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RECOVERY OF A SMOOTH METRIC VIA WAVE FIELD AND
COORDINATE TRANSFORMATION RECONSTRUCTION\ast 

MAARTEN V. DE HOOP\dagger , PAUL KEPLEY\ddagger , AND LAURI OKSANEN\S 

Abstract. In this paper, we study the inverse boundary value problem for the wave equation
with a view towards an explicit reconstruction procedure. We consider both the anisotropic problem
where the unknown is a general Riemannian metric smoothly varying in a domain and the isotropic
problem where the metric is conformal to the Euclidean metric. Our objective in both cases is to
construct the metric, using either the Neumann-to-Dirichlet (N-to-D) map or Dirichlet-to-Neumann
(D-to-N) map as the data. In the anisotropic case we construct the metric in the boundary normal
(or semigeodesic) coordinates via reconstruction of the wave field in the interior of the domain. In
the isotropic case we can go further and construct the wave speed in the Euclidean coordinates
via reconstruction of the coordinate transformation from the boundary normal coordinates to the
Euclidean coordinates. Both cases utilize a variant of the Boundary Control method, and work by
probing the interior using special boundary sources. We provide a computational experiment to
demonstrate our procedure in the isotropic case with N-to-D data.
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1. Introduction. We study the inverse boundary value problem for the wave
equation from a reconstruction point of view through the design of an algorithm.
Specifically, letM \subset \BbbR n be a compact connected domain with smooth boundary \partial M ,
and let c(x) be an unknown smooth strictly positive function on M . Let u = uf

denote the solution to the wave equation on M , with Neumann source f ,

(1)
\partial 2t u - c2(x)\Delta u = 0 in (0,\infty )\times M,

\partial \vec{}nu| x\in \partial M = f,
u| t=0 = \partial tu| t=0, = 0.

Here \vec{}n is the inward pointing (Euclidean) unit normal vector on \partial M . Let T > 0 and
let \scrR \subset \partial M be open. We suppose that the restriction of the Neumann-to-Dirichlet
(N-to-D) map on (0, 2T )\times \scrR is known and denote this map by \Lambda 2T

\scrR . It is defined by

\Lambda 2T
\scrR : f \mapsto \rightarrow uf | (0,2T )\times \scrR , f \in C\infty 

0 ((0, 2T )\times \scrR ).

The goal of the inverse boundary value problem is to use the data \Lambda 2T
\scrR to determine

the wave speed c in a subset \Omega \subset M modeling the region of interest.
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1932 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

Our approach to solving this inverse boundary value problem is based on the
Boundary Control (BC) method that originates from [7]. There exists a large number
of variants of the BC method in the theoretical literature; see, e.g., the review [11],
the monograph [24], and the recent theoretical uniqueness [21, 30] and stability results
[15]. We face an even wider array of possibilities when designing algorithms. Previous
computational studies of the method include [6, 37] and the recent work [12, 22].

Motivated by applications to seismic imaging, we are particularly interested in
the problem with partial data, that is, the case \scrR \not = \partial M . All known variants of the
BC method that work with partial data require solving ill-posed control problems,
and this appears to form the bottleneck of the resolution of the method. In this paper
we consider this issue from two perspectives: we show that the steps of the method,
apart from solving the control problems, are stable; and we present an algorithm with
a regularization for the control problems.

In addition to the above isotropic problem with the scalar speed of sound c,
we consider an anisotropic problem and a variation where the data is given by the
Dirichlet-to-Neumann (D-to-N) map rather than the Neumann-to-Dirichlet (N-to-D)
map; see the definitions (2) and (3) below. We propose an approach to reducing the
anisotropic inverse boundary value problem to a problem with data in the interior of
M . Analogously to elliptic inverse problems with internal data [1], this hyperbolic
internal data problem may be of independent interest, and we show a Lipschitz sta-
bility result for the problem under a geometric assumption. We show the correctness
of our method without additional geometric assumptions (Proposition 8), but for the
stability of the internal data problem in the anisotropic case we require an additional
convexity condition to be satisfied (Theorem 12).

Our method in the isotropic case combines two techniques that have been suc-
cessfully used in the previous literature. To solve the ill-posed control problems, we
use the regularized optimization approach that originates from [13]. This is combined
with the use of the eikonal equation as in the previous computational studies [6, 12].
One difference between [6, 12] and the present work is that in [6, 12] the ill-posed
control problems, and the subsequent reconstruction of internal information (see sec-
tion 3 below), are carried out using the so-called wave bases rather than regularized
optimization. Another distinction is that we do not rely upon the amplitude formula
from geometric optics to extract internal information. Instead, we obtain localized av-
erages of waves and harmonic functions in the interior by solving two ill-posed control
problems, and by considering the difference of the two solutions; see (8) and (11)--(12)
below. As discussed on p. 21 of [12], the amplitude formula needs to be regularized
when implemented computationally. On the other hand, our approach avoids this
additional regularization: only the ill-posed control problems need to be regularized.

Our motivation to study the BC method comes from potential applications in
seismic imaging. The prospect is that the method could provide a good initial guess
for the local optimization methods currently in use in seismic imaging. These methods
suffer from the fact that they may converge to a local minimum of the cost function
and thus fail to give the true solution to the inverse problem [39]. On the other hand,
the BC method is theoretically guaranteed to converge to the true solution; however,
in practice, we need to give up resolution in order to stabilize the method. The
numerical examples in this paper show that, when regularized suitably, the method
can stably reconstruct smooth variations in the wave speed.

We reconstruct the wave speed only in a region near the measurement surface \scrR ,
since at least in theory it is possible to iterate this procedure in a layer stripping fash-
ion. The layer stripping alternates between the local reconstruction step as discussed
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RECOVERY OF A SMOOTH METRIC 1933

in this paper and the so-called redatuming step that propagates the measurement
data through the region where the wave speed is already known. We have developed
an algorithm for the redatuming step in [19].

We will not attempt to give an overview of algorithms for coefficient determination
problems for the wave equation that are not based on the BC method. However, we
mention the interesting recent computational work [3] that is based on the so-called
Bukhge\u {\i}m--Klibanov method [16]. We note that the Bukhge\u {\i}m--Klibanov method
uses different data from the BC method, requiring only a single instance of boundary
values, but that it also requires that the initial data are nonvanishing. We mention also
another reconstruction method that uses a single measurement [4, 5]. This method is
based on a reduction to a nonlinear integro-differential equation, and there are several
papers on how to solve this equation (or an approximate version of it); see [28, 27]
for recent results including computational implementations.

2. Notation and techniques from the Boundary Control method. The
Boundary Control (BC) method is based on the geometrical aspects of wave propa-
gation. These are best described using the language of Riemannian geometry, and in
that spirit we define the isotropic Riemannian metric g = c(x) - 2dx2 associated to the
wave speed c(x) on M . Put differently, in the Cartesian coordinates of M , the metric
tensor g is represented by c(x) - 2 times the identity matrix. Now the distance function
of the Riemannian manifold (M, g) encodes the travel times of waves between points
in M , and singular wave fronts propagate along the geodesics of (M, g).

We will also discuss the case of an anisotropic wave speed and the D-to-N map.
This means that g is allowed to be an arbitrary smooth Riemannian metric on M ,
and we consider the wave equation

(2)
\partial 2t u - \Delta gu = 0 in (0,\infty )\times M,

u| x\in \partial M = f,
u| t=0 = \partial tu| t=0, = 0

together with the map

(3) \Lambda 2T
\scrR : f \mapsto \rightarrow  - \partial \nu uf | (0,2T )\times \scrR , f \in C\infty 

0 ((0, 2T )\times \scrR ).

Here \Delta g is the Laplace--Beltrami operator on the Riemannian manifold (M, g), and \nu 
is the inward pointing unit normal vector to \partial M with respect to the metric g. All the
techniques in this section are the same for both the isotropic and anisotropic cases and
for both the choices of data N-to-D and D-to-N. The negative sign is chosen in (3) to
unify the below formula (6) between the two choices of data. We leave it to the reader
to adapt the formulations for the isotropic case with D-to-N and the anisotropic case
with N-to-D.

The BC method is based upon approximately solving control problems of the
form

(4) find f for which uf (T, \cdot ) = \phi 

where the target function \phi \in L2(M) belongs to an appropriate class of functions so
that the problem can be solved without knowing the wave speed. One could call this
problem a blind control problem. Solving such blind control problems is a common
feature of all variants of the BC method and goes back to [7]. The specific blind
control problems that are solved in our algorithm are given in Lemma 2 below.

Several formulations of the BC method solve the blind control problems by ap-
plying a Gram--Schmidt orthogonalization procedure to the data. As discussed, e.g.,
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1934 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

in the context of the recent computational implementation using this approach (see
p. 21 of [12]), this procedure is ill-conditioned and the conditioning gets worse as the
number of basis functions is increased. This ill-posedness of the orthogonalization is
mitigated in [12] by using Tikhonov regularization.

In the present work we take another approach to regularization of the BC method;
namely, we formulate the blind control problems (4) as quadratic optimization prob-
lems and regularize these problems directly. Solving boundary control problems via
a regularized optimization approach was first proposed in [13], but to the best of our
knowledge, the formulation given in [13] has not been implemented computationally.
An issue with the formulation [13] is that there is no explicit way to choose the target
function \phi . Thus, in [34] a variation of the regularized optimization approach was
introduced, where the target functions \phi were restricted to the set of characteristic
functions of domains of influence. This technique uses global boundary data (i.e.,
\scrR = \partial M) to construct boundary distance functions. In [18] we introduced a modifi-
cation of [34] that allowed us to localize the problem and work with partial boundary
data (i.e., \scrR \not = \partial M). There we also studied the method computationally up to the
reconstruction of boundary distance functions.

It is well known [29] that the boundary distance functions can be used to deter-
mine the geometry (i.e., to determine the metric g up to boundary fixing isometries).
While several methods to recover the geometry from the boundary distance functions
have been proposed [17, 24, 25, 38], these have not been implemented computationally
to the best of our knowledge. It appears to us that, at least in the isotropic case,
it is better to recover the wave speed directly without first recovering the boundary
distance functions, and, in fact, doing so will take us closer to the original formulation
of the BC method in [7].

The present paper describes an approach to the BC method that combines what
we view as the best techniques appearing in the literature. Contrary to [6, 12], we
capture the instability of the method in quadratic optimization problems. Solving
these problems, we recover internal information, rather than boundary distance func-
tions as in [18], and then the remaining inversion is stable. In the anisotropic case, the
internal information is the operator that gives wave fields solving (2) in semigeodesic
coordinates. In the next two sections, we will describe techniques that allow us to
carry out this approach in both the isotropic and anisotropic cases. These will be
based on the control problem setup from [18] and we will review the setup in this
section.

2.1. Semigeodesic coordinates and wave caps. We consider an open subset
\Gamma \subset \partial M satisfying

\{ x \in \partial M : d(x,\Gamma ) \leq T\} \subset \scrR ,

where d denotes the Riemannian distance associated with g. We may replace T by
a smaller time to guarantee that there exists a nonempty \Gamma satisfying this. In what
follows we will only use the following further restriction of the N-to-D or D-to-N map:

\Lambda 2T
\Gamma ,\scrR f = \Lambda 2T

\scrR f | (0,2T )\times \scrR , f \in C\infty 
0 ((0, 2T )\times \Gamma ).

We now recall the definition of semigeodesic coordinates associated to \Gamma . For
y \in \Gamma , we define \sigma \Gamma (y) to be the maximal arc length for which the normal geodesic
beginning at y minimizes the distance to \Gamma . That is, letting \gamma (s; y, v) denote the point
at arc length s along the geodesic beginning at y with initial velocity v, and \nu the
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RECOVERY OF A SMOOTH METRIC 1935

inward pointing unit normal field on \Gamma , we define

\sigma \Gamma (y) := max\{ s \in (0, \tau M (y, \nu )] : d(\gamma (s; y, \nu ),\Gamma ) = s\} .

Note that \sigma \Gamma (y) > 0 for y \in \Gamma (see, e.g., [24, p. 50]). Defining

(5) x(y, s) := \gamma (s; y, \nu ) for y \in \Gamma and 0 \leq s < \sigma \Gamma (y),

the mapping

\Phi g : \{ (y, s) : y \in \Gamma and s \in [0, \sigma \Gamma (y))\} \rightarrow M

given by \Phi g(y, s) := x(y, s) is a diffeomorphism onto its image in (M, g), and we refer
to the pair (y, s) as the semigeodesic coordinates of the point x(y, s). We note that
the semigeodesic ``coordinates"" that we have defined here are not strictly coordinates
in the usual sense of the term, since they associate points in M with points in \BbbR \times \Gamma 
instead of points in \BbbR n. To obtain coordinates in the usual sense, one must specify
local coordinate charts on \Gamma . Denoting the local coordinates on \Gamma associated with
these charts by (y1, . . . , yn - 1), one can then define local semigeodesic coordinates by
(y1, . . . , yn - 1, s). We will continue to make this distinction, using the term ``local""
only when we need coordinates in the usual sense.

In both the scalar and anisotropic cases, our approach to recovering interior in-
formation relies on constructing localized averages of functions inside of M . One of
the main components used to calculate these averages is a family of sources that solve
blind control problems with target functions of the form \phi = 1B , where B is a set
known as a wave cap. The use of wave caps in the context of the BC method originates
from [8]. The construction of these sources will be discussed below in Lemma 2, but
first we recall how wave caps are defined.

Definition 1. Let y \in \Gamma , s, h > 0 with s+h < \sigma \Gamma (y). The wave cap, cap\Gamma (y, s, h),
is defined as

cap\Gamma (y, s, h) := \{ x \in M : d(x, y) \leq s+ h and d(x,\Gamma ) \geq s\} .

See Figure 1 for an illustration.

We note that, for all h > 0, the point x(y, s) belongs to the set cap\Gamma (y, s, h)
and diam(cap\Gamma (y, s, h)) \rightarrow 0 as h \rightarrow 0 (see, e.g., [18]). So, when h is small and \phi is
smooth, averaging \phi over cap\Gamma (y, s, h) yields an approximation to \phi (x(y, s)). These
observations play a central role in our reconstruction procedures.

Fig. 1. Geometry of a wave cap in the Euclidean case. In this case, Pythagoras's theorem
suffices to show that diam(cap\Gamma (y, s, h)) = \scrO (h1/2), but this is also true in general.
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1936 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

2.2. Elements of the BC method. As mentioned above, the BC method
involves finding sources f for which uf (T, \cdot ) \approx \phi for appropriate functions \phi \in L2(M).
To that end, we recall the control map,

W : f \mapsto \rightarrow uf (T, \cdot ) for f \in L2([0, T ]\times \Gamma ),

and note that W is a bounded linear operator W : L2([0, T ]\times \Gamma ) \rightarrow L2(M); see, e.g.,
[24]. We remark that the output ofW is a wave in the interior ofM and hence cannot
be observed directly from boundary measurements alone. Using W , one defines the
connecting operator K := W \ast W . The adjoint here is defined with respect to the
Riemannian volume measure in the anisotropic case, and with respect to the scaled
Lebesgue measure c - 2(x)dx in the isotropic case. We denote these measures by Volg
in both cases. In particular, we note that K can be obtained by processing the N-to-D
or D-to-N map via the Blagovescenskii identity. In a multidimensional context, this
identity was first established by Belishev; see the discussion in section 3.4 of [9]. We
give the identity in the form that is used in our computational implementation (see
[33] for a derivation of this formulation),

(6) K = J\Lambda 2T
\Gamma \Theta  - R\Lambda T\Gamma RJ\Theta ,

where \Lambda T\Gamma f := (\Lambda T\Gamma ,\scrR f)| [0,T ]\times \Gamma , Rf(t) := f(T - t) for 0 \leq t \leq T , Jf(t) :=
\int 2T - t
t

f(s) ds,

and \Theta is the inclusion operator \Theta : L2([0, T ] \times \Gamma ) \lhook \rightarrow L2([0, 2T ] \times \Gamma ) given by
\Theta f(t) = f(t) for 0 \leq t \leq T and \Theta f(t) = 0 otherwise. We remark that the
Blagovescenskii identity shows that K can be obtained from operations that only
involve manipulating the boundary data.

We discuss some mapping properties of W that follow from finite speed of propa-
gation for the wave equations (1) and (2). Let \tau : \Gamma \rightarrow [0, T ], and define S\tau := \{ (t, y) :
T  - \tau (y) \leq t \leq T\} . Then, finite speed of propagation implies that if f is a boundary
source supported in S\tau , the wave field uf (T, \cdot ) will be supported in the domain of
influence M(\tau ), defined by

M(\tau ) := \{ x \in M : d(x,\Gamma ) < \tau (y) for some y \in \Gamma \} .

In turn, this implies that W satisfies W : L2(S\tau ) \rightarrow L2(M(\tau )). So, if we define
P\tau : L2([0, T ]\times \Gamma ) \rightarrow L2(S\tau ), then we can define a restricted control mapW\tau :=WP\tau ,
which satisfies W\tau : L2(S\tau ) \rightarrow L2(M(\tau )). The point here is that, although we do
not have access to the output of W\tau , we know that the waves will be supported
in the domain of influence M(\tau ). We also define the restricted connecting operator
K\tau := (W\tau )

\ast W\tau = P\tau KP\tau and note that K\tau can be obtained by first generating K
using (6) and then applying the operator P\tau .

To construct sources that produce approximately constant wave fields on wave
caps, we use a procedure from [18]. This procedure uses the fact that a wave cap can
be written as the difference of two domains of influence, and requires that distances
between boundary points are known. Specifically, we will suppose that for any pair
x, y \in \Gamma the distance d(x, y) is known. As noted in [18], this is not a major restriction,
since these distances can be constructed from the data \Lambda 2T

\Gamma . Then, using this collection
of distances, we define a family of functions \tau Ry : \Gamma \rightarrow \BbbR + by

for y \in \Gamma and R > 0, define \tau Ry (x) := (R - d(x, y)) \vee 0.

Here we use the notation \phi \vee \psi to denote the pointwise maximum between \phi and \psi , and
we will continue to use this notation below. Finally, one can show that cap\Gamma (y, s, h) =
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RECOVERY OF A SMOOTH METRIC 1937

M(\tau s+hy \vee s1\Gamma ) \setminus M(s1\Gamma ). We also note that, since \partial M(\tau ) has measure zero provided
that \tau is continuous on \Gamma [34], one has that 1cap\Gamma (y,s,h)

= 1M(\tau s+h
y \vee s1\Gamma )  - 1M(s1\Gamma ) a.e.

The following lemma is an amalgamation of results from [18] and shows that
there is a family of sources \psi h,\alpha which produce approximately constant wave fields
u\psi h,\alpha (T, \cdot ) on wave caps, and that these sources can be constructed from the boundary
data \Lambda 2T

\Gamma ,\scrR .

Lemma 2. Let y \in \Gamma , s, h > 0 with s + h < \sigma \Gamma (y). Let \tau 1 = s1\Gamma and \tau 2 =

\tau s+hy \vee s1\Gamma . Define b(t, y) := T - t, and let \widetilde b = b in the Neumann case and \widetilde b = (\Lambda T\Gamma ,\scrR )\ast b

in the Dirichlet case. Then, for each \alpha > 0, let f\alpha ,i \in L2(S\tau i) be the unique solution
to

(7) (K\tau i + \alpha ) f = P\tau i
\widetilde b.

Define

(8) \psi h,\alpha = f\alpha ,2  - f\alpha ,1.

Using the notation Bh = cap\Gamma (y, s, h), it holds that

(9) lim
\alpha \rightarrow 0

u\psi h,\alpha (T, \cdot ) = 1Bh
and lim

\alpha \rightarrow 0
\langle \psi h,\alpha , P\tau 2b\rangle L2(S\tau ) = Volg(Bh).

We emphasize that the regularization, that is, the shift by \alpha > 0 of the positive
semidefinite operator K\tau i = (W\tau i)

\ast W\tau i , is essential in Lemma 2. The problem (7) is
ill-posed, and it can be shown that \| f\alpha ,i\| L2([0,T ]\times \Gamma ) \rightarrow \infty as \alpha \rightarrow 0.

We briefly sketch the proof of Lemma 2. The main idea is to approximately solve
the blind control problem (4) with \phi \equiv 1 over the spaces L2(S\tau i) for i = 1, 2. To
accomplish this, for i = 1, 2, one can consider a Tikhonov regularized version of (4)
depending upon a small parameter \alpha > 0. Then, letting f\alpha ,i denote the minimum
of the associated Tikhonov functional for \alpha > 0, one can obtain f\alpha ,i by solving this
functional's normal equation, given by (7). Note that all of the terms defining f\alpha ,i in
(7) can be generated in terms of the boundary data, so f\alpha ,i can be obtained without
knowing the wavespeed or metric. Appealing to properties of Tikhonov minimizers,
one can then show that Wf\alpha ,i \rightarrow 1M(\tau i) as \alpha \rightarrow 0, and hence W\psi \alpha ,h = Wf\alpha ,1  - 
Wf\alpha ,2 \rightarrow 1M(\tau 2)  - 1M(\tau 1) = 1cap\Gamma (y,s,h)

, where each limit and equality holds in the
L2 sense.

3. Recovery of information in the interior. Propositions 4 and 6 below can
be viewed as variants of Corollaries 1 and 2 in [13], the difference being that we use
the control problem setup discussed in the previous section. One advantage of this
setup is that we do not need to make the auxiliary assumption that the limit (14) in
[13] is nonzero. Proposition 6 is also related to the amplitude formula (3.27) in [12];
however, contrary to (3.27), we do not rely on geometric optics. The advantage of this
is that we avoid the Gibbs oscillations, and the associated regularization, discussed
on p. 21 of [12].

3.1. Wave field reconstruction in the anisotropic case. We begin with
reconstruction of wave fields sampled in semigeodesic coordinates, as encoded by the
following map.

Definition 3. Let (y, s) \in Domain(\Phi g) and f \in L2([0, T ] \times \Gamma ). The map Lg :
L2([0, T ]\times \Gamma ) \rightarrow L2(Domain(\Phi g)) is defined pointwise by

(10) Lgf(y, s) := uf (T, x(y, s)).
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1938 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

We now show that Lg can be obtained from the N-to-D map.

Proposition 4. Let f \in C\infty 
0 ([0, T ]\times \Gamma ). Let t \in [0, T ], y \in \Gamma , and s, h > 0 with

s + h < \sigma \Gamma (y) and h sufficiently small. The family of sources \{ \psi h,\alpha \} \alpha >0 given in
Lemma 2 satisfies

(11) lim
\alpha \rightarrow 0

\langle \psi h,\alpha ,Kf\rangle L2([0,T ]\times \Gamma )

\langle \psi h,\alpha , P\tau b\rangle L2([0,T ]\times \Gamma )
= uf (t, x(y, s)) +\scrO (h1/2).

Proof. Applying Lemma 2, we have that

lim
\alpha \rightarrow 0

\langle \psi h,\alpha ,Kf\rangle L2(S\tau )

\langle \psi h,\alpha , P\tau b\rangle L2(S\tau )
=

lim\alpha \rightarrow 0\langle W\psi h,\alpha ,Wf\rangle L2(M)

lim\alpha \rightarrow 0\langle \psi h,\alpha , P\tau b\rangle L2(S\tau )
=

\langle 1Bh
, uf (T, \cdot )\rangle L2(M)

Volg(Bh)
.

Thus, it suffices to show that

\langle 1Bh
, uf (T, \cdot )\rangle = Volg(Bh)u

f (T, x(y, s)) + Volg(Bh)\scrO (h1/2).

Suppose that h is sufficiently small that Bh is contained in the image of a coor-
dinate chart (p, U) (that is, we use the convention that p : U \subset \BbbR n \rightarrow p(U) \subset M).
We denote the coordinates on this chart by (x1, . . . , xn) and also suppose that x(y, s)
corresponds to the origin in this coordinate chart. Since f is C\infty 

0 , it follows that uf

is smooth. Thus we can Taylor expand uf (T, \cdot ) in coordinates about x(y, s) \in Bh,
giving

uf (T, x1, . . . , xn) = uf (T, 0, . . . , 0)+ \partial iu
f (T, 0, . . . , 0)xi+

\sum 
| \beta | =2

R\beta (x
1, . . . , xn)x\beta ,

where R\beta is bounded by the C2 norm of uf (T, x1, . . . , xn) (i.e., of uf (T, \cdot ) in coor-
dinates) on any compact neighborhood K satisfying 0 \in K \subset U . In particular, we
choose K such that Bh \subset p(K) for h sufficiently small. Combining these expressions
and using that x(y, s) corresponds to 0 in U ,\bigm| \bigm| \langle 1Bh

, uf (T, \cdot )\rangle L2(M)  - Volg(Bh)u
f (T, x(y, s))

\bigm| \bigm| 
\leq C

\int 
p - 1(Bh)

| \partial iuf (T, 0, . . . , 0)xi| +
\sum 
| \beta | =2

| R\beta (x1, . . . , xn)x\beta 1x\beta 2 | dx1 \cdot \cdot \cdot dxn.

Then for points p(x) \in M with coordinates x \in U sufficiently close to 0, there
exist constants g\ast , g

\ast such that g\ast | x| e \leq d(p(x), 0) \leq g\ast | x| e, where | x| e denotes the
Euclidean length of the coordinate vector x in \BbbR n. So, let x = (0, . . . , xi, . . . , 0),
and then note that | xi| = | x| e \leq (1/g\ast )d(0, p(x)) \leq (1/g\ast )diam(Bh). Thus, for h
sufficiently small,

| \langle 1Bh
, uf (T, \cdot )\rangle L2(M)  - Volg(Bh)u

f (T, x(y, s))| 
\leq \| uf\| C1(K)Cdiam(Bh)Volg(Bh) + \| uf\| C2(K)(Cdiam(Bh))

2Volg(Bh).

Finally, the discussion in [13] implies that diam(Bh) = \scrO (h1/2), which completes the
proof.

Corollary 5. For each f \in C\infty 
0 ([0, T ]\times \Gamma ), Lgf can be determined pointwise by

taking the limit as h\rightarrow 0 in (11). Since C\infty 
0 ([0, T ]\times \Gamma ) is dense in L2([0, T ]\times \Gamma ) and Lg

is bounded on L2([0, T ]\times \Gamma ), we have that Lgf is determined for all f \in L2([0, T ]\times \Gamma ).
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Proof. First, let f \in C\infty 
0 ([0, T ]\times \Gamma ). Taking the limit as h \rightarrow 0 in the preceding

lemma shows that Lgf(y, s) can be obtained for any pair (y, s) \in Domain(\Phi g), and
thus Lgf can be determined in semigeodesic coordinates.

Now we show that Lgf can be determined for any f \in L2([0, T ] \times \Gamma ). First we
note that Lgf = \Phi \ast 

gWf . Since the pull-back operator \Phi \ast 
g just composes a function

with a diffeomorphism, and \Gamma is compact, we have that \Phi \ast 
g is bounded as an operator

\Phi \ast 
g : L2(Range(\Phi g)) \rightarrow L2(Domain(\Phi g)). Thus Lg is a composition of bounded

operators, and hence Lg : L2([0, T ] \times \Gamma ) \rightarrow L2(Domain(\Phi g)) is bounded. Let f \in 
L2([0, T ] \times \Gamma ) be arbitrary. Since C\infty 

0 ([0, T ] \times \Gamma ) is dense in L2, one can find a
sequence \{ fj\} \infty j=1 \subset C\infty 

0 ([0, T ] \times \Gamma ) such that fj \rightarrow f . Then, since Lg is bounded,
Lgf = limj\rightarrow \infty Lgfj .

3.2. Coordinate transformation reconstruction in the isotropic case.
The map \Lambda T\partial M is invariant under diffeomorphisms that fix the boundary of M , and
therefore in the anisotropic case it is not possible to obtain g in Cartesian coordinates.
The same is true for the wave fields. In the isotropic case, on the other hand, it is
possible to construct the map \Phi g(y, s), and, in fact, the wave speed was determined
in Belishev's original paper [7] by first showing that the internal data uf (t, x) can be
recovered in Cartesian coordinates, and then using the identity

\Delta u(t, x)

\partial 2t u(t, x)
= c - 2(x).

It was later observed that the wave speed can be recovered directly from the map
\Phi g without using information on the wave fields in the interior; see, e.g., [6, 13]. In
the present paper we will construct \Phi g(y, s) by applying the following lemma to the
Cartesian coordinate functions.

Proposition 6. Suppose that g is isotropic, that is, g = c - 2(x)dx2. Let \phi \in 
C\infty (M) be harmonic, that is, \Delta \phi = 0. Let t \in [0, T ], y \in \Gamma , and s, h > 0 with
s+ h < \sigma \Gamma (y). Then, for h small, the family of sources \{ \psi h,\alpha \} \alpha >0 given in Lemma 2
satisfies

(12) lim
\alpha \rightarrow 0

B(\psi h,\alpha , \phi )

B(\psi h,\alpha , 1)
= \phi (x(y, s)) +\scrO (h1/2),

where

(13) B(f, \phi ) = \langle f, b\phi \rangle L2([0,T ]\times \Gamma ;dy)  - \langle \Lambda T\Gamma ,\scrR f, b\partial \nu \phi \rangle L2([0,T ]\times \scrR ;dy),

where b(t) = T  - t.

Proof. The proof is analogous to that of Proposition 4 after observing that

lim
\alpha \rightarrow 0

B(\psi h,\alpha , \phi )

B(\psi h,\alpha , 1)
=

\langle 1Bh
, \phi \rangle L2(M ;c - 2dx)

\langle 1Bh
, 1\rangle L2(M ;c - 2dx)

.

To see this, it suffices to show that for \phi harmonic and f \in L2([0, T ]\times \Gamma ),

(14) B(f, \phi ) = \langle uf (T ), \phi \rangle L2(M ;c - 2dx),

since then

lim
\alpha \rightarrow 0

B(\psi h,\alpha , \phi ) = lim
\alpha \rightarrow 0

\langle u\psi h,\alpha (T ), \phi \rangle L2(M ;c - 2dx) = \langle 1Bh
, \phi \rangle L2(M ;c - 2dx).
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This expression holds, in particular, for the special case that \phi \equiv 1, since constant
functions are harmonic.

The demonstration of (14) is known and is based upon the following computation:

\partial 2t \langle uf (t), \phi \rangle L2(M ;c - 2dx) = \langle \Delta uf (t), \phi \rangle L2(M ;dx)  - \langle uf (t),\Delta \phi \rangle L2(M ;dx)

= \langle f(t), \phi \rangle L2(\partial M ;dy)  - \langle \Lambda f(t), \partial \nu \phi \rangle L2(\partial M ;dy),

where we have written \Lambda f = uf | \partial M . Thus, the map t \mapsto \rightarrow \langle uf (t), \phi \rangle satisfies an ordinary
differential equation with vanishing initial conditions, since uf (0) = \partial tu

f (0) = 0.
Solving this differential equation and evaluating the result at t = T , we get an explicit
formula for \langle uf (T ), \phi \rangle depending upon f and \Lambda f :

(15) \langle uf (T ), \phi \rangle L2(M ;c - 2dx) = \langle f, b\phi \rangle L2([0,T ]\times \Gamma ;dy)  - \langle \Lambda T\Gamma ,\scrR f, b\partial \nu \phi \rangle L2([0,T ]\times \scrR ;dy),

which completes the demonstration of (14). Notice that we only require \Lambda f | \scrR , since,
for t \in [0, T ], \Lambda f(t) vanishes outside of\scrR by finite speed of propagation. An analogous
derivation can be found in [33] (with full boundary measurements and the D-to-N map
instead of the N-to-D map).

As in Corollary 5, letting h\rightarrow 0, we see that the map

Hc : \{ \phi \in C\infty (M); \Delta \phi = 0\} \rightarrow C\infty (Domain(\Phi g)), Hc\phi (y, s) = \phi (\Phi g(y, s))

can be obtained from the N-to-D map, where g = c - 2(x)dx2. To see this, first note
that \Phi g(y, s) := \gamma (s; y, \nu ). Since \gamma (\cdot ; y, \nu ) is a geodesic and \nu has unit-length vector
with respect to the metric g, we have that | \partial s\Phi g(y, s)| g = 1. Next, note that for
x \in M and v \in TxM , the length | v| g is given by | v| 2g = c(x) - 2| v| 2e, where | v| e is the

Euclidean length of v. Then, writing xj , j = 1, . . . , n, for the Cartesian coordinate
functions on M , it follows that

(16) \Phi g(y, s) = (Hcx
1(y, s), . . . ,Hcx

n(y, s)), c(\Phi g(y, s))
2 = | \partial s\Phi g(y, s)| 2e.

Thus c can be constructed in Cartesian coordinates by inverting the first function
above and composing the inverse with the second function. We will show in section 5
that this simple inversion method is stable.

The recovery of the internal information encoded by Lg and Hc is the most
unstable part of the BC method as used in this paper. The convergence with respect
to h is sublinear as characterized by (11) and (12), and the convergence with respect to
\alpha is even worse. In general we expect it to be no better than logarithmic. The recent
results [14, 32] prove logarithmic stability for related control and unique continuation
problems, and [18] describes how the instability shows up in numerical examples.

4. Recovery of the metric tensor. Due to the diffeomorphism invariance
discussed above, we cannot recover g in the Cartesian coordinates and it is natural
to recover g in the semigeodesic coordinates. This is straightforward in theory when
the internal information Lg is known, and analogously to the elliptic inverse problems
with internal data [1], we expect that the problem has good stability properties when
suitable sources f are used.

We will next describe a way to choose the sources by using again a quadratic
optimization technique to solve a control problem; see (19) below. This should be
compared to the scheme (6.7) in [9], where g is recovered using a CN0 -complete system
of controls; see (6.2) there. Contrary to [9], we choose the controls explicitly via
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solving (19), and this allows us to show that our scheme is stable under suitable
convexity assumptions. It is not clear to us how the stability of solving the sequence
of algebraic systems (6.7) in [9] depends on the actual choice of the CN0 -complete
system of controls.

Lemma 7. In any local coordinates (x1, . . . , xn),

(17) glk(x) =
1

2

\bigl( 
\Delta g(x

lxk) - xk\Delta gx
l  - xl\Delta gx

k
\bigr) 
.

Proof. Let (x1, . . . , xn) be local coordinates on M . Write \alpha :=
\surd 
g. Then

\Delta g(x
lxk) =

1

\alpha 
\partial i

\bigl( 
\alpha gij\partial j(x

lxk)
\bigr) 

=
1

\alpha 

\bigl( 
\partial i

\bigl( 
\alpha gilxk

\bigr) 
+ \partial i

\bigl( 
\alpha gikxl

\bigr) \bigr) 
= gkl + xk

1

\alpha 
\partial i

\bigl( 
\alpha gil

\bigr) 
+ glk + xl

1

\alpha 
\partial i

\bigl( 
\alpha gik

\bigr) 
= 2glk + xk\Delta gx

l + xl\Delta gx
k.

Proposition 8. The metric g can be constructed in local semigeodesic coordi-
nates using the operator Lg as data.

Proof. Let \Omega = Range(\Phi g), and let \omega \subset \Omega be a coordinate neighborhood for the
semigeodesic coordinates. Let (x1, . . . , xn) denote local semigeodesic coordinates on
\omega . Fix 1 \leq j, k \leq n, and for \ell = 1, 2, 3 choose \phi \ell \in C\infty 

0 (\Omega ), \ell = 1, 2, 3, such that for
all x \in \omega ,

(18) \phi 1(x) = xjxk, \phi 2(x) = xj , \phi 3(x) = xk.

Consider the following Tikhonov regularized problem: for \alpha > 0 find f \in L2([0, T ]\times \Gamma )
minimizing

\| Lgf  - \phi \ell \| 2L2(\Omega ) + \alpha \| f\| 2L2([0,T ]\times \Gamma ).

It is a well-known consequence of [40] (see, e.g., [24]) that Lg has dense range in
L2(\Omega ). Thus this problem has a minimizer f\alpha ,\ell which can be obtained as the unique
solution to the normal equation (see, e.g., [26, Theorem 2.11])

(19) (L\ast 
gLg + \alpha )f = L\ast 

g\phi \ell .

It follows from [35, Lemma 1] that the minimizers satisfy

lim
\alpha \rightarrow 0

Lgf\alpha ,\ell = \phi \ell .

As the wave equation (2) is translation invariant in time, we have Lg\partial 
2
t f = \Delta gu

f (T, \cdot ),
and therefore

lim
\alpha \rightarrow 0

\| Lg\partial 2t f\alpha ,\ell  - \Delta g\phi \ell \| H - 2(\Omega ) = lim
\alpha \rightarrow 0

\| \Delta g(u
f\alpha ,\ell (T, \cdot ) - \phi \ell )\| H - 2(\Omega )

\leq C lim
\alpha \rightarrow 0

\| uf\alpha ,\ell (T, \cdot ) - \phi \ell \| L2(\Omega ) = 0.

D
ow

nl
oa

de
d 

03
/1

5/
21

 to
 1

68
.7

.2
46

.1
07

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1942 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

Thus for \ell = 1, 2, 3, Lg\partial 
2
t f\alpha ,\ell \rightarrow \Delta g\phi \ell in the H - 2(\Omega ) sense. Using expression (17),

and the definitions of the target functions \phi \ell , in the local coordinates on \omega we have

(20) gjk = lim
\alpha \rightarrow 0

1

2
(Lg\partial 

2
t f\alpha ,1  - xkLg\partial 

2
t f\alpha ,2  - xjLg\partial 

2
t f\alpha ,3),

where the convergence is in H - 2(\omega ). Finally, since \Omega can be covered with coordinate
neighborhoods such as \omega , this argument can be repeated to determine glk in any local
semigeodesic coordinate chart.

5. On stability of the reconstruction from internal data. When discussing
stability near the set \Gamma , we will restrict our attention to \Omega \subset M and a set \scrG of smooth
Riemannian metrics on M for which

(21) \Omega \subset \Phi \~g(\Gamma \times [0, r0)), \~g \in \scrG ,

where r0 > 0 is fixed.
We begin by showing the following consequence of the implicit function theorem.

Lemma 9. Let U \subset \BbbR n be open and let \Phi 0 : U \rightarrow \BbbR n be continuously differen-
tiable. Let p0 \in U and suppose that the derivative D\Phi 0 is invertible at p0. Then there
are neighborhoods W \subset \BbbR n of \Phi 0(p0) and \scrU \subset C1(U) of \Phi 0 such that\bigm\| \bigm\| \phi  - 1  - \Phi  - 1

0

\bigm\| \bigm\| 
C0(W )

\leq C \| \Phi  - \Phi 0\| C1(U) , \Phi \in \scrU .

Proof. Define the map

F : C1(U)\times \BbbR n \times \BbbR n \rightarrow \BbbR n, F (\Phi , q, p) = \Phi (p) - q.

Then F is continuously differentiable, and DpF (\Phi 0, p0) = D\Phi 0(p0). Thus the implicit
function theorem (see, e.g., [31, Theorem 6.2.1]) implies that there are neighborhoods
V,W \prime \subset \BbbR n of p0,\Phi 0(p0) and \scrU \prime \subset C1(U) of \Phi 0 and a continuously differentiable map
H : \scrU \prime \times W \prime \rightarrow V such that F (\Phi , q,H(\Phi , q)) = 0. But this means that H(\Phi , \cdot ) = \phi  - 1

in W \prime . Choose a neighborhood W of \Phi 0(p0) such that W \subset W \prime and W is compact.
As H is continuously differentiable, there is a neighborhood \scrU \subset \scrU \prime of \Phi 0 such that

| H(\Phi , q) - H(\Phi 0, q)| \leq 2max
q\in W

\| D\Phi H(\Phi 0, q)\| C1(U)\rightarrow \BbbR n \| \Phi  - \Phi 0\| C1(U) , \Phi \in \scrU .

We have the following stability result in the isotropic case.

Theorem 10. Consider a family \scrG of smooth isotropic metrics \~g = \~c - 2dx2 sat-
isfying (21). Let c - 2dx2 \in \scrG and suppose that

(22) \| \~c - c\| C2(M) \leq \epsilon , \~c - 2dx2 \in \scrG .

Then for small enough \epsilon > 0, there is C > 0 such that\bigm\| \bigm\| \~c2  - c2
\bigm\| \bigm\| 
C(\Omega )

\leq C \| H\~c  - Hc\| C1(M)\rightarrow C1(\Gamma \times [0,r0))
.

Proof. We write \Sigma = \Gamma \times (0, r0), \~g = \~c - 2dx2, and g = c - 2dx2. Then (16) implies
that

\| \Phi \~g  - \Phi g\| C1(\Sigma ) \leq C \| H\~c  - Hc\| C1(M)\rightarrow C1(\Sigma ) .
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Moreover, again by (16),\bigm\| \bigm\| \~c2 \circ \Phi \~g  - c2 \circ \Phi g
\bigm\| \bigm\| 
C0(\Sigma )

\leq C \| H\~c  - Hc\| C1(M)\rightarrow C1(\Sigma ) .

This together with\bigm\| \bigm\| \~c2  - c2
\bigm\| \bigm\| 
C0(\Omega )

\leq 
\bigm\| \bigm\| \bigm\| \~c2 \circ \Phi \~g \circ \Phi  - 1

\~g  - c2 \circ \Phi g \circ \Phi  - 1
\~g

\bigm\| \bigm\| \bigm\| 
C0(\Omega )

+
\bigm\| \bigm\| \bigm\| c2 \circ \Phi g \circ \Phi  - 1

\~g  - c2 \circ \Phi g \circ \Phi  - 1
g

\bigm\| \bigm\| \bigm\| 
C0(\Omega )

implies that it is enough to study
\bigm\| \bigm\| \bigm\| \Phi  - 1

\~g  - \Phi  - 1
g

\bigm\| \bigm\| \bigm\| 
C0(\Omega )

.

Note that (\~g, y, s) \mapsto \rightarrow \Phi \~g(y, s) is continuously differentiable since it is obtained by
solving the ordinary differential equation that gives the geodesics with respect to \~g.
Indeed, this follows from [31, Theorem 6.5.2] by considering the vector field F that
generates the geodesic flow. In any local coordinates, F (x, \xi , h) = (\xi , f(x, \xi , h), 0)
where f = (f1, . . . , fn), f j(x, \xi , h) =  - \Gamma jk\ell (x, h)\xi 

k\xi \ell , and \Gamma jk\ell (x, h) are the Christoffel
symbols of a metric tensor h at x, that is,

\Gamma jk\ell (x, h) =
1

2
hjm

\biggl( 
\partial hmk
\partial x\ell 

+
\partial hm\ell 
\partial xk

 - \partial hk\ell 
\partial xm

\biggr) 
.

In particular, if \omega is a neighborhood of p0 \in \Sigma and \omega \subset \Sigma , then the map \~c \mapsto \rightarrow \Phi \~g

is continuous from C2(M) to C1(\omega ). Thus, for small enough \epsilon > 0 in (22), we may
apply Lemma 9 to obtain\bigm\| \bigm\| \bigm\| \Phi  - 1

\~g  - \Phi  - 1
g

\bigm\| \bigm\| \bigm\| 
C0(W )

\leq C \| \Phi \~g  - \Phi g\| C1(\Sigma ) ,

where W is a neighborhood of \Phi g(p0). As \Omega is compact, it can be covered by a finite
number of sets like the above set W . Thus\bigm\| \bigm\| \bigm\| \Phi  - 1

\~g  - \Phi  - 1
g

\bigm\| \bigm\| \bigm\| 
C0(\Omega )

\leq C \| \Phi \~g  - \Phi g\| C1(\Sigma ) \leq C \| H\~c  - Hc\| C1(M)\rightarrow C1(\Sigma ) .

We now consider the anisotropic case and describe a geometric condition on (M, g)
that will yield stable recovery of g in the semigeodesic coordinates of \Gamma from Lg in
the set \Omega . Specifically, we will assume that the problem

(23)
\partial 2tw  - \Delta gw = 0 in (0, T )\times M,

w| x\in \partial M = 0,
w| t=T = 0, \partial tw| t=T = \phi ,

which is the dual problem to (2), is stably observable in the following sense.

Definition 11. Let \scrG be a subset of smooth Riemannian metrics on M . Then,
(23) is stably observable for \Omega and \scrG from \Gamma in time T > 0 if there is a constant
C > 0 such that for all g \in \scrG and for all \phi \in L2(\Omega ) the solutions w = w\phi = w\phi ,g of
(23) uniformly satisfy

(24) \| \phi \| L2(\Omega ) \leq C
\bigm\| \bigm\| \partial \nu w\phi \bigm\| \bigm\| L2((0,T )\times \Gamma )

.

A complete characterization of metrics exhibiting stable observability is not presently
known; however, it is known that stable observability holds under suitable convexity
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1944 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

conditions. Indeed, if (M, g) admits a strictly convex function \ell without critical points
and satisfies

\{ x \in \partial M ; (\nabla \ell (x), \nu )g \geq 0\} \subset \Gamma ,

then there is a neighborhood \scrG of g and T > 0 such that (23) is stably observable for
M and \scrG from \Gamma in time T > 0; see [33]. Note that this result gives stable observability
over the complete manifold M but we will need it only over the set \Omega .

Stable observability in the case of a Neumann boundary condition is poorly un-
derstood presently. For instance, stable observability cannot be easily derived from
an estimate like [36, Theorem 3], the reason being that the H1-norm of the Dirich-
let trace of a solution to the wave equation is not bounded by the L2-norm of the
Neumann trace, while the opposite is true [36, Theorem 4]. See also [41] for a de-
tailed discussion. For this reason we restrict our attention to the case of a Dirichlet
boundary condition.

We use the notation

Wgf(x) = uf (T, \cdot )| \Omega , f \in L2([0, T ]\times \Gamma ).

The stable observability (24) says that W \ast 
g is injective, and by duality, it implies that

Wg : L
2([0, T ]\times \Gamma ) \rightarrow L2(\Omega ) is surjective (see [2]). In this case (2) is said to be exactly

controllable on \Omega , and in particular, for any \phi \in L2(\Omega ) the control problem Wgf = \phi 
has the minimum norm solution f =W \dagger 

g\phi given by the pseudoinverse of Wg.

Theorem 12. Consider a family \scrG of metrics \~g satisfying (21) and suppose that
(23) is stably observable for \Omega and \scrG from \Gamma in time T > 0. Let g \in \scrG and suppose
that

(25) \| \~g  - g\| C2(M) \leq \epsilon , \~g \in \scrG .

Then for small enough \epsilon > 0, there is C > 0 such that

\| \Psi \ast \~g  - g\| H - 2(\Omega ) \leq C \| L\~g  - Lg\| \ast , \~g \in \scrG ,

where \Psi \ast = (\Phi \ast 
g)

 - 1\Phi \ast 
\~g and

\| Lg\| \ast = \| Lg\| L2((0,T )\times \Gamma )\rightarrow L2(\Gamma \times (0,\epsilon )) +
\bigm\| \bigm\| Lg \circ \partial 2t \bigm\| \bigm\| L2((0,T )\times \Gamma )\rightarrow H - 2(\Gamma \times (0,\epsilon ))

.

Proof. We use again the notation \Sigma = \Gamma \times (0, r0) and write also \Sigma T = \Gamma \times (0, T ).
Let p \in \Sigma , and denote by (x1, . . . , xn) the coordinates on \Sigma corresponding to local
semigeodesic coordinates (y, r). Let j, k = 1, . . . , n and let \omega \subset \Sigma be a neighborhood
of p. Choose \phi \ell \in C\infty 

0 (\Sigma ), \ell = 1, 2, 3, as in (18). Note that solving (19) and taking
the limit \alpha \rightarrow 0 is equivalent to computing L\dagger \phi \ell ; see, e.g., [20, Theorem 5.2].

Analogously to (20), writing the change to local coordinates explicitly, it holds
that

(\Phi \ast 
gg)

jk(x) =
1

2
(Lg\partial 

2
t h1(x) - xkLg\partial 2t h2(x) - xjLg\partial 

2
t h3(x)),

where h\ell = L\dagger 
g\phi \ell , \ell = 1, 2, 3. It will be enough to bound\bigm\| \bigm\| \bigm\| L\~g\partial 

2
tL

\dagger 
\~g\phi \ell  - Lg\partial 

2
tL

\dagger 
g\phi \ell 

\bigm\| \bigm\| \bigm\| 
H - 2(\omega )

, \ell = 1, 2, 3,
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RECOVERY OF A SMOOTH METRIC 1945

in terms of the difference L\~g  - Lg. We have\bigm\| \bigm\| \bigm\| L\~g\partial 
2
tL

\dagger 
\~g\phi \ell  - Lg\partial 

2
tL

\dagger 
g\phi \ell 

\bigm\| \bigm\| \bigm\| 
H - 2(\omega )

\leq 
\bigm\| \bigm\| \bigm\| L\~g\partial 

2
tL

\dagger 
\~g\phi \ell  - Lg\partial 

2
tL

\dagger 
\~g\phi \ell 

\bigm\| \bigm\| \bigm\| 
H - 2(\omega )

+
\bigm\| \bigm\| \bigm\| Lg\partial 2tL\dagger 

\~g\phi \ell  - Lg\partial 
2
tL

\dagger 
g\phi \ell 

\bigm\| \bigm\| \bigm\| 
H - 2(\omega )

\leq 
\bigm\| \bigm\| (L\~g  - Lg) \circ \partial 2t

\bigm\| \bigm\| 
L2(\Sigma T )\rightarrow H - 2(\Sigma )

\bigm\| \bigm\| \bigm\| L\dagger 
\~g

\bigm\| \bigm\| \bigm\| 
L2(\Sigma )\rightarrow L2(\Sigma T )

\| \phi \ell \| L2(\Sigma )

+
\bigm\| \bigm\| Lg \circ \partial 2t \bigm\| \bigm\| L2(\Sigma T )\rightarrow H - 2(\Sigma )

\bigm\| \bigm\| \bigm\| L\dagger 
\~g  - L\dagger 

g

\bigm\| \bigm\| \bigm\| 
L2(\Sigma )\rightarrow L2(\Sigma T )

\| \phi \ell \| L2(\Sigma ) .

We omit writing subscripts in operator norms below as their meaning should be
clear from the context. Pseudoinversion is continuous in the sense that\bigm\| \bigm\| \bigm\| L\dagger 

\~g  - L\dagger 
g

\bigm\| \bigm\| \bigm\| \leq 3max
\Bigl( \bigm\| \bigm\| \bigm\| L\dagger 

\~g

\bigm\| \bigm\| \bigm\| ,\bigm\| \bigm\| L\dagger 
g

\bigm\| \bigm\| \Bigr) \| L\~g  - Lg\| ;

see, e.g., [23]. It remains to show that
\bigm\| \bigm\| \bigm\| L\dagger 

\~g

\bigm\| \bigm\| \bigm\| is uniformly bounded for \~g satisfying

(25). Note that L\~g = \Phi \ast 
\~gW\~g and that (24) implies

\bigm\| \bigm\| (W \ast 
\~g )

\dagger 
\bigm\| \bigm\| \leq C, which again implies

that
\bigm\| \bigm\| \bigm\| W \dagger 

\~g

\bigm\| \bigm\| \bigm\| \leq C. Here the constant C is uniform for \~g \in \scrG . Moreover, Lemma 9

implies that, for small enough \epsilon > 0 in (25), we have
\bigm\| \bigm\| (\Phi \ast 

\~g)
 - 1

\bigm\| \bigm\| \leq C. To summarize,
there is uniform constant C for \~g satisfying (25) such that\bigm\| \bigm\| \Phi \ast 

\~g\~g  - \Phi \ast 
gg
\bigm\| \bigm\| 
H - 2(\omega )

\leq C \| L\~g  - Lg\| \ast \| \phi \ell \| L2(\Sigma ) .

The claim follows by using a partition of unity. Note that the functions \phi \ell can be
chosen so that they are uniformly bounded in L2 when \omega is varied.

6. Computational experiment. In this section, we provide a computational
experiment to demonstrate our approach to recovering an isotropic wave speed from
the N-to-D map. We conduct our computational experiment in the case where M is
a domain in \BbbR 2; however, we stress that our approach generalizes to any n \geq 2.

6.1. Forward modeling and control solutions. We consider waves propa-
gating in the lower half-space M = \BbbR \times ( - \infty , 0] with respect to the following wave
speed:

(26) c(x1, x2) = 1 +
1

2
x2  - 

1

2
exp

\bigl( 
 - 4

\bigl( 
x21 + (x2  - 0.375)2

\bigr) \bigr) 
.

See Figure 2. Waves are simulated and recorded at the boundary for time 2T , where
T = 1.0. Sources are placed inside the accessible set \Gamma = [ - \ell s, \ell s] \times \{ 0\} , where
\ell s = 3.0, and receiver measurements are made in the set \scrR = [ - \ell r, \ell r] \times \{ 0\} , where
\ell r = 4.5.

For sources, we use a collection of Gaussian functions spanning a subspace of
L2([0, T ]\times \Gamma ). Specifically, we consider sources of the form

\varphi i,j(t, x) = C exp
\bigl( 
 - a((t - ts,i)

2 + (x - xs,j)
2)
\bigr) 
.

Here, the pairs (ts,i, xs,j) are chosen to form a uniformly spaced grid in [0.025, 0.975]\times 
[ - \ell s, \ell s] with spacing \Delta ts = \Delta xs = 0.025. In total, we considerNt,s = 39 source times
ts,i and Nx,s = 241 source locations xs,j . The constant a, controlling the width of
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1946 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

(a)

(b)

(c)

Fig. 2. (a) True wave speed c. (b) Semigeodesic coordinate grid associated with c. (c) Some
example ray paths with nonorthogonal intersection to \partial M .

the basis functions in space and time, is taken as a = 1381.6, and the constant C is
chosen to normalize the functions \varphi i,j in L

2([0, T ]\times \Gamma ).
Wave propagation is simulated using a continuous Galerkin finite element method

with Newmark time-stepping. Waves are simulated for t \in [ - t0, 2T ], where t0 =
0.1, although N-to-D measurements are only recorded in [0, 2T ]. The short buffer
interval, [ - t0, 0.0], is added to the simulation interval in order to avoid numerical
dispersion from nonvanishing sources at t = 0. The sources are extended to this
buffer interval. Receiver measurements are simulated by recording the Dirichlet trace
\Lambda 2T
\Gamma ,\scrR \varphi i,j at uniformly spaced points xs,r \in [\ell r, \ell r] with spatial separation \Delta xr =

0.0125 at uniformly spaced times ts,r \in [0, 2T ] with temporal spacing \Delta tr = 0.0025.
Note that our receiver measurements are sampled more densely in both space and
time than our source applications. In particular, \Delta xr = 0.5\Delta xs and \Delta tr = 0.1\Delta ts.
In total, we take Nt,r = 801 receiver measurements at each of the Nx,r = 721 receiver
positions.

We briefly comment on the physical scales associated with the computational
experiment. In the units above, the wave speed is approximately 1 at the surface. If
we take this to represent a wave speed of approximately 2000m/s and suppose that the
receiver spacing corresponds to \Delta xr = 12.5m, then in the same units \Delta tr = .00125s.
In addition, we have that \ell s = 4.5km and T = 1.0s, which implies that receivers are
placed within a 9.0km region and traces are recorded for a total of 2.0s. In Figure
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RECOVERY OF A SMOOTH METRIC 1947

Fig. 3. Power spectrum of \varphi ij(\cdot , xs,i), measured in Hz. We have rescaled the power spectrum
so that it has a maximum value of 1.

3 we plot the power spectrum for one of the sources at a fixed source location to
give a sense of the frequencies involved. Note that the source mostly consists of
frequencies below 15 Hz. In particular, note that we have used sources that have a
significant frequency component at 0 Hz. Such zero frequency contributions are not
representative of physical source wavelets, so it may be of interest to note that the
data we have used can be approximately synthesized from sources which lack 0 Hz
components. Specifically, we show in the appendix below that these data used can
be approximately synthesized by postprocessing data from sources that are products
of Gaussians in space and Ricker wavelets in time. We refer the reader to [10] for a
detailed discussion of the BC method in the context of geophysical imaging.

We introduce some notation, which we will use when discussing our discretiza-
tion of the connecting operator and control problems. First, let f \in L2([0, T ] \times \Gamma ).
We use the notation [f ] to denote the vector of inner-products with entries [f ]i =

\langle f, \varphi i\rangle L2([0,T ]\times \Gamma ). In addition, we let \^f denote the coefficient-vector for the projec-
tion of f onto span\{ \varphi i\} . Let A be an operator on L2([0, T ] \times \Gamma ). We will use the
notation [A] to denote the matrix of inner-products [A]ij = \langle A\varphi i, \varphi j\rangle L2([0,T ]\times \Gamma ). We
approximate all such integrals by successively applying the trapezoidal rule in each
dimension.

After the N-to-D data has been generated, we use the data \Lambda 2T
\Gamma \varphi i,j to discretize

the connecting operator. We accomplish this using a minor modification of the pro-
cedure outlined in [18]. In particular, we discretize the connecting operator by con-
structing a discrete approximation to (6):

[K] = [J\Lambda 2T
\Gamma ] - [R\Lambda T\Gamma ]G

 - 1[RJ ].

Here, G - 1 denotes the inverse of the Gram matrix Gij = \langle \varphi i, \varphi j\rangle L2([0,T ]\times \Gamma ).
Next, we describe our implementation of Lemma 2. Let y \in \Gamma , s \in [0, T ], and

h \in [0, T  - s]. To obtain the control \psi \alpha ,h associated with cap\Gamma (y, s, h), we solve two
discrete versions of the boundary control problem (7). Specifically, for \tau 1 = s1\Gamma and
\tau 2 = \tau s+hy \vee s1\Gamma , we solve the discretized control problems

(27) ([K\tau k ] + \alpha ) \^f = [b\tau k ].

This yields coefficient vectors \^f\alpha ,k for k = 1, 2 associated with the approximate control
solutions. Here, we use the notation [K\tau k ] to denote a matrix that deviates slightly
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1948 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

from the definition given above. In particular, we obtain [K\tau k ] from [K] by masking
rows and columns corresponding to basis functions \varphi i,j localized near (ts,i, xs,j) \not \in S\tau k .
This gives an approximation to the matrix for K\tau k = P\tau kKP\tau k , which, we have
observed, performs well for our particular basis. The right-hand side vector [b\tau k ] is
a discrete approximation to P\tau kb, and we obtain it by first generating the vector of
inner-products [b]l = \langle b, \varphi l\rangle L2([0,T ]\times \Gamma ) and then masking the entries of [b] using the
same strategy that we use to obtain [K\tau k ]. We solve the control problems (27) using
the MATLAB back-slash function. For all discretized control problems considered in
this section, we use a fixed value \alpha , with \alpha = 10 - 5. After generating the solutions
f\alpha ,k, we then obtain \psi h,\alpha = f\alpha ,2  - f\alpha ,1.

In the inversion step, we use the boundary data to approximate harmonic func-
tions in semigeodesic coordinates in the interior ofM . To describe this step, let \phi be a
harmonic function in M . Fix y, s, and h, and let \psi \alpha ,h denote the control constructed
as in the previous paragraph. We define

(28) Hc,h\phi (y, s) :=
B(\psi h,\alpha , \phi )

B(\psi h,\alpha , 1)
,

and we calculate the right-hand side directly using (13). Note that this expression
coincides with an approximation to the leading term in the right-hand side of (11), so
for small h and \alpha , Hc,h\phi (y, s) will approximate Hc\phi (y, s). However, note that (11)
is only accurate to \scrO (h1/2), and in practice we found that (28) tends to be closer to
Hc\phi (y, s+ h/2) = \phi (x(y, s+ h/2)). This is not unexpected, since (28) approximates
Hc\phi (y, s) by approximating the average of \phi over Bh = cap\Gamma (y, s, h), and the point
x(y, s) belongs to the topological boundary of Bh, whereas x(y, s+h/2) belongs to the
interior of Bh. Consequently, we will compare Hc,h\phi (y, s) to Hc\phi (y, s+ h/2) below.

6.2. Inverting for the wave speed. Our approach to reconstructing the wave
speed c consists of two steps. In the first step, we implement Proposition 6 to construct
an approximation to the coordinate transform \Phi c on a grid of points (yi, sj) \in \Gamma \times 
[0, T ]. The second step is to differentiate the approximate coordinate transform in
the s-direction and to apply (16) to obtain the wave speed at the estimated points.

To approximate the coordinate transform \Phi c, we first fix a small wave cap height
h > 0, which we use at every grid point. The wave cap height controls the spatial
extent of the waves u\psi h,\alpha (T, \cdot ) in the interior of M . Because the vertical resolution of
our basis is controlled by the separation between sources in time, we choose h to be
an integral multiple of \Delta ts. In particular, we select h = 2\Delta ts = 0.05. Likewise, we
choose the grid-points (yi, sj) to coincide with the source centers for a subset of our
basis functions. Specifically, we take yi = xs,i and sj = ts,j for the source locations
xs,i \in [ - 1.5, 1.5] and times ts,j \in [0.05, 0.65]. In total, the reconstruction grid contains
Nx,g = 121 horizontal positions and Nt,g = 27 vertical positions. Then, for each grid
point (yi, sj) we solve (27) for k = 1, 2 and obtain the source \psi i,j = \psi \alpha ,h for the point
(yi, sj). Since the Cartesian coordinate functions x1 and x2 are both harmonic, we
then apply (28) to both functions at each grid point and define

(29) \Phi c,h(yi, sj) :=
\bigl( 
Hc,hx

1(yi, sj), Hc,hx
2(yi, sj)

\bigr) 
.

This yields the desired approximate coordinate transform. We plot the estimated
coordinates in Figure 4a and compare the estimated transform \Phi c,h(yi, sj) to the
points \Phi (yi, sj + h/2) in Figure 4b.

The last step is to approximate the wave speed. To accomplish this, we first
recall that c(\Phi c(y, s))

2 = | \partial s\Phi c(y, s)| 2e. Thus, for each base point yi, we fit a smooth-
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RECOVERY OF A SMOOTH METRIC 1949

(a)

(b)

Fig. 4. (a) The estimated coordinate transform. We have only plotted points for half of the
yi and sj . (b) Estimated points \Phi c,h(yi, sj) (purple dots) compared to the semigeodesic coordinate
grid \Phi c(yi, sj + h/2) (black lines) and wave speed. (Color available online.)

(a)

(b)

Fig. 5. (a) True wave speed c. (b) Reconstructed wave speed, plotted at the estimated coordinates
given by \Phi c,h.

ing spline to each of the reconstructed coordinates in the s-direction; that is, we fit a
smoothing spline to the data sets \{ Hc,hx

k(yi, sj) : j = 1, . . . , Nt,g\} for k = 1, 2 for each
i = 1, . . . , Nx,g. We then differentiate the resulting splines at sj for j = 1, . . . , Nt,g
to approximate the derivatives \partial sHc,hx

k(yi, sj) at each grid point. Finally, we esti-
mate c(\Phi c,h(yi, sj)) by calculating | (\partial sHc,hx

1(yi, sj), \partial sHc,hx
2(yi, sj))| e. We plot the
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1950 MAARTEN V. DE HOOP, PAUL KEPLEY, AND LAURI OKSANEN

results of this process in Figure 5, along with the true wave speed for comparison.
We also compare the reconstructed wave speed against the true wave speed in Figure
6 along coordinate slices.

Inspecting the bottom row of Figure 6, we see that the reconstruction is generally
good at the estimated points. In particular, the reconstruction quality generally
decreases as sj increases, which is expected, since the points \Phi c,h(yi, sj) with large
sj correspond to the points which are furthest from the set \Gamma . Hence the N-to-D
data contains a shorter window of signal returns from these points, and thus less
information about the wave speed there. We note that the reconstruction results
presented here are qualitatively similar to the reconstruction results in [12].

(a) (b) (c)

Fig. 6. Top: Reconstructed wave speed with three approximated geodesics. Bottom row: True
wave speed (blue curve) and reconstructed wave speed (red triangles) evaluated at the estimated
coordinates for each of the indicated geodesics. The x-axis denotes the x2-coordinate (depth) along
the approximated geodesic. (Color available online.)

6.3. Future work. In future work, we intend to consider the effect that adding
random noise to the data would have on the reconstruction results. In addition, we
plan to carry out a computational experiment of the layer stripping method mentioned
in the introduction. Essentially, this would consist of intertwining the wave speed
reconstruction technique (described here) with the redatuming technique from [19].

Appendix A. Alternative sources for the computational experiment. In
section 6.1, we remarked that the data used in the computational experiment could
be approximately synthesized by postprocessing data from sources that are products
of Gaussians in space and Ricker wavelets in time. Here, we describe how this may
be accomplished.

Before discussing this point, we first note that uIf = I(uf ), where I denotes the
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RECOVERY OF A SMOOTH METRIC 1951

integral Ih(t, \cdot ) :=
\int t
0
h(s, \cdot ) ds. To see this, we first observe that

\partial 2t (Iu
f ) = \partial 2t

\biggl( \int t

0

uf (s, \cdot ) ds
\biggr) 

= \partial tu
f (t, \cdot ) =

\int t

0

\partial 2t u
f (s, \cdot ) ds - \partial tu

f (0, \cdot )

=

\int t

0

c2(x)\Delta uf (s, \cdot ) ds = c2(x)\Delta (Iuf ).

Here, we have used the fact that \partial tu
f (0, \cdot ) = 0 and (\partial 2t  - c2(x)\Delta )uf = 0 since uf

solves (1). Likewise, because uf solves (1), it follows that \partial n(Iu
f ) = I(\partial nu

f ) = If

and that \partial tIu
f (0, \cdot ) = uf (0, \cdot ) = 0. Note also that Iuf (0, \cdot ) =

\int 0

0
uf (s, \cdot ) ds = 0.

Putting these observations together, we see that Iuf satisfies

\partial 2tw  - c2(x)\Delta w = 0 in (0,\infty )\times M,
\partial \vec{}nw| x\in \partial M = If,

w| t=0 = \partial tw| t=0, = 0,

and hence Iuf solves (1) with Neumann source If . Since solutions to (1) are unique,
we see that Iuf = uIf , as claimed. An immediate consequence is that

(30) I\Lambda 2T
\Gamma ,\scrR f = Iuf | \scrR = uIf | \scrR = \Lambda 2T

\Gamma ,\scrR If.

Thus, \Lambda 2T
\Gamma ,\scrR I

jf = Ij\Lambda 2T
\Gamma ,\scrR f for j \in \BbbN .

We now describe how the data used in the computational experiment can be
approximately synthesized using sources that are products of Gaussians in space and
Ricker wavelets in time. To that end, let \psi i,j = \partial 2t \varphi i,j , where \varphi i,j denotes the sources
described in section 6.1. Since \varphi i,j is a product of Gaussians in both time and space,
\psi i,j is a product of a Ricker wavelet in time (since it is the second time derivative of
a Gaussian function) and a Gaussian in space. Then, observe that,

\varphi i,j(t, x) = \varphi i,j(0, x) + t\partial t\varphi i,j(0, x) + I2\psi i,j(0, x).

Under the parameter choices for \varphi i,j used in the computational experiment, the first
two terms are considerably smaller than the third for i \geq 4, since t = 0 belongs to the
tail of the Gaussian \varphi ij . Likewise, for i \leq 3, the same comment holds if we replace
t = 0 by the start time for the buffer interval, t =  - t0 (note that we would also need
to replace t = 0 by t =  - t0 when applying I). In either event,

\varphi i,j \approx I2\psi i,j , and \Lambda 2T
\Gamma ,\scrR \varphi i,j \approx \Lambda 2T

\Gamma ,\scrR (I2\psi i,j) = I2(\Lambda 2T
\Gamma ,\scrR \psi i,j),

where the last equality holds by (30). For our particular setup, I2(\Lambda 2T
\Gamma ,\scrR \psi i,j) agreed

with the data \Lambda 2T
\Gamma ,\scrR \varphi i,j to within an error of about 1 part in 10 - 4. Hence, the data

\Lambda 2T
\Gamma ,\scrR \varphi i,j that we have used in the computational experiment could be approximately

synthesized by first using the (more) realistic sources \psi i,j to simulate the data \Lambda 2T
\Gamma ,\scrR \psi i,j

and then postprocessing these data by integrating twice in time.
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