensor. Beretta et  al proved the uniqueness when the Lamé parameters are assumed to be 
piecewise constant. They proved a Lipschitz stability when interfaces of subdomains contain 
flat parts [BFV]; later, they extended this result to non-flat interfaces [BFMRV]. Alessandrini 
et al [AdCMR] proved a logarithmic stabilty estimate for the inverse problem of identifying 
an inclusion, where constant Lamé parameters are different from the background ones.

The time-harmonic problem under our consideration has a more practical setting. The key 
application we have in mind is (reflection) seismology, where Lamé parameters and density 
need to be recovered from the Dirichlet-to-Neumann map. In actual seismic acquisition, raw 
vibroseis data are modeled by the local Neumann-to-Dirichlet map: the boundary values are 
given by the normal traction underneath the base plate of a vibroseis and are zero (‘free sur-
face’) elsewhere, while the particle displacement (in fact, velocity) is measured by geophones 
located in a subset of the boundary (Earth’s surface). The applied signal is essentially time-
harmonic (suppressing the sweep); see [B, 2.52 and (2.53)]. (The displacement needs to be 
measured also underneath the base plate.) The results presented here do not only hold for the 
Dirichlet-to-Neumann map, but also for the Neumann-to-Dirichlet map as the data (requiring 
only minor modifications of the proofs).

We consider piecewise constant Lamé parameters and density of the form

∑ ∑λ µ χ ρ ρχ= ⊗ + =
= =

C Ix I I x x x2 , ,
j

N

j j D
j

N

j D
1

3 3 sym
1

j j
( ) ( ) ( ) ( ) ( )
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where the Dj’s, = �j N1, ,  are known disjoint Lipschitz domains and λ µ ρ = �j N, , , 1, ,j j j  
are unknown constants. We establish uniqueness of the above mentioned inverse boundary 
value problem. We actually derive a Lipschitz stability estimate, and the uniqueness follows 
immediately. The method of proof follows the ideas introduced by Alessandrini and Vessella 
[AV] in the study of electrical impedance tomography (EIT) problems. The counterpart for 
scalar waves, that is, the inverse boundary value problem for the Helmholtz equation, was 
analyzed by Beretta et al [BdHQ].

The existence and the ‘blow up’ behavior of singular solutions close to a flat discontinuity 
are utilized in our proof. The quantitative estimate of unique continuation for elliptic systems, 
which is derived from a three spheres inequality, play an essential role in the procedure. We 
directly prove a log-type stability estimate for the Lamé parameters and the density combined 
by alternatingly estimating them along a walkway of subdomains. Uniqueness then follows 
from the stability estimate. From the restriction that the parameters to be recovered lie in a 
finite-dimensional space, a Lipschitz stability estimate is obtained.

A key complication addressed in this paper is the multiparameter aspect of this inverse 
problem. For the acoustic waves modeled by the equation

γ ω∇ ⋅ ∇ + =u q u 0,2( ) (4)

Nachman [N] proved the unique recovery of γ∈C2 and ∈ ∞q L  with Dirichlet-to-Neumann 
maps at two different admissible frequencies ω ω,1 2. For the optical tomography problem, that 
is, recovering simultaneously a  >  0 and c  >  0 in the partial differential equation

−∇ ⋅ ∇ + =a u cu 0,( )

from all possible boundary Dirichlet and Neumann pairs, Arridge and Lionheart [AL] dem-
onstrated the non-uniqueness for general a and c. However, when a is piecewise constant and 
c is piecewise analytic, Harrach [H] proved the uniqueness of this inverse problem. In this 
paper, we prove, for our problem, that recovering a higher order coefficient and a lower order 
coefficient jointly, that are assumed to be piecewise constant, only needs single frequency data 
also. If we assume γ q,  to be piecewise constant in (4), we can establish the uniqueness with 
single frequency data, following the methods of proof in this paper.

With the conditional Lipschitz stability which we obtain here, we can invoke iterative meth-
ods with guaranteed convergence for local reconstruction, such as the nonlinear Landweber 
iteration [dHQS1] and the nonlinear projected steepest descent algorithm [dHQS2] (includ-
ing a stopping criterion which allows inaccurate data). For a numerical realization, we refer 
to [BdHFS]. In reflection seismology, iterative methods for solving inverse problems, cast-
ing these into optimization problems, have been collectively referred to as Full Waveform 
Inversion (FWI) through the use of the adjoint state method. These methods were introduced 
in this field of application by Chavent [C], Lailly [L] and Tarantola & Valette [T, TV] albeit 
for scalar waves. An early study of stability in dimension one can be found in Bamberger et al 
[BCL]. Mora [M] developed the adjoint state formulation for the case of elastic waves and 
carried out computational experiments; Crase et al [CPNMT] then carried out applications 
to field data. Advantages of using time-harmonic data, following specific workflows, were 
initially pointed out by Pratt and collaborators [P–PW]; Bunks et  al [BKB] developed an 
important insight in the use of strictly finite-frequency data. In recent years, there has been 
a significant effort in further developing and applying these approaches (with emphasis on 
iterative Gauss–Newton methods)—in the absence of a notion of (conditional) uniqueness, 
stability or convergence—often in combination with intuitive strategies for selecting parts of 
the data. In exploration seismology, we mention the work of Gélis et al [GVG], Choi [CMS], 

E Beretta et alInverse Problems 33 (2017) 035013
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Brossier et al [BOV1, BOV2] and Xu & McMechan [XM]; in global seismology, we mention 
the work of Tromp et al [TTL] and Fichtner & Trampert [FT].

The paper is organized as follows: in section 2, we summarize the main results. In sec-
tion 3, we construct the singular solutions and establish the unique continuation for the system 
describing time-harmonic elastic waves. We also prove the Fréchet differentiability of the 
forward map, ρ Λ ρC C, ,( ) → . In section 4, we prove the main result.

2. Main result

2.1. Direct problem

We summarize some results concerning the well-posedness of problem (1). For the proof, we 
follow the lines of [BdHQS].

Proposition 2.1. Let Ω be a bounded Lipschitz domain in R3, ∈ Ω−f H 1( ) and ∈ ∂Ωg H1 2( )/ . 
Assume that λ µ ρ, ,  satisfy (2) and (3). Let λ1

0 be the smallest Dirichlet eigenvalue of the opera-

tor − ∇C udiv 0( ˆ ) in Ω, where α= ⊗ +β α−C II I 20
3

2 3 3 0 sym
0 0 . Then, for any ω ∈ γ λ

0,2
2
0 1

0

( ], there 

exists a unique solution of

⊂ρω∇ + = Ω
= ∂Ω
C R⎧

⎨
⎩

u u f

u g

div in ,

on ,

2 3( ˆ )  
 

 (5)

satisfying

∥ ∥ ⩽ (∥ ∥ ∥ ∥ )( ) ( ) ( )/ +Ω ∂Ω Ω−u C g f ,H H H1 1 2 1 (6)

where C depends on α0, β0, γ0 and λ1
0.

Proof. Without loss of generality, we let g  =  0. Indeed, we can always introduce a = −w u g̃ 
where ∈ Ωg H1˜ ( ) is such that =g g˜  on ∂Ω, which satisfies (5) with g  =  0. We recall that

∫λ = ∇ ∇ ∈ Ω =
Ω

ΩC u u u H umin : , 1 ,L1
0

0
1

2{ }ˆ ˆ ( ) ∥ ∥ ( ) (7)

and observe that C C0⩾ , that is, −C C A A: 00( ) ˆ ˆ ⩾  for any ×3 3 matrix A.
We consider on ΩH0

1( ) the bilinear form

∫ ∫ ω ρ= ∇ ∇ − ⋅
Ω Ω
Ca u v u v x u v x, : d d .2( ) ˆ ˆ

Then we can write problem (5) (for g  =  0) in the weak form,

= − ∀ ∈ Ωa u v f v v H, , .0
1( ) ⟨ ⟩ ( )

Clearly ⋅ ⋅a ,( ) is continuous. We check now that ⋅ ⋅a ,( ) is coercive. To this aim, we recall the 
Korn inequality

∫ ∫|∇ | |∇ |
Ω Ω

u x u xd 2 d2 2ˆ ⩽ (8)

for any ∈ Ωu H0
1( ) (using the matrix norm, =A A A:2  for any ×3 3 matrix A). Furthermore,

E Beretta et alInverse Problems 33 (2017) 035013
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∫ ∫
∫ ∫

∫ ∫ ∫

ω ρ

ω γ

ω γ

= ∇ ∇ − | |

∇ ∇ − | |

= ∇ ∇ + ∇ ∇ − | |

Ω Ω

Ω

−

Ω

Ω Ω

−

Ω

C

C

C C

a u u u u x u x

u u x u x

u u x u u x u x

, : d d

: d d

1

2
: d

1

2
: d 2 d .

2 2

0
2

0
1 2

0 0
2

0
1 2{ }

( ) ˆ ˆ

⩾ ˆ ˆ

ˆ ˆ ˆ ˆ

By (7), the strong convexity of C0, the Korn inequality (8) and the Poincaré inequality, we 
have

∫ ∫ ∫
ξ

ω γ

ξ

∇ + ∇ ∇ − | |
Ω Ω

−

Ω

Ω

Ca u u u x u u x u x

C
u

,
4

d
1

2
: d 2 d

4
P

H

0 2
0

2
0

1 2

0 2
1

{ }( ) ⩾ ˆ ˆ

⩾ ∥ ∥ ( )

indeed, where ξ0 depends on α0 and β0 only and CP is the Poincaré constant of Ω. By the Lax–
Milgram lemma there exists a unique solution ∈ Ωu H0

1( ) to problem (5), and (6) holds. □

Remark 2.2. We note that whenever ω is not in a particular countable subset of real num-
bers (the set of eigenfrequencies), problem (5) has a unique solution and estimate (6) holds 
with the constant C depending also on ω.

We let Σ be an open portion of ∂Ω. We denote by ΣHco
1 2( )/  the space

⊂φ φΣ = ∈ ∂Ω | ΣH H: suppco
1 2 1 2( ) { ( )      }/ /

and by Σ−Hco
1 2( )/  the topological dual of ΣHco

1 2( )/ . We denote by ⋅ ⋅,⟨ ⟩ the dual pairing between 
ΣHco

1 2( )/  and Σ−Hco
1 2( )/  based on the ΣL2( ) inner product. By proposition 2.1 it follows that for 

any ψ∈ ΣHco
1 2( )/  there exists a unique vector-valued function ∈ Ωu H1( ) that is a weak solution 

of the Dirichlet problem (1). We define the local Dirichlet-to-Neumann map Λ ρ
Σ
C,  as

ψ νΛ Σ ∇ | ∈ Σρ
Σ

Σ
−� CC H u H: .co co,

1 2 1 2( ) → ( ˆ ) ( )/ /

We have Λ = Λρ ρ
∂Ω

C C, , . The map Λ ρ
Σ
C,  can be identified with the bilinear form on 

Σ × Σ−H Hco co
1 2 1 2( ) ( )/ / ,

∫ψ φ ψ φ ρωΛ = Λ = ∇ ∇ − ⋅ρ ρ
Σ Σ

Ω
CC C u v u v x, : , : d ,, ,

2ˆ ( ) ⟨ ⟩ ( ˆ ˆ ) (9)

for all ψ φ∈ ΣH, co
1 2( )/ , where u solves (1) and v is any ΩH1( ) function such that φ=v  on ∂Ω. 

We shall denote by ⋅ �∥ ∥  the norm in Σ Σ−L H H,co co
1 2 1 2( ( ) ( ))/ /  defined by

∥ ∥ {〈 〉    ( ) ∥ ∥ ∥ ∥ }/
( ) ( )/ /ψ φ ψ φ ψ φ= ∈ Σ = =Σ Σ�T T Hsup , , , 1 .co H H

1 2
co co
1 2 1 2

2.2. Notation and definitions

For every ∈Rx 3 we set = ′x x x, 3( ) where ∈′ Rx 2 and ∈Rx3 . For every ∈Rx 3, r and L posi-
tive real numbers we denote by Br(x), ′ ′B xr( ) and Qr,L the open ball in R3 centered at x of radius 
r, the open ball in R2 centered at ′x  of radius r and the cylinder × − +′ ′B x x Lr x Lr,r 3 3( ) ( ), 
respectively; Br(0), ′B 0r( ) and Qr,L(0) will be denoted by Br, ′Br and Qr,L, respectively. We will 

E Beretta et alInverse Problems 33 (2017) 035013
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also write = ∈ >′+R Rx x x, : 03
3

3
3{( ) }, = ∈ <′−R Rx x x, : 03

3
3

3{( ) }, = ∩+
+RB Br r
3 , and 

= ∩−
−RB Br r
3 . For any subset D of R3 and any h  >  0, we let

= ∈ | >RD x D x D hdist , .h
3( ) {     ( \ ) }

Definition 2.3. Let Ω be a bounded domain in R3. We say that a portion ⊂Σ ∂Ω is of Lip-
schitz class with constants >r L0, 10 ⩾  if for any point ∈ΣP , there exists a rigid transforma-
tion of coordinates under which P  =  0 and

ψΩ∩ = ∈ | >′ ′Q x x Q x x, ,r L r L, 3 , 30 0{( )     ( )}

where ψ is a Lipschitz continuous function in ′Br0
 such that

ψ ψ= ′ Lr0 0 and .C B 0r
0,1

0
( )    ∥ ∥ ⩽( )

We say that Ω is of Lipschitz class with constants r0 and L if ∂Ω is of Lipschitz class with the 
same constants.

2.3. Main assumptions

Let α β γA L N, , , , ,0 0 0  be given positive numbers such that ∈NN , α ∈ 0, 10 ( ), β ∈ 0, 20 ( ), 
γ ∈ 0, 10 ( ) and L  >  1. We shall refer to them as the prior data.

In the sequel we will introduce a various constants that we will always denote by C. The 
values of these constants might differ from one another, but we will always have C  >  1.

Assumption 2.4. ([BFV]). The domain ⊂Ω R3 is open and bounded with

|Ω| A,⩽

and

Ω =∪ = D ,j
N

j1
¯ ¯

where = …D j N, 1, ,j  are connected and pairwise non-overlapping open subdomains of Lip-
schitz class with constants 1,L. Moreover, there exists a region, say D1, such that ∂ ∩ ∂ΩD1  
contains an open flat part, Σ, and that for every ∈ …j N2, ,{ } there exist … ∈ …j j N, , 1, ,M1 { } 
such that

= =D D D D,j j j1 M1

and, for every = …k M2, ,

∂ ∩ ∂
−

D Dj jk k1

contains a flat portion Σk such that

⊂Σ Ω = …k M, for all 2, , .k      

Furthermore, for = …k M1, , , there exists ∈ΣPk k and a rigid transformation of coordinates 
such that Pk  =  0 and

Σ ∩ = ∈ =Q x Q x: 0 ,k L L1 3, 1 3, 3{ }/ /

E Beretta et alInverse Problems 33 (2017) 035013
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∩ = ∈ <D Q x Q x: 0 ,j L L1 3, 1 3, 3k
{ }/ /

∩ = ∈ >
−

D Q x Q x: 0 ;j L L1 3, 1 3, 3k 1
{ }/ /

here, we set Σ = Σ1 . We will refer to …D D, ,j jM1
 as a chain of subdomains connecting D1 to 

Dj. For any ∈ …k M1, ,{ } we will denote by nk the exterior unit vector to ∂Dk at Pk.
An example of such a domain partition with Lipschitz class subdomains is an unstructured 

tetrahedral mesh as shown in figure 1.

Assumption 2.5. The stiffness tensor, C, is isotropic and piecewise constant, that is,

∑ χ λ µ= = ⊗ +
=

C C C Ix I I, 2 ,
j

N

j D j j j
1

3 3 symj
( )

where the constants λj and µj satisfy (see (2))

α µ α λ α µ λ β< + > = …− − j N0 , , 2 3 0, 1, , .j j j j0 0
1

0
1

0⩽ ⩽ ⩽ ⩾   (10)

The density, ρ, is of the form,

∑ρ ρχ=
=

x ,
j

N

j D
1

j
( )

where the constants ρj satisfy (see (3))

γ ρ γ = …− j N, 1, , .j0 0
1⩽ ⩽  

Assumption 2.6. Let λ1
0 be the smallest Dirichlet eigenvalue of operator

− ∇C udiv 0( ˆ ) in Ω as before,

ω
γ λ

2
.2 0 1

0

⩽

Figure 1. A domain partition including D1.

E Beretta et alInverse Problems 33 (2017) 035013
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2.4. Statement of the main result

We define for any set ∈RD 3,

ρ ρ λ λ µ µ ρ ρ= − − −∞ ∞ ∞C Cd , , , max , , .D L D L D L D
1 1 2 2 1 2 1 2 1 2(( ) ( )) {∥ ∥ ∥ ∥ ∥ ∥ }( ) ( ) ( )

Theorem 2.7. Let ρC ,1,2 1,2( ) satisfy assumption 2.5. Let Ω and Σ satisfy assumption 2.4 and 

ω satisfy assumption 2.6. If Λ = Λρ ρ
Σ Σ
C C, ,2 2 1 1 then =C C1 2 and ρ ρ=1 2. Moreover, there exists a 

positive constant C depending on L, A, N, α0, β0, γ0 and λ1
0 only, such that

ρ ρ Λ − Λρ ρΩ
Σ ΣC C C C �d C, , , .1 1 2 2

, ,1 1 2 2(( ) ( )) ⩽ ∥ ∥ (11)

In preparation of the proof, we introduce the forward map associated with the inverse prob-
lem. We let λ λ µ µ ρ ρ= … … …L : , , , , , , , ,N N N1 1 1( ) denote a vector in R N3  and A stand for the 
open subset of R N3  defined by

   α µ
α
λ

α
µ λ

β γ
ρ

γ
= ∈ < < < + > < < = …

⎧
⎨
⎩

⎫
⎬
⎭

A RL j N:
2

2
,

2
, 2 3

2
,

2

2
, 1, , .N

j j j j j
3 0

0 0

0 0

0

 

(12)

For each vector ∈AL  we can define a piecewise constant stiffness tensor C L, and a density 
ρ L, with

λ µ ρ= | | | |∞
= …

L max sup , , .
j N

j j j
1, ,

∥ ∥ { { }}

The forward map is defined as

Σ Σ = Λ ρ
− Σ

CA LF H H L F L: , , .co co
1 2 1 2

,L L
  → ( ( ) ( )) → ( )/ /

 (13)

We can identify F with a map A BF :˜ →  upon identifying F L˜( ) with the bilinear form, Λ ρ
Σ
C ,L L

˜ , 

on Σ × Σ−H Hco co
1 2 1 2( ) ( )/ /  (see (9)); B is the Banach space of this bilinear form with the standard 

norm. In the sequel, we will write F and Λ ρ
Σ
C ,L L

 instead of F̃ and Λ ρ
Σ
C ,L L

˜ . We denote

α µ α λ α µ λ β γ ρ γ= ∈ | + = …− − −AL j NK : , , 2 3 , , 1, , .j j j j j0 0
1

0
1

0 0 0
1{     ⩽ ⩽ ⩽ ⩾ ⩽ ⩽ }

Then the stability estimate in theorem 2.7 can be stated as follows:

− −∞ �L L C F L F L ,1 2 1 2∥ ∥ ⩽ ∥ ( ) ( )∥

for every L L,1 2 in K. We note that theorem 2.7 implies that F is injective and that its inverse 
is Lipschitz continuous.

Remark 2.8. Assumption 2.6 in theorem 2.7 can be relaxed to include any ω that is not in 
the set of eigenfrequencies. Then the constant C will also depend on the distance between ω 
and the set of eigenfrequencies.

Remark 2.9. We emphasize here that the Lipschitz constant C in the stability estimate (11) 
grows exponentially with N, the number of subdomains. For such behaviors of this type of 
inverse problems, we refer to [BdHQ] and [Ron].
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3. Preliminary results

Here, we follow Beretta et al [BFMRV, BFV]. We summarize the relevant results in their 
work and adapt them to the time-harmonic problem. We begin this section with Alessandrini’s 
identity [A, I]. We let uk be solutions to

ρ ω∇ + = ΩC u udiv 0 ink
k

k
k

2( ˆ )  

for k  =  1, 2, where ρC ,k k satisfy assumption 2.5. Then

∫ ρ ρ ω− ∇ ∇ − − ⋅ = Λ − Λρ ρ
Ω
C C C Cu u u u x u u: d , .1 2

1 2
1 2 2

1 2 , , 1 21 1 2 2(( ) ˆ ˆ ( ) ) ⟨( ) ⟩
 

(14)

3.1. Fréchet differentiability of F

Here, we prove the Fréchet differentiability of the forward map, F.

Proposition 3.1. Under assumptions 2.4–2.6, the map

Σ Σ−A LF H H: ,co co
1 2 1 2→ ( ( ) ( ))/ /

is Frechét differentiable in A and

∫ψ φ ω= ∇ ∇ − ⋅
Ω
HDF L H u v h u v x, : d ,L L L L

2⟨ ( )[ ] ⟩ ( ˆ ˆ ) (15)

where ρ= =H C h,H H. Moreover, Σ Σ−RA L LDF H H: , ,N
co co

3 1 2 1 2  → ( ( ( ) ( )))/ /  is Lipschitz con-
tinuous with Lipschitz constant CDF depending on A, L, α0, β0, γ0, λ1

0 only.

Proof. Fix ∈AL  and let ∈RH N3  such that ∞H∥ ∥  is sufficiently small. By (14) we have

∫ ∫ψ φ ω+ − = ∇ ∇ − ⋅
Ω

+
Ω

+HF L H F L u v x h u v x, : d d .L H L L H L
2⟨( ( ) ( )) ⟩ ˆ ˆ

Hence, by setting

∫ ∫
∫ ∫

η ψ φ ω

ω

= + − − ∇ ∇ + ⋅

= ∇ − ∇ − − ⋅

Ω Ω

Ω
+

Ω
+

H

H

F L H F L u v x h u v x

u u v x h u u v x

: , : d d

: d d ,

L L L L

L H L L L H L L

2

2

⟨( ( ) ( )) ⟩ ˆ ˆ

ˆ ( ) ˆ ( )
 

(16)

we find that

η φ| | ∇ −∞ + Ω ΣC H u u ,L H L L Hco
2 1 2⩽ ∥ ∥ ∥ ( )∥ ∥ ∥( ) ( )/ (17)

where C depends on α β γ λA L, , , , ,0 0 0 1
0 only. We estimate ∇ −+ Ωu uL H L L2∥ ( )∥ ( ). We observe 

that = −+w u u: L H L is the solution to

ρω ω∇ + = − ∇ − Ω
= ∂Ω

+ +C H⎧
⎨
⎩

w w u h u

w

div div in ,

0 on .
L L H L H

2 2( ˆ )  ( ˆ )  
 

 (18)
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By proposition 2.1, we have

ω

ω

ψ

∇

∇ +

∇ +
+

Ω Ω

+ Ω + Ω

+ Ω + Ω

∞ + Ω ∞ + Ω

∞ Σ

− −

−

H

H

w C w

C u C h u

C u C h u

C H u C H u

C H

div

,

L H

L H H L H H

L H L L H H

L H H L H L

H

2

2

co

2 1

1 1

2 1

1 2

1 2

∥ ∥ ⩽ ∥ ∥

⩽ ∥  ( ˆ )∥ ∥ ∥

⩽ ∥ ˆ ∥ ∥ ∥
⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥
⩽ ∥ ∥ ∥ ∥

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )/

 

(19)

where C depends on α β γ λA L, , , , ,0 0 0 1
0. By inserting (19) into (17) we get

η ψ φ| | ∞ Σ ΣC H ,H H
2

co co
1 2 1 2⩽ ∥ ∥ ∥ ∥ ∥ ∥( ) ( )/ / (20)

that yields (15).
We now prove the Lipschitz continuity of DF. Let ∈AL L,1 2  and set

∫ ∫
∫ ∫
∫ ∫

ξ ψ φ

ω ω

ω ω

= −

= ∇ − ∇ + ⋅ − ⋅

= ∇ −∇ ∇ + ∇ ∇ −∇

+ − ⋅ + ⋅ −

Ω Ω

Ω Ω

Ω Ω

H H

H H

DF L DF L H

u v u v x h u v h u v x

u u v x u v v x

h u u v x h u v v x

: ,

: : d d

: d : d

d d .

L L L L L L L L

L L L L L L

L L L L L L

2 1

2 2

2 2

2 2 1 1 2 2 1 1

2 1 2 1 2 1

2 1 2 1 2 1

〈( ( ) ( ))[ ] 〉

( ˆ ˆ ) ( )

( ˆ ˆ ) ˆ ˆ ( ˆ ˆ )

( ) ( )

By reasoning as we did to derive (20) we obtain

ξ ψ φ| | −∞ ∞ Σ ΣC H L L ,DF H H
2 1

co co
1 2 1 2⩽ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥( ) ( )/ /

where CDF depends on α β γ λA L, , , , ,0 0 0 1
0. □

3.2. Further notation and definitions

Construction of an augmented domain and extension of C and ρ. First we extend the 
domain Ω to a new domain Ω0 such that ∂Ω0 is of Lipschitz class and ⊂∩Σ ΩB PC1 1 0( )/ , for 
some suitable constant C 1⩾  depending only on L. We proceed as in [ARRV]. We set

η = =
+

C C
L

L
1 , where

3 1
,L L1

2

/     (21)

and define, for every ∈′ ′x B1
3

ψ

η η

η
η η

η

=

| |

− | | < | |

| | >

′

′

′ ′

′

+

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

x

x
L

L x
L

x
L

x
L

2
for

4

2 for
4 2

0 for
2

.

1 1

1
1 1

1

( )

  ⩽

  ⩽
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We observe that for every ∈′ ′x B1 3/ , ψ| |′ η+ x
2
1( ) ⩽  and ψ|∇ |′+

′ x L2x ( ) ⩽ . Next, we denote by

ψ= = ∈ | <′ ′+D x x x Q x x, 0 ,L0 3 1 3, 3{ ( )     ⩽ ( )}/

Ω = Ω∪D .0 0

We have

 (i) Ω0 has a Lipschitz boundary with constants L, 31

3
;

 (ii) 

Ω Q .LC L0 1 4 ,L⊃ /

Let C be an isotropic tensor that satisfies assumption 2.5. We extend C to Ω0 such that 
| =C CD 00

. We also extend ρ such that ρ| = 1D0
. Then ρC,  are of the form

∑ χ=
=

C C x ,
j

N

j D
0

j
( ) (22)

∑ρ ρ χ=
=

x .
j

N

j D
0

j
  ( ) (23)

Construction of a walkway. We fix ∈ …j N1, ,{ } and let …D D, ,j jM1
 be a chain of domains 

connecting D1 to Dj. We set =D Dk jk, = …k M1, , . By [ARRV] proposition 5.5, there exists 
′C 1L ⩾  depending on L only, such that Dk h( )  is connected for every ∈ …k M1, ,{ } and every 
∈ ′h C0, 1 L( / ). We introduce

η
=

+′⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

h
C L

min
1

6
,

1
,

8 1 4L
0

1

2
 (24)

where η1 is as in (21).

Furthermore

 (i) Q(k), = …k M1, , , is the cylinder centered at Pk such that by a rigid transformation of 
coordinates under which Pk  =  0 and Σk belongs to the plane ′x , 0{( )}, and = ηQ Qk L L4 ,1( ) / . 
We also denote = ∩−

−Q Q DM M M 1( ) ( ) ;

 (ii) K is the interior part of the set ¯∪ =− Dk
M

i1
1 ;

 (iii) ( )=∪ =−K Dh k
M

i h1
1 , for every ∈h h0, 0( );

 (iv) 

= ∪ ∪−

=

−

K K Q Q ;h h M

k

M

k

1

1

⋃˜
( ) ( ) (25)

 (v) 

η
= ∈ | ∂Ω >K x D xdist ,

8
.0 0

1{ }    ( )

It is straightforward to verify that Kh˜  is connected and of Lipschitz class for every ∈h h0, 0( ) 
and that
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η η
×′η ⎜ ⎟

⎛
⎝

⎞
⎠K B P

8
,

4
.L0 4 1

1 1
1⊃ ( )/ (26)

A path of the walkway is exhibited in Figure 2.

3.3. Existence of singular solutions

Next, we construct singular solutions to the system describing time-harmonic elastic waves. 
We prove the stability estimates for our inverse problems by studying the behavior of singular 
solutions.

3.3.1. Static fundamental solution in the biphase laminate. In order to construct singular 
solutions, we make use of special fundamental solutions constructed by Rongved [Rong] for 
isotropic biphase laminates. Consider

χ χ= ++ −
+ −

C C CR R ,b 3 3

where +C  and −C  are constant isotropic stiffness tensors given by

λ µ λ µ= ⊗ + = ⊗ +′ ′+ −C I C II I I I2 , 2 ,3 3 sym 3 3 sym 

with λ µ,  and λ µ′ ′,  satisfying (10).
By [Rong], there exists a fundamental solution Γ | ∈ ∈ ≠ ×R R Rx y x y x y: , , ,3 3 3 3{( )    } →  

such that

δ∇Γ ⋅ = −C y Idiv , .b y 3( ˆ ( ))

Here δy is the Dirac distribution concentrated at y. We point out some properties of Γ. First of all, 
it is a fundamental solution, in the sense that Γ x y,( ) is continuous in ∈ × | ≠R Rx y x y, 3 3{( )     }, 
Γ ⋅x,( ) is locally integrable in R3 for all ∈Rx 3, and, for every vector valued function φ∈ ∞ RC0

3( ), 
we have

∫ φ φ∇Γ ⋅ ∇ =C
R

y x y, : d .b
3

ˆ ( ) ˆ ( )

Furthermore, for every ∈ ≠Rx y x y, ,3 , we have

|Γ |
| − |

x y
C

x y
,( ) ⩽

Figure 2. A path of the walkway.
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and

|∇Γ |
| − |

x y
C

x y
, ,

2
( ) ⩽

while for any r  >  0,

∇Γ ⋅ Ry
C

r
, ,L B y 1 2r

2 3∥ ( )∥ ⩽( \ ( )) / (27)

where C depends on α β,0 0 only.

3.3.2. Time-harmonic singular solutions. Let F denote the union of the flats parts of ∪ ∂= Dj
N

j1 . 

Let =∪ ∂= FG Dj
N

j0 \ . Let χ= ∑ =C Cj
N

j D0 j
 where the tensors Cj satisfy assumption 2.5. Let 

∈Ω Gy 0 \  and let = ∪∂ΩGr ymin 1 4, dist , 0( /    ( )). Then, in the ball Br( y ), either C is con-
stant, =C Cj or χ= + −+ >C C C Cj j j x a1 3

( ) { } for some a with | | <a r. We write

χ
=

=
+ −+ >

C
C C C
C C C

⎧
⎨
⎩

B yif in ,

otherwise,y
j j r

j j j x a1 3

         ( )
( )  { }

and consider the biphase fundamental solution satisfying

δ∇Γ ⋅ = −C Ry Idiv , in .y y 3
3( ˆ ( ))    

Proposition 3.2. Let Ω0, C and ω satisfy assumptions 2.4–2.6. Then, for ∈Ω Gy 0 \ , there 
exists only one function ⋅G y,( ), which is continuous in Ω y\ { }, such that

∫ φ ρω φ φ φ∇ ⋅ ∇ − ⋅ ⋅ = ∀ ∈ Ω
Ω

∞C G y G y x y C, : , d , ,2
0 0

0

( ˆ ( ) ˆ ( ) ) ( )   ( ) (28)

and

⋅ = ∂ΩG y, 0 on .0( )    

Furthermore, if ∪∂ΩGydist ,
c0
1

1
( ) ⩾  for some c1  >  1 then

⋅ − Γ ⋅ ΩG y y C, , ,H1
0

∥ ( ) ( )∥ ⩽( ) (29)

⋅ Ω
−G y Cr, ,H B y

1 2
r

1
0

∥ ( )∥ ⩽( \ ( ))
/ (30)

⋅ ΩG y C, ,L2
0

∥ ( )∥ ⩽( ) (31)

where C depends on α β γ λA L, , , , ,0 0 0 1
0 and on c1.

The proof of above proposition is similar to the proof of proposition 3.1 in [BFV].

3.4. Unique continuation for the system describing time-harmonic elastic waves

We state a quantitative estimate of unique continuation. We will omit the proof of this esti-
mate since it is a minor modification of the proof of a similar estimate for the Lamé system 
of elasticity [BFV].
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Proposition 3.3. Let ε E,1 1 and h be positive numbers, h  <  h0, where h0 is defined in (24). 
Let ∈ Kv H loc

1 ( ) be a solution to

ρω∇ + =C Kv vdiv 0 in ,2( ˆ )    

such that

∞ εv L K 10∥ ∥ ⩽( )

and

| | Σ ∈− Kv x E x xdist , for every .M h1
1 2

2( ) ⩽ ( ( ))      /
/ (32)

Then

| | +γ τ τ− − −ε εv x Cr E ,3 2
1 1 1

1r r( ˜) ⩽ ( )/ (33)

where ∈r 0,
C

1( ), = +x P rnM M˜ ,

τ θ= δr ,r
˜

and C, δ and θ̃ with θ< <0 1˜  depend on A, L, α0, β0, γ0 and N.

Therefore, if the solution to the system of time-harmonic elastic waves is small in a subdo-
main of K, and has a priori bound (32), then it is also small in K. The above proposition gives 
a quantitative estimates on how the smallness propagates.

4. Proof of the main result

In this section we prove the main result that consists of showing the uniform continuity for 
DF and F−1, and establishing a lower bound for DF. These results together with the Fréchet 
differentiability of F establish theorem 2.7 by proposition 5 of [BV]:

Proposition 4.1. ([BV], proposition 5). Let M1 and M2 be positive numbers and ∈Nd . 
Let A and K be an open subset and a compact subset of Rd respectively. Assume that ⊂K A,

⊂RK M K BAdist , , and 0 .d
M1 2 ( \ ) ⩾     ( )

Let B be a Banach space and let BT A: →  be such that:

 (i) T is Frechét differentiable;
 (ii) the Frechét derivative ′ RL BT A: ,d→ ( ) is uniformly continuous with a modulus of con-

tinuity σ ⋅1( );
 (iii) TK is injective;
 (iv) −T T K K:K

1( ) ( ) →  is uniformly continuous with a modulus of continuity σ ⋅2( );
 (v) ′T  is injective in K, namely there is a positive number q0 such that

′
∈ | |=

BT x h qmin ;
x K h, 1

0∥ ( )[ ]∥ ⩾

then we have

− − ∈R Bx x C T x T x x x Kfor every , ,1 2 1 2 1 2d∥ ∥ ⩽ ∥ ( ) ( )∥      
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where =
σ δ−C max ,M

q

2 21

2
1

1 0
{ }

( )
, for δ δ= Mmin ,1

1

2 0 2{ } with δ σ= − q
0 1

1
2
0( ).

4.1. Injectivity of |F K and uniform continuity of | −F K
1( )

Let

σ =
| | < <

− +

δ
−⎧

⎨
⎪⎪

⎩
⎪⎪

t
t t

e

t
e

t
e

log for 0
1

1
1 for

1

1
8

( )
   

    ⩾
 (34)

and

σ σ=t t .1
1 5( ) ( ( )) /

Theorem 4.2. For every ∈L L K,1 2  the following inequality holds true,

σ− −∞ ∗ �L L C F L F LN1 2
1

1 2∥ ∥ ⩽ (∥ ( ) ( )∥ ) (35)

where C* is a constant depending on α β γ λA L N, , , , , ,0 0 0 1
0 . Here σ ⋅N

1 ( ) is the composition of 
the function σ1 with itself N times.

Let ∈ …j N1, ,{ } be such that

ρ ρ ρ ρ= ΩC C C Cd d, , , , , , ,D L L L L L L L Lj 1 1 2 2 0 1 1 2 2(( ) ( )) (( ) ( ))

and let …D D, ,j JM1
 be a chain of domains connecting D1 to Dj. For the sake of simplicity 

of notation, set =D Dk jk. Let = ∪ =W DIntk j
k

j0 ( ), = ΩU Wk k0 \ , for = … −k M1, , 1. 
The stiffness tensors C L1 and C L2 are extended as in (22) to all of Ω0. The densities ρ L1 and 
ρ L2 are extended as in (23). We set =C C: L1, =C C: L2¯ , ρ ρ=: L1 and ρ ρ=: L2¯ . Finally, let 
= ∩WK Kk h k˜ ˜  and for ∈y z K, k˜  define the matrix-valued function

∫ ρ ρ ω= − ∇ ∇ − − ⋅C CS
U

y z G x y G x z G x y G x z x, : , : , , , d ,k
2

k

( ) (( ¯ ) ˆ ( ) ˆ ¯ ( ) ( ¯) ( ) ¯ ( ))

the entries of which are given by

∫ ρ ρ ω= − ∇ ∇ − − ⋅C C

S

U

y z

G x y G x z G x y G x z x

,

: , : , , , d ,

k
p q

p q p q

,

2

k

( )

(( ¯ ) ˆ ( ) ˆ ¯ ( ) ( ¯) ( ) ¯ ( ))

( )

( ) ( ) ( ) ( )

p, q  =  1, 2, 3, where ⋅G y,p ( )( )  and G z,q¯ ( )( )  denote respectively the pth columns and the qth 
columns of the singular solutions corresponding to ρC,  and ρC,¯ ¯. From (30) we have that

| | ∈−S Ky z C d y d z y z, for all , ,k
p q

k
, 1 2( ) ⩽ ( ( ) ( ))       ˜( ) /

where the constant C depends on the a priori parameters only and = Ud y d y, k( ) ( ) and 
= Ud z d z, k( ) ( ).

First, following a similar argument in [BFV], we have the following two propositions:

Proposition 4.3. For all ∈Ky z, k
˜  we have that ⋅⋅S z,k

q, ( )( ) , ⋅⋅S y,k
p, ( )( ) , belong to KH kloc

1 ( ˜ ) 
and for any ∈q 1, 2, 3{ },

ρω∇ ⋅ + ⋅ =⋅ ⋅C S S Kz zdiv , , 0 in ,k
q

k
q

k
, 2 ,( ˆ ( )) ( )     ˜( ) ( ) (36)
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and for any ∈p 1, 2, 3{ },

ρω∇ ⋅ + ⋅ =⋅ ⋅C S S Ky ydiv , , 0 in .k
p

k
p

k
, 2 ,( ¯ ˆ ( )) ¯ ( )     ˜( ) ( ) (37)

Proposition 4.4. If for a positive ε0 and for some ∈ … −k M1, , 1{ }

| | ∈ ×εS y z y z K K, for every , ,k 0 0 0( ) ⩽      ( ) (38)

then

| |
+

τ τ
− −

⎛
⎝
⎜

⎞
⎠
⎟ε

ε
S y z Cr r

C
, ,k r r

5 2 2 0

1 0

r r

( ) ⩽ ¯¯
/

¯

 (39)

where = ++ +y P rnr k k1 1, = ++ +z P rnr k k1 1¯¯ , ∈Σ+ +Pk k1 1, ∈r r C, 0, 1¯ ( / ), τ θ= δrr
¯ , τ θ= δrr

¯ ¯¯  
and δ θ ∈C C, , , 0, 11 ¯ ( ) depend on α β γA L, , , ,0 0 0 only.

We can also prove the following

Proposition 4.5. If (38) holds, then

|∂ ∂ |
+

τ τ
− −

⎛
⎝
⎜

⎞
⎠
⎟ε

ε
S y z Cr r

C
, ,y z k r r

9 2 3 0

1 0

r r

1 1 ( ) ⩽ ¯¯
/

¯

 (40)

where = ++ +y P rnr k k1 1, = ++ +z P rnr k k1 1¯¯ , ∈Σ+ +Pk k1 1, ∈r r C, 0, 1¯ ( / ), τ θ= δrr
¯ , τ θ= δrr

¯ ¯¯  
and δ θ ∈C C, , , 0, 11 ¯ ( ) depend on α β γA L, , , ,0 0 0 only.

We note that, in the above, ∂y1
 and ∂z1 denote derivatives in directions lying on the interface 

Σ +k 1.

Proof of proposition 4.5. Fix ∈z K0 and consider the function = ⋅Sv y y z: ,q,( ) ( )( ) , for 
fixed q. By proposition 4.3 we know that v is a solution of

ρω∇ ⋅ + ⋅ =C Kv vdiv 0 in .k
2( ˆ ( )) ( )     ˜

Moreover, from proposition 3.2, we get

| | ∈− Kv y C d y y, ,k1
1
2( ) ⩽ ( )   ˜

where C1 depends on α β γ ω λA L, , , , , ,0 0 0 1
0. Then, applying proposition 3.3 for =ε ε1 0 and 

=E C1 1, we have

| | = | |
+

τ
⋅ −

⎛
⎝
⎜

⎞
⎠
⎟ε
ε

Sv y y z Cr
C

,r k
q

r
, 2 0

1 0

r

( ) ( ) ⩽( )

for all ∈y B yr r2( )/ . By the gradient estimate for an elliptic system (see for example [LN]), we 
obtain

|∂ |
+

τ
−

⎛
⎝
⎜

⎞
⎠
⎟ε

ε
v y Cr

C
.y r

3 0

1 0

r

1
( ) ⩽

We note that ∂ = ∂ Γ + ∂+G x y x y w x y, , ,y r y k r y r11 1 1
( ) ( ) ( ), where ∂ w x y,y r1

( ) satisfies
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ρω

ρω

∇ ∂ + ∂ = − ∇ ∂ Γ

− ∂ Γ Ω
∂ = −∂ Γ ∂Ω

+
+

+

+

⎧

⎨
⎪

⎩
⎪

C C Cw x y w x y x y

x y

w x y x y

div , , div ,

, in ,

, , on ,

x y r y r b
k

x y k r

y k r

y r y k r

2 1
1

2
1 0

1 0

1 1 1

1

1 1

( ˆ ( ( ))) ( ) (( ) ˆ ( ( )))
( )  

( ) ( )   

where Γ +k 1 is the biphase fundamental solution for stiffness tensor

χ χ= ++
+

+ −
C C CR R .b

k
k k

1
13 3

Thus ∂ ⋅ ∈ Uw y H,y r k
1

1
( ) ( ) and

∂ ⋅ Uw y C, .y r H k1
1∥ ( )∥ ⩽( ) (41)

Moreover,

( ) ( )

(( ¯ ) ˆ ( ( )) ˆ ¯ ( )

( ¯) ( ( )) ¯ ( ))

( )

∫
ρ ρ ω

∂ = ∂

= − ∇ ∂ ∇

− − ∂ ⋅

⋅S

U
C C

v y y z

G x y G x z

G x y G x z x

,

, : ,

, , d ,

y r y k
q

r

y r

y r

,

2
k

1 1

1

1

while

= ∂ ⋅Sv z y z, ,y k
p

r
,

1
¯( ) ( )( )

is a solution to

ρω∇ ⋅ + ⋅ =C Kv vdiv 0 in ,k
2( ¯ ˆ ( )) ¯ ( )     ˜

by the same reasoning as in proposition 4.3. By (41) and the estimates,

∂ Γ ⋅+
−

Ry Cr, ,y k L B y1
1 2

r1
2 3∥ ( )∥ ⩽( \ ( ))

/
 (42)
∇ ∂ Γ ⋅+

−
Ry Cr, ,y k L B y1

3 2
r1

2 3∥ ( ( ))∥ ⩽( \ ( ))
/

 (43)

we find that

| | − −v z Cr d z .
3
2

1
2¯( ) ⩽ ( )

Applying proposition 3.3 with =
τ

−
+

ε ε
ε

r
C1

3 r
0

1 0( )  and = −E Cr1
3
2, we have

| |
+

τ τ
− − ⎛

⎝
⎜

⎞
⎠
⎟ε

ε
v z Cr r

C
,2 9

2
0

1 0

r r

¯( ) ⩽ ¯
¯

for all ∈z B zr r2( )¯/ ¯ . Then, again, by the gradient estimate,

|∂ |
+

τ τ
− − ⎛

⎝
⎜

⎞
⎠
⎟ε

ε
v z Cr r

C
.z r

3 9
2

0

1 0

r r

1 ¯( ) ⩽ ¯¯

¯

Arguing in a similar way, it also follows that
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∫
ρ ρ ω

∂ ∂ = ∂

= − ∇ ∂ ∇ ∂

− − ∂ ⋅ ∂

S

U
C C

y z v z

G x y G x z

G x y G x z x

,

, : ,

, , d .

z y k r r z r

y r z r

y r z r
2

k

1 1 1

1 1

1 1

( ) ¯( )

(( ¯ ) ˆ ( ( )) ˆ ( ¯ ( ))

( ¯) ( ( )) ( ¯ ( )))

¯ ¯

¯

¯

This completes the proof of (40). □

Proof of theorem 4.2. We follow a walkway and alternate between estimates for Lamé 
parameters and for the density. Observe that ∥ ( ) ( )∥ ∥ ∥¯ ¯− = Λ − Λρ ρ� C CF L F L1 2

, , . We write

= −ε �F L F L: .1 2∥ ( ) ( )∥

Then using (14), we derive that for every ∈y z K, 0 and for | | | | =l m, 1,

∫ ρ ρ ω− ∇ ∇ − − ⋅
Ω
C C εx G x y l G x z m x G x y l G x z m x C, : , , , d ,2(( ¯ )( ) ˆ ( ) ˆ ¯ ( ) ( ¯)( ) ( ) ¯ ( ) ) ⩽

 

(44)

where C depends on α β γ ω A L, , , , ,0 0 0 . Let

δ λ λ µ µ ρ ρ= | − | | − | | − |: max max , , ,k
j k

j j j j j j
0

{ { ¯ ¯ ¯ }}
⩽ ⩽

where ∈ …k M0, 1, ,{ }.
We will prove that for a suitable, increasing sequence ω εk k M0{ ( )} ⩽ ⩽  satisfying ωε εk⩽ ( ) for 

every = …k M0, ,  we have

δ ω δ ω = … −+ +ε ε k M, for every 0, , 1.k k k k1 1⩽ ( ) ⟹ ⩽ ( )    

Without loss of generality we can choose ω =ε ε0( ) . Suppose now that for some 
= … −k M1, , 1{ } we have

δ ω ε .k k⩽ ( ) (45)

In the following, we estimate δ +k 1 by first estimating λ λ| − |+ +k k1 1¯ , µ µ| − |+ +k k1 1¯  and then 
ρ ρ| − |+ +k k1 1¯ . Consider

∫ ρ ρ ω= − ∇ ∇ − − ⋅C CS
U

y z x G x y G x z x G x y G x z x, : , : , , , d ,k
2

k

( ) (( ¯ )( ) ˆ ( ) ˆ ¯ ( ) ( ¯)( ) ( ) ¯ ( ))

and fix ∈z K0. From proposition 3.2 and from (44) we get that, for ∈y z K, 0,

ω| | +ε εS y z C, ,k k( ) ⩽ ( ( ))

where C depends on α β γ λ ωA L, , , , , ,0 0 0 1
0 . By (39) and choosing =r cr¯  with ∈c 1 4, 1 2[ / / ], we 

find that there are constants δ∈C , 0, 10 ( ) and θ∗ depending on A, L, α0, β0, γ0, ω and M, such 
that for any r  <  1/C0 and fixed ∈Rl m, 3 with | | = | | =l m 1,

ς ω| ⋅ | − εS y z m l Cr r, , ,k r r k
9 2( ) ⩽ ( ( ) )¯

/ (46)

where

ς =
+

θ δ
∗⎛

⎝
⎜

⎞
⎠
⎟t s

t

t
,

1
.

s2

( )
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We choose l  =  m  =  e3 and decompose

⋅ = +S y z e e I I, ,k r r 3 3 1 2( )¯ (47)

where

(( ¯ )( ) ˆ ( ) ˆ ¯ ( )

( ¯)( ) ( ) ¯ ( ) )

¯

¯

∫
ρ ρ ω

= − ∇ ∇

− − ⋅

∩ +

C CI x G x y e G x z e

x G x y e G x z e x

, : ,

, , d ,

B D
r r

r r

1 3 3

2
3 3

r k1 1

 
(48)

(( ¯ )( ) ˆ ( ) ˆ ¯ ( )

( ¯)( ) ( ) ¯ ( ) )
\( )

¯

¯

∫
ρ ρ ω

= − ∇ ∇

− − ⋅

∩+ +U
C CI x G x y e G x z e

x G x y e G x z e x

, : ,

, , d ,

B D
r r

r r

2 3 3

2
3 3

k r k1 1 1

 
(49)

with =r
LC1
1

4 L
. Then, from proposition 3.2, we derive immediately that

| |I C.2 ⩽ (50)

By (31), we have

∫ ρ ρ ω− ⋅
∩ +

x G x y e G x z e x C, , d ,
B D

r r
2

3 3
r k1 1

( ¯)( ) ( ) ¯ ( ) ⩽¯

where C depends on α β γ λA L, , , , ,0 0 0 1
0. Using (29) and (30), we get

⩾ ( )( ) ˆ ( ) ˆ ¯ ( )¯∫| | − ∇Γ ∇Γ

− +

∩

+ +
+ +

+

⎛
⎝
⎜

⎞
⎠
⎟

C CI x x y e x z e x

C
r

¯ , : , d

1
1 ,

B D
b
k

b
k

k r k r1
1 1

1 3 1 3
r k1 1

 

(51)

where Γ +k 1 and Γ +k 1¯  are the biphase fundamental solutions introduced in section 3.3 corre-
sponding to the stiffness tensors +Cb

k 1 and 
+Cb

k 1¯  given by

χ χ= ++
+

+ −
C C CR R ,b

k
k k

1
13 3

χ χ= ++
+

+ −
C C CR R ,b

k
k k

1
13 3¯ ¯ ¯

up to a rigid coordinate transformation that maps the flat part of Σ +k 1 into x3  =  0. Furthermore 
by (46), (47) and (50) we obtain

ς ω| | +− εI C r r, 1 ,k1
9 2⩽ ( ( ( ) ) )/ (52)

where C depends on α β γ λA L, , , , ,0 0 0 1
0. Hence, by (51) and (52) and by performing the change 

of variables = ′x rx  in the integral, we get

∫ δ− ∇Γ ∇Γ′ ′ ′ ′+ +
+ +−

C C x x e e x ce e x r, : , d ,
B

b
k

b
k

k k
1 1

1 3 3 1 3 3 0
r r1

( ¯ )( ) ˆ ( ) ˆ ¯ ( ) ⩽ ( )
/

 (53)
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where

δ ς ω= +− εr C r r r, .k0
7 2 1 2( ) [ ( ( ) ) ]/ /

We then follow the procedure of [BFV] pp 632–4, and obtain

λ λ σ ω µ µ σ ω| − | | − |+ + + +ε εC C, .k k k k k k1 1 1 1
¯ ⩽ ( ( ))    ¯ ⩽ ( ( )) (54)

Next, we estimate ρ ρ| − |+ +k k1 1¯ . By proposition 4.5, there are constants δ∈C , 0, 10 ( ) and θ∗ 
depending on α β γ ωA L, , , , ,0 0 0  and, increasingly, on M, such that for any r  <  1/C0 and fixed 
∈Rl m, 3 such that | | = | | =l m 1,

ς ω|∂ ∂ ⋅ | − εS y y m l Cr r, , .y z k r r k
15 2

1 1 ( ) ⩽ ( ( ) )/ (55)

We choose l  =  m  =  e3, again, and decompose

∂ ∂ ⋅ = +S y y e e J J, ,y z k r r 3 3 1 21 1 ( ) (56)

where

(( ¯ )( ) ˆ ( ( )) ˆ ( ¯ ( ))

( ¯)( ) ( ( )) ( ¯ ( )) )

∫
ρ ρ ω

= − ∇ ∂ ∇ ∂

− − ∂ ⋅ ∂

∩ +

C CJ x G x y e G x y e

x G x y e G x y e x

, : ,

, , d ,

B D
y r z r

y r z r

1 3 3

2
3 3

r k1 1
1 1

1 1

 
(57)

(( ¯ )( ) ˆ ( ( )) ˆ ( ¯ ( ))

( ¯)( ) ( ( )) ( ¯ ( )) )
\( )∫

ρ ρ ω

= − ∇ ∂ ∇ ∂

− − ∂ ⋅ ∂

∩+ +U
C CJ x G x y e G x y e

x G x y e G x y e x

, : ,

, , d .

B D
y r z r

y r z r

2 3 3

2
3 3

k r k1 1 1
1 1

1 1

 
(58)

Then, with (41)–(43) we derive that

| |J C.2 ⩽ (59)

By estimates (41)–(43), and using that λ λ ω| − | εCk k k¯ ⩽ ( ), µ µ ω| − | εCk k k¯ ⩽ ( ), 
λ λ σ ω| − |+ + εCk k k1 1¯ ⩽ ( ( )) and µ µ σ ω| − |+ + εCk k k1 1¯ ⩽ ( ( )), we get

⩾ ( ¯ ) ( ) ( )

( ( ))

⩾ ¯ ( ) ( ( ))

∫

∫

ρ ρ

σ ω

ρ ρ
σ ω

| | −
∂
∂
Γ ⋅

∂
∂
Γ

− +

| − |
∂
∂
Γ − +

∩
+ + + +

+ +
∩

+

+

+

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

ε

ε

J
y

x y e
y

x y e x

C
r r

y
x y e x C

r r

, , d

1

, d
1

,

B D
k k k r k r

k

k k
B D

k r
k

1 1 1
1

1 3
1

1 3

3

1 1
1

1 3

2

3

r k

r k

1 1

1 1

 

(60)

where we have used that

( ) ( ) ¯ ( ) ⩽ ( ( ))
∫

σ ω∂
∂
Γ

∂
∂
Γ −

∂
∂
Γ

∩
+ + +

+

ε
y

x y e
y

x y e
y

x y e x C
r

, , , d .
B D

k r k r k r
k

1
1 3

1
1 3

1
1 3

r k1 1
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Furthermore, by (55),(56) and (59) we obtain

ς ω| | +− εJ C r r, 1 .k1
15 2⩽ ( ( ( ) ) )/ (61)

By (60) and by performing the change of variables = ′x rx  in the integral, we have

∫ρ ρ

ς ω
σ ω

| − |
∂
∂
Γ

+ + +

′ ′−
+ + +

−

−

⎛
⎝
⎜

⎞
⎠
⎟ε

ε

r
y

x e e x

C r r
r r

, d

, 1
1

.

k k
B

k

k
k

1
1 1

1
1 3 3

2

15 2
3

r r1

¯ ( )

⩽ ( ( ( ) ) ) ( ( ))/

/

Since r r C LC4 L1/ ⩾ /  when ∈r C0, 1( / ), we have

∫ ∫
∂
∂
Γ

∂
∂
Γ′ ′ ′ ′+ +− −y

x e e x
y

x e e x C, d , d ,
B

k
B

k
1

1 3 3

2

1
1 3 3

2

r r C LCL1 4

( ) ⩾ ( ) ⩾
/ /

for some positive C. Then

ρ ρ ς ω
σ ω

| − | + + ++ +
− −⎛

⎝
⎜

⎞
⎠
⎟ε

ε
r C r r

r r
, 1

1
,k k k

k
1 1

1 15 2
3¯ ⩽ ( ( ( ) ) ) ( ( ))/

and thus

ρ ρ δ| − |+ + r ,k k1 1 1¯ ⩽ ( ) (62)

where

δ ς ω
σ ω

= + +−⎡
⎣⎢

⎤
⎦⎥ε

ε
r C r r r

r
, .k

k
1

13 2
2

( ) ( ( ) ) ( ( ))/

If ω <ε e1k( ) / , we choose

σ ω
=
| |ε

r
C

,k
2 5( ( )) /

and then

ρ ρ σ ω| − | | |+ + εC .k k k1 1
1 5¯ ⩽ ( ( )) / (63)

Otherwise, if ω ε e1k( ) ⩾ / , since ρ ρ| − |+ +k k1 1¯  is bounded, we get (63) trivially. By (54) and 
(63), we follow the weakest estimate to get

δ ω σ ω=+ + ε εC: .k k k1 1 1⩽ ( ) ( ( ))

Following the way of alternatingly estimating λ λ| − |¯ , µ µ| − |¯  and ρ ρ| − |¯  along the walkay 
…D D D, , , M1 2 , and recalling that ω =ε ε0( ) , we get (35). □

The uniqueness statement in theorem 2.7 is an immediate consequence of the proposition 
above.
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4.2. Injectivity of DF L_( ) and estimate from below of |DF K

Proposition 4.6. Let

= | ∈ ∈ =∞R�q DF L H L H HK: min , , 1 ;N
0

3{∥ ( )[ ]∥     ∥ ∥ }

we have

σ −
�C q1 ,N

1
1

0( ) ( / ) ⩽ (64)

where >�C 1 depends on α β γ λA L, , , , ,0 0 0 1
0 and N only.

Proof. By the definition of q0 there exists an ∈L K0  and

= … … … =∞H h h k k l l H, , , , , , , , , 1,N N N0 0,1 0, 0,1 0, 0,1 0, 0( )  ∥ ∥

such that

=�DF L H q .0 0 0∥ ( )[ ]∥ (65)

Therefore, by (15), (65), we have

∫ ω∇ ∇ − ⋅
Ω
H x G x y l G x z m h x G x y l G x z m x Cq, : , , , d2

0( )( ˆ ( ) ˆ ( ) ( ) ( ) ( ) ) ⩽
 

(66)

for every ∈Ky z, 0, where C depends on α β γ ω A L, , , , ,0 0 0 , =H CH0, ρ=h H0
 and ⋅G y,( )  

denotes the singular solution corresponding to ρC ,L L. From now on the vector

… … …h h k k l l0, , , , 0, , , , 0, , , ,N N N0,1 0, 0,1 0, 0,1 0,( )

will still be denoted by H 0.
We fix ∈ …j N1, ,{ } and let …D D, ,j jM1

 be a chain of domains connecting D1 to Dj, where

| | | | | | = =∞h k l Hmax , , 1.j j j0, 0, 0, 0{ } ∥ ∥

Now, let

η = | | | | | |h k l: max max , , ,i
j i

j j j
0

0, 0, 0,{ { }}
⩽ ⩽

where ∈ …i M0, 1, ,{ }.
We will prove that for a suitable increasing sequence ω qi i M0 0{ ( )} ⩽ ⩽  satisfying ωε qi 0⩽ ( ) for 

every = …k M0, , , we have

δ ω δ ω = … −+ +q q i Mfor every 0, , 1.k i i k0 1 1 0⩽ ( ) ⟹ ⩽ ( )     

Without loss of generality we can choose ω =q q0 0 0( ) . Suppose now that for some 
= … −i M1, , 1{ } we obtain (65). Let =Y Yy z y z, ,i i

p q
p q

,
1 , 3( ) { ( )}( )

⩽ ⩽  be the matrix valued 
function the elements of which are given by

∫ ω= ∇ ∇ − ⋅HY
U

y z x G x y G x z h x G x y G x z x, : , : , , , d ,i
p q p q p q, 2

i

( ) ( ( ) ˆ ( ) ˆ ( ) ( ) ( ) ( ))( ) ( ) ( ) ( ) ( )
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with ∈z K0 fixed. From proposition 3.2 and from (44) we get that, for ∈y z K, 0,

ω| | +Y y z C q q, ,i i0 0( ) ⩽ ( ( ))

where C depends on α β γ λA L, , , , ,0 0 0 1
0. Choosing =r cr¯  with ∈c 1 4, 1 2[ / / ], as in proposition 

4.4, we have that there exists a constant C2 such that for every ∈r C0, 1 2( / ),

ς ω| | −Y y z Cr q r, , ,i r r i
9 2

0( ) ⩽ ( ( ))¯
/ (67)

where

ς =
+

θ δ
∗⎛

⎝
⎜

⎞
⎠
⎟t s

t

t
,

1
.

s2

( )

We choose l  =  m  =  e3, again, and decompose

⋅ = +Y y z e e I I, ,k r r 3 3 1 2( )¯ (68)

where

∫ ω= ∇ ∇ − ⋅
∩ +

HI x G x y e G x z e h x G x y e G x z e x, : , , , d ,
B D

r r r r1 3 3
2

3 3
r i1 1

( ( ) ˆ ( ) ˆ ( ) ( ) ¯ ( ) ( ) )¯ ¯

 

(69)

( ( ) ˆ ( ) ˆ ( )

( ) ( ) ( ) )
\( )

¯

¯

∫
ω

= ∇ ∇

− ⋅

∩+ +U
HI x G x y e G x z e

h x G x y e G x z e x

, : ,

, , d ,

B D
r r

r r

2 3 3

2
3 3

i r i1 1 1 
(70)

and =r
LC1
1

4 L
. Then, from proposition 3.2, we derive that

| |I C.2 ⩽ (71)

Using (31), we find that

∫ ω ⋅
∩ +

h x G x y e G x z e x C, , d ,
B D

r r
2

3 3
r k1 1

( ) ( ) ( ) ⩽¯

where C depends on α β γ λA L, , , , ,0 0 0 1
0. Then, by (29) and (30) we get

∫| | ∇Γ ∇Γ − +
∩

+ +
+

H
⎛
⎝
⎜

⎞
⎠
⎟I x x y e x z e x C

r
, : , d

1
1 .

B D
i r i r1 1 3 1 3

r i1 1

⩾ ( ) ˆ ( ) ˆ ( )¯ (72)

With (67), (68) and (71) we obtain

ς ω| | +−I C r q r, 1 ,i1
9 2

0⩽ ( ( ( ) ) )/ (73)

where C depends on α β γ λA L, , , , ,0 0 0 1
0. Following the procedure of [BFV] pp. 635-637, we 

get

σ ω σ ω| | | |+ +h C q k C q, .i i i i0, 1 0 0, 1 0⩽ ( ( ))    ⩽ ( ( )) (74)
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Similar to proposition 4.5, we find that there are constants δ∈C , 0, 12 ( ) and θ∗ depending on 
α β γ ωA L, , , , ,0 0 0  and, increasingly, on M, such that for any r  <  1/C2

ς ω|∂ ∂ ⋅ | −Y y y e e Cr q r, , .y z i r r i3 3
15 2

01 1 ( ) ⩽ ( ( ))/ (75)

We decompose

∂ ∂ ⋅ = +Y y y e e J J, ,y z i r r 3 3 1 21 1 ( ) (76)

where

( ( ) ˆ ( ( )) ˆ ( ( ))

( ) ( ( )) ( ( )) )

∫
ω

= ∇ ∂ ∇ ∂

− ∂ ⋅ ∂

∩ +

HJ x G x y e G x y e

h x G x y e G x y e x

, : ,

, , d ,

B D
y r z r

y r z r

1 3 3

2
3 3

r i1 1
1 1

1 1

 
(77)

( ( ) ˆ ( ( )) ˆ ( ( ))

( ) ( ( )) ( ( )) )
\( )∫

ω

= ∇ ∂ ∇ ∂

− ∂ ⋅ ∂

∩+ +U
HJ x G x y e G x y e

h x G x y e G x y e x

, : ,

, , d .

B D
y r z r

y r z r

2 3 3

2
3 3

i r i1 1 1
1 1

1 1

 (78)

Using (41)–(43) and (74), we get

| |J C2 ⩽ (79)

and

∫

∫

σ ω

σ ω

| |
∂
∂
Γ ⋅

∂
∂
Γ − +

= | |
∂
∂
Γ − +

∩
+ + +

+
∩

+

+

+

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

ε
J l

y
x y e

y
x y e x C

r r

l
y

x y e x C
r

q

r

, , d
1

, d
1

.

B D
i i r i r

i

i
B D

i r
i

1 0, 1
1

1 3
1

1 3 3

0, 1
1

1 3

2
0

3

r i

r i

1 1

1 1

⩾ ( ) ( ) ( ( ))

( )
( ( ))

 

(80)

Furthermore by (75), (76) and (79), we obtain

ς ω| | +−J C r q r, 1 .i1
15 2

0⩽ ( (( ( )) ) )/ (81)

Hence, by (80) and upon performing the change of variables = ′x rx  in the integral, we obtain

∫
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∂
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+ + +
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1
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( ( ))/

/

Since r r C LC4 L1/ ⩾ /  when ∈r C0, 1( / ), we have

∫ ∫
∂
∂
Γ

∂
∂
Γ′ ′ ′ ′+ +− −y
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1
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Then

ς ω
σ ω

| | + + ++
− −⎛

⎝
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⎟l r C r q r

r

q

r
, 1

1
,i i

i
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1 15 2
0

0
3

⩽ ( (( ( )) ) )
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and thus

δ| |+l r ,i0, 1 1⩽ ( ) (82)

where

δ ς ω
σ ω

= + +−
⎡
⎣⎢

⎤
⎦⎥r C r q r r

q

r
, .i

i
1

13 2
0

0
2

( ) ( ( ) )
( ( ))/

If ω <q e1i 0( ) / , we choose

σ ω
=
| |

r
q

C
i 0

2 5( ( )) /

so that

σ ω| | | |+l C q .i i0, 1 0
1 5⩽ ( ( )) / (83)

Otherwise, if ω q e1i 0( ) ⩾ / , because | |+l i0, 1  is bounded, we get (83) trivially. Then, by (74) and 
(83) we get

η ω σ ω=+ + q C q: .i i i1 1 0 1 0⩽ ( ) ( ( ))

Finally, by alternating the estimates for λ λ µ µ| − | | − |,¯ ¯  and ρ ρ| − |¯ , we get

η σ σ= C q C q1 ,M
M N
1 0 1 0⩽ ( ) ⩽ ( )

and the statement follows. □
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