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RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS

USING MULTIPLE SCATTERING

PETER CADAY, MAARTEN V. DE HOOP, VITALY KATSNELSON,
AND GUNTHER UHLMANN

Abstract. Let c be a piecewise smooth wave speed on Rn, unknown inside
a domain Ω. We are given the solution operator for the scalar wave equation
(∂2

t − c2Δ)u = 0, but only outside Ω and only for initial data supported
outside Ω. Using our recently developed scattering control method, we prove
that piecewise smooth wave speeds are uniquely determined by this map and
provide a reconstruction formula. In other words, the wave imaging problem
is solvable in the piecewise smooth setting under mild conditions. We also

illustrate a separate method, likewise constructive, for recovering the locations
of interfaces in broken geodesic normal coordinates using scattering control.

1. Introduction and background

The wave inverse problem asks for the unknown coefficient(s), representing wave
speeds, of a wave equation inside a domain of interest Ω, given knowledge about the
equation’s solutions (typically on ∂Ω). Traditionally, the coefficients are smooth,
and the data is the Dirichlet-to-Neumann map or its inverse. The main questions
are uniqueness and stability: can the coefficients be recovered from the Dirichlet-
to-Neumann map, and is this reconstruction stable relative to perturbations in the
data? In the smooth case, the uniqueness question was answered in the affirmative
by Belishev [1], using the boundary control method introduced in that same arti-
cle. Logarithmic type stability estimates were proven in [4] for a related problem
for the wave equation with a smooth sound speed or metric. The problem may
also be approached from a geometric optics perspective, using integral geometry.
Mukhometov [22] first showed uniqueness and stability in the two-dimensional case;
Mukhometov and Romanov [23, 26] then extended these results to higher dimen-
sions. Stefanov and Uhlmann [30] showed conditional Hölder type stability for
the case of simple wave speeds; recently, Stefanov, Uhlmann, and Vasy [31] also
proved uniqueness, Hölder stability, and reconstruction under a foliation condition,
utilizing their work on the local geodesic ray transform [32]. Some work has also
been done when reflections are present, e.g., Mukhometov [24], and Hansen [14],
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assuming the background speed is known. In [20] it is shown that from the broken
scattering relation for smooth Riemannian metrics one can determine the metric.
This assumes, for the case of the sound speed, a dense number of discontinuities of
the speed. More details may be found in these references.

In this paper, we show that uniqueness also holds for piecewise smooth wave
speeds with conormal singularities, under very mild geometric conditions, using
our recently developed scattering control method [5]. We consider the particular
wave equation

(1.1) (∂2
t − c2Δ)u = 0.

Instead of using the Dirichlet-to-Neumann map, we take a slightly different (but
equivalent) initial value approach: the domain is extended from Ω to Rn and the
data is the solution operator for the wave equation, but only outside Ω, and only for
initial data supported outside Ω. The idea behind scattering control is to find, for
given initial data, extra trailing initial data which allows us, indirectly, to isolate the
portion of the wave field at a certain time and depth inside Ω. Under appropriate
geometric conditions, this portion of the wave field is free of multiple reflections
arising from discontinuities in c and is spatially concentrated.

These two properties of scattering control lead immediately to two strategies
for the inverse problem. The first property, spatial concentration, leads to a con-
structive uniqueness result inspired by a harmonic function reconstruction method
of Belishev and Blagovestchenskii [2]. The key idea is to take inner products of
increasingly concentrated wave fields with Euclidean coordinate functions (which
are stationary for equation (1.1)): this allows us to convert boundary normal co-
ordinates to Euclidean coordinates, from which c can be recovered. This leads to
Theorem A, which provides a reconstruction formula for c in terms of a function κ
that can be computed by scattering control. The precise statement of the theorem
involves several technical definitions which in the interest of brevity we will defer
to later sections.

Before stating the theorems, let us describe our given data, which comes in the
form of an outside measurement operator akin to the Dirichlet-to-Neumann map.
Precisely, for Cauchy data h0 ∈ H1(Rn) ⊕ L2(Rn), we denote by uh0

(t) the wave
solution with initial data h0. We then define the outside measurement operator
F : H1

c (Ω
c)⊕ L2

c(Ω
c) → C1(Rt;H

1(Ωc)) as

(1.2) F : h0 → uh0
(t)

∣∣
Ωc .

Note that our usage of H1 ⊕ L2-type spaces disallow point sources; for the inverse
problem, we will eventually consider indicator functions over (arbitrarily) small
bounded domains.

We can now present a high-level version of the first main reconstruction theorem.

Theorem A. Let y = (y1, . . . , yn) ∈ Ω be a regular point, and let (p, T ) ∈ ∂Ω×R+

be boundary normal coordinates for y. Then the Euclidean coordinates y and the
wave speed c(y) may be reconstructed from (p, T ) and F .

This reconstruction theorem carries one significant geometric restriction, the
regular point requirement on y. While regularity is defined rigorously in Section 3.1,
the key obstruction occurs when the fastest path from y to the boundary travels
along an interface. Some quite reasonable choices of (Ω, c) feature an open set
of such irregular points, at which Theorem A cannot immediately reconstruct c.

Licensed to Rice Univ. Prepared on Mon Mar 15 16:02:22 EDT 2021 for download from IP 168.7.246.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1215

Fortunately, a layer stripping-type argument allows us to recover such a c in multiple
steps, leading to an unconditional uniqueness result.

Theorem B. A piecewise smooth c satisfying the (mild) conditions of Section 3.1
is uniquely determined by F .

The second property, multiple reflection removal, leads to a method for locating
discontinuities in c in (suitably generalized) boundary normal coordinates. Briefly,
we may probe Ω with a wave packet and track the kinetic energy along the trans-
mitted ray as time increases. At each discontinuity, energy is lost to the reflected
wave; by measuring this loss we recover the reflection coefficient, and the time of
the loss provides the depth of the discontinuity, in generalized boundary normal
coordinates. Both calculated quantities (depth and reflection coefficient) become
exact in the high-frequency limit.

Theorem C. Let γ(s) be a unit speed distance minimizing broken geodesic segment
connecting a regular point y ∈ Ω to ∂Ω, with γ(0) ∈ ∂Ω, γ(T ) = y. Then the
discontinuities of c along γ, measured in boundary normal coordinates, may be
reconstructed from F .

We begin in Section 2 with a reintroduction of scattering control and accompa-
nying definitions. Section 3 then presents the harmonic inner product-based recon-
struction formula and uniqueness theorem. Sections 4 and 5 conclude by presenting
the wave packet approach to locating discontinuities in c.

Notation and Conventions. We use ≡ to indicate equality of distributions mod-
ulo smooth functions; throughout smooth means C∞. We will extensively use
Fourier integral operators associated with canonical graphs, abbreviating them as
graph FIOs.

Numerical Implementation. The main theorems of this paper are generally con-
structive and may be interpreted as algorithms for recovering c (Theorems A and B)
or the interfaces (Theorem C); development of numerical implementations is an
opportunity for potential future research. Note that boundary control-based algo-
rithms have been successfully implemented by Belishev and collaborators [2,3,16],
and de Hoop, Kepley, and Oksanen [9]. A number of other globally convergent
algorithms for wave equation inverse problems have been developed using the
Bukhgeim–Klibanov method; cf. Klibanov and Kolesov [18], and the survey ar-
ticle [17].

2. Scattering control

This section revisits scattering control [5], a type of time-reversal iteration. Time
reversal is a common theme in wave equation inverse problems, both in the mathe-
matical literature and in practice (e.g., [12]). We present most of the key definitions
and results that will be of use in the current paper.

2.1. Domains and wave speeds. Let c(x) be a piecewise smooth function on
Rn, the wave speed, satisfying c, c−1 ∈ L∞(Rn). We imagine c to be known only
outside a Lipschitz domain Ω ⊂ Ω � Rn representing the object of interest.

We allow ourselves to probe Ω with Cauchy data concentrated close to Ω, in
some Lipschitz domain Θ ⊃ Ω. We will add to this initial pulse a Cauchy data
control supported outside Θ, whose role is to isolate the resulting wave field at a
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particular time and depth controlled by a time parameter T ∈ (0, 12 diamΩ). This
will require controls supported in an ambient Lipschitz neighborhood Υ of Θ that
satisfies d(∂Υ,Θ) > 2T and is otherwise arbitrary.1

This initial pulse region Θ has a central role in the scattering series. First, define
the depth d∗Θ(x) of a point x inside Θ:

(2.1) d∗Θ(x) =

{
+d(x, ∂Θ), x ∈ Θ,

−d(x, ∂Θ), x /∈ Θ.

Larger values of d∗Θ are therefore deeper inside Θ. For each t, define2 the open sets

(2.2)
Θt = {x ∈ Υ | d∗Θ(x) > t} ,
Θ�

t = {x ∈ Υ | d∗Θ(x) < t} .
As in (2.2) above, we use a superscript � to indicate sets and function spaces
lying outside, rather than inside, some region. We define Ωt, Ω

�
t similarly, and let

Ω� = Ω�
0.

2.2. Solution operators and spaces. Let C̃ be the space of Cauchy data of
interest:

C̃ = H1
0 (Υ)⊕ L2(Υ),(2.3)

considered as a Hilbert space with the energy inner product

(2.4)
〈
(f0, f1), (g0, g1)

〉
=

∫
Υ

(
∇f0(x) · ∇g0(x) + c−2f1(x)g1(x)

)
dx.

Within C̃ define the subspaces of Cauchy data supported inside and outside Θt:

(2.5)
Ht = H1

0 (Θt)⊕ L2(Θt), H = H0,

H̃�
t = H1

0 (Θ
�
t )⊕ L2(Θ�

t ), H̃�= H̃�
0.

Define the energy and kinetic energy of Cauchy data h = (h0, h1) ∈ C̃ in a subset
W ⊆ Rn:

EW (h) =

∫
W

(
|∇h0|2 + c−2 |h1|2

)
dx, KEW (h) =

∫
W

c−2 |h1|2 dx.(2.6)

Next, define F to be the solution operator for the initial value problem:

F : H1(Rn)⊕ L2(Rn) → C(R, H1(Rn)), F (h0, h1) = u s.t.

⎧⎪⎨⎪⎩
(∂2

t − c2Δ)u = 0,

u
∣∣
t=0

= h0,

∂tu
∣∣
t=0

= h1.

(2.7)

Our data for the inverse problem is the outside measurement operator F : H1
0 (Ω

�)⊕
L2(Ω�) → C(R, H1(Ω�)), the restriction of F to Ω� in both domain and codomain.

Let Rs propagate Cauchy data at time t = 0 to Cauchy data at t = s:

Rs = (F, ∂tF )
∣∣∣
t=s

: H1(Rn)⊕ L2(Rn) → H1(Rn)⊕ L2(Rn).(2.8)

1Here the distance d(x, y) is travel time distance: the infimum of the lengths of all AC curves
γ(s) connecting x and y, measured in the metric c−2dx2, such that γ−1(singsupp c) has measure
zero; see (3.1).

2We tacitly assume throughout that Θt, Θ�
t are Lipschitz.
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RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1217

Now combine Rs with a time-reversal operator ν : C̃ → C̃, defining for a given T

R = ν ◦R2T , ν : (f0, f1) �→ (f0,−f1).(2.9)

In our problem, only waves interacting with (Ω, c) in time 2T are of interest. Con-
sequently, let us ignore Cauchy data not interacting with Θ, as follows.

Let G = H̃� ∩
(
R2T (H

1
0 (R

n \ Θ) ⊕ L2(Rn \ Θ))
)
be the space of Cauchy data

in C̃ whose wave fields vanish on Θ at t = 0 and t = 2T . Let C be its orthogonal
complement inside C̃, and let H�

t be its orthogonal complement inside H̃�
t . With

this definition, R2T maps C to itself isometrically. Also, let πC : C̃ → C be the
corresponding orthogonal projection.

2.3. Projections inside and outside Θt. The final ingredients needed are re-
striction operators for Cauchy data inside and outside each Θt. As hard cutoffs
are not bounded operators in energy space, we replace them with Hilbert space
projections.

Let πt, π
�
t be the orthogonal projections of C onto Ht, H

�
t , respectively, and

let πt = 1 − πt. For brevity, let π = π0, π
� = π�

0 . The complementary projection
I − πt − π�

t is the orthogonal projection onto It, the orthogonal complement to
Ht ⊕H�

t in C.
The Dirichlet principle provides an interpretation of these projections [5]:

(2.10) (πth)(x) =

{
h(x), x ∈ Θt,

(ϕ, 0), x ∈ Θ�
t ,

where ϕ is the harmonic extension of h|∂Θt
to Υ (with zero trace on ∂Υ). Similarly,

π�
t h is zero on Θt, and outside Θt is equal to h, with this harmonic extension

subtracted from the first component.

2.4. Scattering control. Our major tool is a Neumann series, the scattering con-
trol series. Given Cauchy data h0 ∈ H, define

(2.11) h∞ =

∞∑
i=0

(π�R)2ih0.

We will often need its kth partial sum hk =
∑k

i=0(π
�R)2ih0 as well. Formally, h∞

solves the scattering control equation

(2.12) (I − π�Rπ�R)h∞ = h0.

As (2.11) expresses, h∞ consists of h0, plus a control in H�. In general, series (2.11)
does not converge in C, although it does converge in an appropriate weighted
space [5, Theorem 2.3].

The behavior of the scattering control series is intertwined with a particular
portion of the wave field, the harmonic almost direct transmission, which is at time
T and depth at least T .

Definition. The harmonic almost direct transmission of h0 at time T is

(2.13) hDT = hDT(h0, T ) = πTRTh0.

Referring to the earlier discussion, we see that hDT is equal to RTh0 inside
ΘT ; outside ΘT , its first component is extended harmonically from ∂ΘT , while the
second component is extended by zero.
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We now excerpt the key theorems on the scattering control series’ behavior
from [5].

Theorem 2.1. Let h0 ∈ H, and let T ∈ (0, 12 diamΘ). Then isolating the deepest
part of the wave field of h0 is equivalent to summing the scattering control series:

(2.14) (I − π�Rπ�R)h∞ = h0 ⇐⇒ R−TπR2Th∞ = hDT and h∞ ∈ h0 +H�.

Such an h∞, if it exists, is unique in C.

Theorem 2.2. With h0, T as in Theorem 2.1, define the partial sums

(2.15) hk =
k∑

i=0

(π�Rπ�R)ih0.

Then the deepest part of the wave field can be (indirectly) recovered from {hk}
regardless of convergence of the scattering control series:

lim
k→∞

R−TπR2Thk = RTχh0 = hDT, ‖πRhk‖ ↘ ‖hDT‖.(2.16)

The set of h0 for which the scattering control series converges in C is dense in H.

Theorem 2.1 covers the situation when the scattering control series converges:
the wavefield of h∞ inside Θ at t = 2T is equal to that generated by hDT, the
deepest portion of h0’s wavefield, alone. This is not true of the wave field of h0

itself, because other waves, including multiple reflections, will mix with hDT’s wave
field in general.

Theorem 2.2 describes the general case: convergence may fail, but only outside
Θ. Inside Θ, the partial sums’ wave fields at t = 2T do converge to RThDT, and
their energies are in fact monotonically decreasing.

By combining the theorems above with energy conservation, we may recover the
energy of the harmonic almost direct transmission, as well as its kinetic component
(which does not include a harmonic extension). For precise statements, see [5,
Props. 2.7, 2.8].

3. Uniqueness and reconstruction of c by harmonic inner products

In this section, we demonstrate how to recover c by expressing it in terms of par-
ticular inner products between wave fields and harmonic functions — inner products
that can be computed by scattering control. The idea originates with Belishev and
Blagovestchenskii [2] in the context of boundary control, and a similar idea was re-
cently taken up by de Hoop, Kepley, and Oksanen and realized computationally [9].
Here, the use of Cauchy data considerably simplifies the reconstruction formulas.
We will restrict ourselves to piecewise smooth c, in order to analyze the behavior
of wave fields near their wave fronts with microlocal machinery, but we expect the
method is applicable to any c satisfying unique continuation.

We begin by introducing broken geodesic normal coordinates, the natural ana-
logue of geodesic normal coordinates for piecewise smooth metrics, in Section 3.1.
Section 3.2 follows with the main theorem on recovering wave speeds with har-
monic inner products. Due to the possibility of coordinate breakdown, we may not
be able to recover c everywhere in one pass, but prove in Section 3.3 with a layer
stripping-type argument that c can be recovered on all of Ω nonetheless.
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RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1219

3.1. Broken geodesic normal coordinates. Assume Ω ⊂ Rn is an open domain
whose closure is an embedded submanifold with boundary in Rn. Let c(x) be a
piecewise smooth and lower semicontinuous function on Rn, bounded above and
away from zero, and singular only on a set of disjoint, closed, connected, smooth
hypersurfaces Γi of Ω, called interfaces. Let Γ =

⋃
Γi, and let {Ωj} be the con-

nected components of Rn \Γ. Assume each smooth piece c
∣∣
Ωj

extends to a smooth
function cj on Rn.

The distance d(X,Y ) between sets X,Y ⊂ Ω is the infimal length of absolutely
continuous paths γ between points in X and Y :

(3.1) d(X,Y ) = inf

{∫
c(γ(s))−2 |γ′(s)| ds

∣∣∣∣γ ∈ AC(Ω), γ(0) ∈ X, γ(1) ∈ Y

}
.

The Arzelà–Ascoli theorem implies that the infimum in (3.1) is always attained for
closed, nonempty X,Y . Under some regularity conditions, we can now identify an
interior point x with the closest boundary point p(x) and the distance T (x) between
them.

Definition. The curve γ ∈ AC(Ω) is demi-tangent to Γ at γ(s) if at least one of
the one-sided derivatives of γ exists at s and belongs to TΓ.

We call x ∈ Ω\Γ almost regular with respect to (Ω, c) if the infimum in d(x, ∂Ω) =
d({x}, ∂Ω) is achieved by a unique path γx, and this path is nowhere demi-tangent
to Γ ∪ ∂Ω.

Let p(x) = γx(1) be the closest boundary point to x, and let T (x) = d(x, ∂Ω).
The pair (p(x), T (x)) are the broken geodesic normal coordinates for x.

The following lemma explains why (p(x), T (x)) are called broken geodesic normal
coordinates.

Lemma 3.1. For every almost regular x, the minimal path γx is a purely trans-
mitted (broken) geodesic intersecting ∂Ω normally.

The proofs of this lemma and the others in this section are deferred to Section 3.4.
For completeness, we recall the definition of broken geodesics.

Definition. A (unit-speed) broken geodesic in (Ω, c) is a continuous, piecewise
smooth path γ : R ⊃ I → M that is a unit-speed geodesic with respect to g =
c−2dx2 on Ω \ Γ, and intersects the interfaces Γ at a discrete set of points ti ∈ I.
Furthermore, at each ti the intersection is transversal and Snell’s Law is satisfied;
that is, γ′(t−i )−γ′(t+i ) is normal to Γ. We will usually drop “unit speed” for brevity.

A transmitted (broken) geodesic in a unit-speed broken geodesic experiencing
only refractions; that is, the inner products of γ′(t−i ) and γ′(t+i ) with a normal to
Γ have identical signs at each ti.

For every (x, v) ∈ SΩ there is a maximal transmitted broken geodesic γx,v with
γ′
x,v(0) = (x, v). Hence the broken exponential map

(3.2) exp∂Ω(p, T ) = γp,ν(p)(T )

is a left inverse for x �→ (p(x), T (x)); here ν(p) is the inward unit normal to ∂Ω at
p.

In the case of smooth c, boundary normal coordinates parametrize Ω on the
complement of its cut locus. A similar result is true for broken geodesic normal
coordinates as shown below.
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c0 c � c0

∂Ω

Ω \ Ωrx

p

Figure 3.1. Failure of total regularity. Here c is piecewise con-
stant, equal to c0 except on an open domain D where c � c0
(dashed). The minimal-length path from the boundary to any
point x in the shaded region contains a nontrivial portion of ∂D.

Definition. Let x ∈ Ω be almost regular. Then x is regular if d exp∂Ω is bijective
at (p(x), T (x)); otherwise, it is a focal point. Let Ωr be the set of regular x.

Lemma 3.2. Ωr is open; the broken geodesic normal coordinate map x �→ (p(x),
T (x)) is a diffeomorphism between Ωr and its image.

The significance of regular points are that these are the points where c can be
directly reconstructed, leading to the following property.

Definition. (Ω, c) is totally regular if almost every x ∈ Ω is regular.

Unlike the case for smooth c, many reasonable choices of (Ω, c) are not totally
regular. As Figure 3.1 illustrates, broken geodesic normal coordinates can fail to
cover all of Ω. In this example a single p is the closest boundary point to every
point in an open subset of Ω. On the metric side, this occurs when minimal length
paths travel along interfaces, a case we specifically excluded earlier. Conversely, if
the interfaces are all strictly convex (viewed from the inside), paths along interfaces
are never minimal, and in fact, (Ω, c) must be totally regular.

Lemma 3.3. If Ω is compact and the interfaces Γi are strictly convex, as viewed
from their interiors, then (Ω, c) is totally regular.

3.2. Wave speed recovery. In the boundary control method, the Blagovestchen-
skii identity allows the computation of inner products between wave fields generated
by boundary controls, given only the Neumann-to-Dirichlet map. A similar identity
calculates inner products between a wave field and a harmonic function. Because
wave propagation is a unitary map (energy-conserving), the Blagovestchenskii iden-
tity’s analogue for Cauchy data is simply the usual energy inner product. Finding
inner products with harmonic functions requires only slightly more work and relies
on the fact that the wave equation (1.1) preserves harmonic functions.

Lemma 3.4. For any h0 ∈ C and any harmonic functions f, g,

〈πTRTh0, (f, g)〉 = lim
k→∞

[〈
hk, (f − Tg, g)

〉
−
〈
π�R2Thk, (f + Tg, g)

〉]
.(3.3)

If the scattering control series converges, hk can be replaced above by h∞ and the
limit omitted.

Proof. We begin with the observation that f(x) + tg(x) is a solution of the wave
equation (1.1) for any c whenever f, g are harmonic. Defining hk as before, recall
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RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1221

∂Ω

∂ΘT

∂Θh0

p

x(p, T )

Figure 3.2. Shrinking the support of the initial data h0 to a point.
The dashed line indicates the normal geodesic from that point; the
support of the almost direct transmission shrinks to a point on the
geodesic.

from Theorem 2.2 that

(3.4) lim
k→∞

πR2Thk = RTπTRTh0.

As a result, it is possible to compute inner products of πTRTh0, for arbitrary h0,
with arbitrary harmonic Cauchy data (f, g). Namely,

(3.5)

〈πTRTh0, (f, g)〉 = 〈RTπTRTh0, (f + Tg, g)〉
= lim

k→∞
〈πR2Thk, (f + Tg, g)〉

= lim
k→∞

[〈R2Thk, (f + Tg, g)〉 − 〈π�R2Thk, (f + Tg, g)〉] .

The second term is already computable from outside data. For the first term, we
can move the inner product back by time 2T (by unitarity of R−2T with respect to
the energy norm). Since R−2T (f + Tg, g) = (f − Tg, g),

(3.6) 〈πTRTh0, (f, g)〉 = lim
k→∞

[〈hk, (f − Tg, g)〉 − 〈π�R2Thk, (f + Tg, g)〉] .

When the scattering control series converges, the limit in k can be taken inside. �

The appeal of the lemma is that the almost direct transmission πTRTh0 in gen-
eral may be arbitrarily spatially concentrated (aside from harmonic extensions in
the first component). Taking inner products with the harmonic data (0, xi) and
(0, 1), we may now recover weighted averages of xi over this support. As long as
πTRTh0 is not oscillatory, this provides us with approximate Euclidean coordi-
nates for the support, becoming exact in the limit as Θ → Ω. By appropriately
choosing h0 and a sequence of domains Θ(j) tending to Ω, Euclidean coordinates
x(p, T ) can be obtained for any point (p, T ) ∈ Ωr in broken geodesic normal co-
ordinates (Figure 3.2), yielding a coordinate transformation Φ: (p, T ) �→ x(p, T ).
Once this coordinate transformation is known, c can be recovered immediately by
taking a derivative in T .

Theorem A. Let y = (y1, . . . , yn) ∈ Ωr, let p = p(y) ∈ ∂Ω, and let T = d(y, ∂Ω).
Let xi denote the ith Euclidean coordinate function. Choose a nested sequence
of Lipschitz domains Θ(1) ⊃ Θ(2) ⊃ · · · ⊃ Ω such that

⋂
jΘ

(j) = Ω ∪ {p} and
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1222 P. CADAY, M. V. DE HOOP, V. KATSNELSON, AND G. UHLMANN

diamΘ(j) \ Ω → 0. Then

yi = Φi(p, T ) = lim
j→∞

κ(1Θ(j)\Ω, x
i)

κ(1Θ(j)\Ω, 1)
,(3.7)

where κ(g, f) = 〈πTRT (0, πCg), (0, f)〉, and 1X represents the indicator function
of X. Finally,

(3.8) c =

∣∣∣∣∂Φ∂T
∣∣∣∣.

Theorem A solves the inverse problem and provides a reconstruction formula for
c in Euclidean coordinates, since κ can be computed from outside measurements
using the scattering control series (Lemma 3.4). Note that κ and π in the statement
of the theorem depend on Θ(j) implicitly. Uniqueness follows immediately.

Corollary 3.5. Assume that (Ω, c) are such that Ωr is dense in Ω. Then c is
uniquely determined on Ω�

T by R2T

∣∣
Ω� .

Remark. In their work, de Hoop, Kepley, and Oksanen [8,9] use boundary controls
supported on appropriate subsets of the boundary for certain time intervals, analo-
gous to our Θ(j) and Ω. Their boundary controls produce wave caps with supports
similar to that of the almost direct transmission. While no formal link has yet been
established between the two approaches, they are evidently closely related.

Remark. The harmonic function approach is relatively insensitive to the structure
of c, including the locations of interfaces, if any. After recovering c, the Euclidean
coordinates of the interfaces can be found by directly examining the reconstructed
c.

We start by stating an unsurprising but useful result about the behavior of
solutions near the boundary of their domain of influence. As we do not know of a
proof of it in the literature (for piecewise smooth c), we prove it here.

Proposition 3.6. Let (p, T ) ∈ Ωr, and let v ∈ C∞
c (Υ), v(p) = 1. Then there exists

a neighborhood of (p, T ) on which

(3.9) RT (0,1Ω�
j
v)(q, s) = a0(q)H(s− T ) + a1(q)(s− T )+

for some nonzero C∞ function a0 and a bounded function a1.

Essentially, a0 is the principal symbol of the purely transmitted graph FIO compo-
nent of RT .

Proof. To prove the result, we consider the initial data h0 = (0,1Ω�
j
v) as a conormal

distribution on ∂Ω, apply the FIO composition calculus, and then recover the pro-
gressive wave expansion (3.9) from the symbol of the resulting (polyhomogeneous)
conormal distribution. As an alternative route, it may be possible to use Wein-
stein’s principal symbols for arbitrary distributions [33] to allow for more general
initial data.

As in Section 4.3, Cauchy data h0 splits into forward- and backward-moving
components g± = ± i

2B
−11ΘJ

, and RTh0 = R+
T g+ + R−

T g− for half-wave so-

lution operators R±
T which are order-0 FIOs away from glancing. Conjugating

(∂t + iB)R+
T g+ = 0, we have R−

T g− = R+
T g+, and hence RTh0 ≡ 2ReR+

T g+. As in

the proof of Theorem 5.1, the assumption (p, T ) ∈ Ωr will imply R+
T g+ ≡ DT+

T g+
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RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1223

in a neighborhood of x = exp∂Ω(p, T ), where DT+
T is the directly transmitted graph

FIO component of R+
T , defined as in (4.15).

Let Z = R0 be a one-point space, and define a Fourier integral operator u ∈
I(Z → Υ) by u(a) = ag+. Then R+

T ◦ u is well-defined as a Fourier integral
operator (distribution). In broken boundary normal coordinates (relative to ∂Ω)
the initial wavefront set is WFu = {(p, 0; 0, σ) | p ∈ ∂Ω ∩ supp v}. The canonical
relation of DT+

T , given by the purely transmitted geodesic flow, acts as translation
by (0, T ) on the downward (σ > 0) covectors in WFu, mapping them into the
conormal bundle of ΩT . The images of the upward covectors in WFu are distinct
from x, so by compactness and continuity of the flow they are bounded away from
x; similarly for the images of WFu under the remaining graph FIO components
of R+

T . Hence RTh0 = 2ReR+
T g+ ≡ u on a neighborhood of x for some conormal

distribution u ∈ I0(Υ, ∂ΩT ). Note that Lemma 3.2 implies that ∂ΩT is smooth
near x.

Applying [15, Theorem 18.2.8], write

(3.10) u(q, s+ T ) =

∫
e−isσa(q, σ) dσ,

for some symbol a ∈ S−1. Since h0 has a homogeneous symbol as a conormal
distribution, a is polyhomogeneous, allowing us to write

(3.11) a = a0(q)σ
−1 + a1(q, σ)σ

−2,

where a1 is bounded in σ and a0 is given by the (nonzero) principal symbol of
DT+

T . Hence

(3.12) u(q, s) = a0(q)H(s− T )− 1

2
a0(q) +A1(q, s− T ),

with A1 ∈ H1(R;C∞(∂ΩT )) ⊂ C0(R;C∞(∂ΩT )). By finite speed of propagation
(RTh0)(q, s) = 0 for s > T , implying (3.9). �

With Proposition 3.6 proved, the proof of Theorem A is straightforward.

Proof of Theorem A. Choose a bump function v ∈ C∞
c (Υ) equal to 1 at p. For

all sufficiently large j, the assumption diamΘ(j) \ Ω → 0 implies v1Ω� = 1Θ(j)\Ω
outside Θ(j), so by finite speed of propagation they lead to identical almost direct
transmissions: πTRT (0, v1Ω�) = πTRT (0,1Θ(j)\Ω). Hence, by Proposition 3.6,

RT (0,1Θ(j)\Ω) is everywhere positive or everywhere negative on the intersection of
Ω�

T with some neighborhood U of y.

Next, we show diamΘ
(j)
T \ ΩT → 0. Let y′ = (p′, s′), y′′ = (p′′, s′′) ∈ Θ

(j)
T \ ΩT ,

and let εj = diamΘ(j) \Ω. Since ∂Ω\Bεj (p) ⊂ ∂Θ(j) we are assured |p′−p′′| < 2εj .

Next, for all δ > 0 there is a piecewise C1 curve γ of length s+δ connecting y′ to ∂Ω,
and d(∂Ω, ∂Θ(j)) < εj . Hence T > d(y′, ∂Θ(j)) > s+δ+εj , implying s ∈ (T−εj , T ).
Hence |s′ − s′′| < 2εj , and we can conclude diamΘ

(j)
T \ ΩT < Cεj → 0 for some

constant C.
In particular, Θ

(j)
T \ ΩT , which contains the support of the second component of

πTRT (0,1Θ(j)\Ω), lies in U ∩ Ω�
T for large enough j. For such j,

(3.13) inf
Θ

(j)
T \ΩT

xi ≤
κ(1Θ(j)\Ω, x

i)

κ(1Θ(j)\Ω, 1)
≤ sup
Θ

(j)
T \ΩT

xi.
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Note that κ is finite, by compactness of Θ
(j)
T \ ΩT and the boundedness of

RT (0,1Θ(j)\Ω). As diamΘ
(j)
T \ ΩT → 0, the infimum and supremum above tend

to the Euclidean coordinate yi, completing the proof. �
3.3. Uniqueness and layer stripping. In this section, we combine Theorem A
with a layer-stripping argument to prove uniqueness for all piecewise smooth c with
conormal singularities, even when (Ω, c) is not totally regular.

Theorem B. c is uniquely determined by F .

The idea is as follows. With Theorem A we may not always be able to reconstruct
c everywhere, but we can always do so in a neighborhood of the boundary, where
broken geodesic normal coordinates exist. We may then shrink the boundary in-
ward, into the region where c is now known, and by choosing the new boundary ∂Ω̃
suitably, reveal more regular points where we may reconstruct c with Theorem A.
By repeating this process, we can show that c can be reconstructed everywhere.

Proof. For the proof, we choose a point x on the boundary of the domain where c
is known, and pick a new boundary ∂Ω̃ constructed to have a unique point closest
to x, as well as to all points on a geodesic segment containing x. By Theorem A, c
can then be reconstructed on this segment.

Suppose c, c′ are two piecewise smooth functions, bounded and bounded away
from zero, equal outside Ω with singular supports Γ, Γ′ that are disjoint unions
of smooth hypersurfaces. Let F , F ′ be the corresponding outside measurement
operators.

Assume F = F ′, and let O = {c(x) �= c′(x)} \ (Γ ∪ Γ′), which is open in Ω.
We would like to show that O is empty. Suppose the contrary and choose some
x ∈ ∂O. Choose a covector ξ that points out of O and is not tangent to Γ (if
x ∈ Γ). Let γ be the geodesic emanating from (x, ξ), and choose ε > 0 such that
γ|[−ε,ε] does not intersect Γ except possibly at x. Set y = γ(−ε) and z = γ(ε), and
let P = B2ε(y) � z.

Now, choose a Lipschitz subdomain Ω̃ ⊃ P ∪ O intersecting ∂P only at z. By
construction, γ is the unique distance-minimizing path from y to ∂Ω̃, and it is
smooth and transversal to Γ. It follows immediately that γ is also the only distance-
minimizing path from γ(s) to ∂Ω̃ for s ∈ (−ε, ε). Finally, Lemma 3.8 implies that
there are no focal points on γ|(−ε,ε), so every point in γ((−ε, ε)) is regular. The same
argument holds for c′; so, shrinking ε if necessary, the points in γ((−ε, ε)) \ (Γ∪Γ′)

are regular with respect to both (Ω̃, c) and (Ω̃, c′).

By Lemma 3.7, the outside measurement operators F̃ , F̃ ′ for c, c′ are identical.
Applying Theorem A, we find c = c′ on γ((−ε, ε)), a contradiction. �

In the proof of Theorem B, we used the fact that the outside measurement
operator for a smaller domain Ω̃ ⊂ Ω can be found from F if we know the wave
speed between ∂Ω̃ and Ω. The following lemma provides the details.

Lemma 3.7. Let Ω̃ ⊂ Ω, and let F̃ , F be the corresponding outside measurement
operators. Then F̃ is uniquely determined by F and c

∣∣
Rn\Ω̃.

In the boundary control setting, de Hoop, Kepley, and Oksanen consider the
process of finding (an analogue of) F̃ in much more detail, using the Neumann-
to-Dirichlet map in place of the outside measurement operator F [10]. They also
consider the problem’s stability and give a concrete reconstruction procedure.
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RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1225

Proof. The proof is a standard application of unique continuation. Choose T >
dg(∂Ω, ∂Ω̃), and consider the map

(3.14)
GT : (H1

0 (Ω
�)⊕ L2(Ω�))2 → H1

0 (Ω̃
�)⊕ L2(Ω̃�)

(h+, h−) �→ RTh+

∣∣
Ω̃� +R−Th−

∣∣
Ω̃� .

As usual, Ω� = Rn \ Ω, and similarly for Ω̃�. We would like to show approximate
controllability; that is, the image of GT is dense in the codomain, or equivalently,
kerG∗

T = 0. For any h and h+, h−, by the unitarity of RT ,

(3.15)

〈GT (h+, h−), h〉Ω̃� = 〈RTh+, h〉Rn + 〈R−Th−, h〉Rn

= 〈h+, R−Th〉Rn + 〈h−, RTh〉Rn

= 〈h+, π
�R−Th〉Ω� + 〈h−, π

�RTh〉Ω� ,

where ‖·‖X is the energy inner product on H1
0 (X)⊕L2(X). It follows that G∗

Th =
(π�R−Th, π

�RTh).
Suppose now that h ∈ kerG∗

T , and consider the wavefield Fh produced by h.
Since Fh(T, ·) and Fh(−T, ·) are harmonic on Ω�, we conclude that ∂2

t Fh(±T, ·)
∣∣
Ω� =

0. By finite speed of propagation and unique continuation, ∂2
t Fh(0, ·) = 0 on the

set Ω�
T = {x ∈ Ω | d(x, ∂Ω) < T} ⊃ Ω̃ [5, Lemma 2.9]. In particular, h = Fh(0, ·)

is harmonic on Ω̃�, but since h ∈ H1
0 , this forces h = 0. This proves injectivity of

G∗
T , and hence approximate controllability of GT .

Now consider an arbitrary h ∈ H1
0 (Ω̃

�)⊕ L2(Ω̃�); we must show F̃h = Fh|Ω̃� is
determined by Fh = Fh|Ω� and c|Ω̃� . Accordingly, let c′ be another wave speed sat-
isfying the conditions required of c; assume that its outside measurement operator
F ′ is identical to F , and that c = c′ on Ω̃�.

Choose a sequence hi = GT (hi,+, hi,−) → h; let ui(t, x) = Fhi,+(t + T, x) +
Fhi,+(t − T, x) be the associated wavefields with respect to c and define u′

i, the
wavefields with respect to c′, similarly. By continuity ui → Fh, u′

i → F ′h. The

difference vi = ui−u′
i is a c-wave equation solution outside of Ω̃ and is zero outside

Ω since F = F ′. Hence, by unique continuation, vi = 0 outside Ω̃, and that implies
Fh = F ′h outside Ω̃. �
3.4. Geometric proofs. We conclude by proving several lemmas on broken geo-
desic normal coordinates from Section 3.1.

Proof of Lemma 3.1. To start, split γx into pieces γi, each contained in a single
domain Ωj(i). Let 0 = a0 < a1 < · · · < ar−1 < ar = 1, where {a1, . . . , ar−1} =

γ−1
x (Γ). Write γi = γ

∣∣
[ai−1,ai], and let Ωji be the subdomain containing γi.

First, we show that γx is a broken geodesic. Each γi must be a geodesic for
(Ωj(i), c

−2
j(i)dx

2), and in particular C1, for otherwise γ could be shortened by re-
placing γi with a distance-minimizing geodesic between γi’s endpoints. Snell’s Law
holds at the interfaces as a direct consequence of the first variation formula for
geodesics [21, Proposition 6.5].

Next, if there is a reflection (j(i) = j(i+ 1)), then γi ∪ γi+1 is not the minimal-
length path from ai−1 to ai+1 as the corner can be “rounded”; see [21, Theorem
6.6]. Hence γx contains only refractions. Finally, γ′

x(1) = γ′
r(1) must be normal to

∂Ω, again by the first variation formula for geodesics. �
Proof of Lemma 3.2. By definition, exp∂Ω is an injective local diffeomorphism on
the interior of exp−1

∂Ω(Ωr), so it suffices to prove Ωr is open.
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Suppose now Ω \ Ωr ⊃ {xj} → x ∈ Ω, and choose minimal-length paths

γj : [0, 1] → Ω from each xj to ∂Ω. Using Arzelà–Ascoli, we may assume, by
taking a subsequence, that γj → γ uniformly. Letting l(η) =

∫
c(η(s))−2|η′(s)| ds

be the length of η ∈ AC(Ω), define pj = γi(1) ∈ ∂Ω, Tj = �(γi), and similarly
p = γ(1), T = �(γ).

There are four cases, depending on how the xj are irregular:

• Infinitely many xj ∈ Γ: Then x ∈ Γ, by closedness of Γ.
• For infinitely many j there exist distinct minimal-length paths γ̃j �= γj from
xj to ∂Ω: As before, using Arzelà–Ascoli and passing to a subsequence, γ̃j
converges to some minimal-length path γ̃ from x to ∂Ω. If the minimal
paths γ, γ̃ are distinct, then x is irregular.

Otherwise, let pj = γi(1) ∈ ∂Ω, let Tj = �(γi), and similarly define p̃j , T̃j .

The fact that lim(pj , Tj) = lim(p̃j , T̃j) and exp∂Ω(pj , Tj) = exp∂Ω(p̃j , T̃j)

while (pj , Tj) �= (p̃j , T̃j) implies that d exp∂Ω is singular at lim(pj , Tj).
Hence x is irregular.

• Infinitely many γj are demi-tangent to Γ∪∂Ω: First, assume infinitely many
left-hand side derivatives γ′− are tangent to Γ. Passing to a subsequence,
assume this is true for all γj . Let sj = inf{s |γ′−

j (s) ∈ TΓ}; by compactness

the s∗j have a limit point s∗ ∈ (0, 1]. Again passing to a subsequence, we
may assume s∗j → s∗, and γ′(s∗j ) converges to some ν ∈ TΓ. The proof
of Lemma 3.1 implies that each γj is a normal transmitted geodesic on
[0, s∗j ], and so by the geodesic equation is C2-bounded on Ω\Γ, the bounds
depending on the C1(Ω\Γ) norm of c in some neighborhood of γ([0, s∗])\Γ.

Consider γ(s∗−ε) for ε > 0. If γ(s∗−ε) is outside Γ, then so is γj(s
∗
j −ε)

for sufficiently large j. Write γj(s
∗
j − ε) = γj(s

∗
j ) − εγ′

j(s
∗
j ) + ε2Rj(ε).

Since γj is a geodesic near s∗j − ε, the remarks above imply that Rj(ε) is
smooth and uniformly bounded in j. Taking limits, we have γ(s∗ − ε) =
γ(s∗)− εν + O(ε2), with a locally bounded remainder term. If γ−1(Ω \ Γ)
is dense in a neighborhood of s∗, this implies that γ′(s∗) exists and equals
ν ∈ TΓ. If not, then by continuity γ ∈ Γ near s∗; hence γ′ exists and lies
in TΓ for some s near s∗. Either way, x is irregular.3

Finally, if infinitely many right-hand side derivatives γ′+ are tangent
to Γ, a similar argument applies, flipping signs and replacing sj by the
supremum sup{s | γ′+

j (s) ∈ TΓ}.
• Lastly, if d exp∂Ω(p(xj), T (xj)) is singular for infinitely many j, the same
is true at p(x), T (x) by continuity.

It is clear that Ωr is open in Rn, not just in Ω, since boundary normal coordinates
are always smooth and well-defined in a sufficiently small neighborhood of ∂Ω, and
therefore none of the conditions for regularity can fail near ∂Ω. �

Proof of Lemma 3.3. Let x ∈ Ω, and let γx ∈ AC(Ω) be a minimal-length path
from x to ∂Ω.

Suppose first that γ intersects Γ at infinitely many points. Then, by continuity,
γ−1(Γ) contains some closed interval [a, b]. However, by strict convexity the minimal

3The argument here covers the possibility of interfaces that are smooth but extremely
oscillatory.
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length path from γ(a) to γ(b) cannot be contained in any intersection ρ−1(γ(a)), a
contradiction.

Therefore, γ must intersect Γ at only finitely many points, and between these
intersections it must be a geodesic, just as in Lemma 3.1. By strict convexity, γ
may intersect Γ tangentially at most once. If it does so, say in component Γi, then
γ does not enter the domain Ωi bounded by Γi.

Our goal now is to show that among the set of boundary normal transmitted
geodesics (those issued form N∗∂Ω), almost none glance from Γ. Let N ⊂ T ∗Ω,
the set of normal geodesic covectors, be the flowout of N∗∂Ω by Φ. Similarly, let
G ⊂ T ∗Ω, the set of eventually glancing covectors, be the flowout of T ∗Γ by the
continuous extension of Φ.

We now show that N \ G is dense in N by checking Ty,ηN �⊂ Ty,ηG at any
intersection (y, η) ∈ T ∗(Ω \Γ). The idea is that every glancing normal transmitted
geodesic can be perturbed downward to a nonglancing normal geodesic. Let γ be
the (normal) transmitted geodesic through (y, η), and let {z} = γ∩Γ; say z = Φt(y),
for some t ∈ R.

If ν is the inward pointing normal to the component ∂Ωi = Γi of Γ at z, consider
the points zε = z + εν. For each zε there is a ζε such that (zε, ζε) ∈ N . Hence α =
dΦt(ν, dζε/dε

∣∣
ε=0

) ∈ Ty,ηN . However, α cannot belong to TG, for if it did, we would
have a perturbation (z′ε, ζ

′
ε) = (zε, ζε) + O(ε2) such that each of the transmitted

bicharacteristics γ′
ε through (z′ε, ζ

′
ε) glance from Γ. But for small enough ε, this

is impossible: γ′
ε cannot glance from interfaces outside Ωi, because γ does not; it

cannot glance from Γi by convexity, because it intersects Ωi; and it cannot intersect
interfaces inside Ωi, because they are a finite distance from z.

Therefore, a dense subset of points x ∈ Ω have minimal paths to the boundary
not glancing from Γ. Next, we ensure that not too many of these are focal points
or have multiple minimal paths.

For this, suppose that γ is a minimal-length admissible path from x ∈ Ω to ∂Ω,
with γ(0) = x and γ(1) ∈ ∂Ω. Then we can check that all of γ((0, 1)) is almost
regular. For suppose some γ(s), s ∈ (0, 1), had another minimal admissible path
to ∂Ω besides γ, say η. Then the union η0 = γ|[0,s] ∪ η would also be minimal-
length, and therefore must be a purely transmitted geodesic, recalling the proof of
Lemma 3.1. But this is impossible, for if γ(s) /∈ Γ, then η0 has a corner at γ(s),
while if γ(s) ∈ Γ, then η0 cannot satisfy Snell’s Law at γ(s). In particular, x is
the limit of a sequence of almost regular points, namely lims→0 γ(s). Finally, by
Lemma 3.8, broken normal geodesics do not minimize distance to the boundary
past a focal point, so in fact γ((0, 1)) ⊂ Ωr, completing the proof. �

Lemma 3.8. Let γ(s) = exp∂Ω(p, s) be a broken normal geodesic, where p ∈ ∂Ω.
If γ(s0) is a focal point and γ(s0) /∈ Γ, then γ does not minimize beyond s0. That
is, γ(s′) < s′ for s′ > s0.

Proof. The lemma will be proved by reducing to the smooth case, where the result
is well known, e.g., [19, §1.12 and (2.5.15)]. When c is smooth, focal points are
discrete along normal geodesics, which follows from the symplectic property of the
geodesic flow as well as a twist condition (see [25, prop. 2.11]). Since the broken
geodesic flow for fixed time parameter is also described by a canonical graph, and
satisfies the same twist condition, essentially the same proof shows that focal points
are also discrete along broken normal geodesics.

Licensed to Rice Univ. Prepared on Mon Mar 15 16:02:22 EDT 2021 for download from IP 168.7.246.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1228 P. CADAY, M. V. DE HOOP, V. KATSNELSON, AND G. UHLMANN

Then choose an interval [s1, s2] � s0 on which γ(s0) is the sole focal point and
such that γ

∣∣
[s1,s2]

does not intersect Γ. Let Ωs1 = {x ∈ Ω | d(x, ∂Ω) ≥ s1}; since
γ(s1) is not a focal point, ∂Ωs1 is a smooth hypersurface near γ(s1). Now γ

∣∣
[s1,s2]

is a normal geodesic having a focal point at γ(s0), with respect to ∂Ωs1 . The result
for the smooth case implies γ is not minimizing (w.r.t. ∂Ωs1) past s0. That is,
d(∂Ωs1 , γ(s)) < s − s1 for s ∈ (s0, s2]. Because d(x, ∂Ω) = s1 for every point
x ∈ ∂Ωs1 , this implies d(∂Ω, γ(s)) < s for s ∈ (s0, s2]. It follows immediately that
d(∂Ω, γ(s)) < s for all s > s0, completing the proof. �

4. Asymptotic analysis

In this section and the next, we prove a complementary result on locating the
discontinuities in c in boundary normal coordinates. In geophysics, this is akin
to a time migration, with multiple scattering completely suppressed. Our basic
procedure involves sending a wave packet into Ω and tracking its energy as it
proceeds; at each discontinuity in c energy will be lost to the reflected wave, which
we can measure with scattering control. As before, we restrict our attention to the
wave equation (1.1); however, the argument is expected to generalize to arbitrary
scalar wave equations.

In preparation, we begin in Sections 4.1 and 4.2 by studying how the energy of a
wave packet is transformed by a graph FIO. Wave packets and wave packet frames
have a long history in microlocal analysis, starting with Córdoba–Fefferman [7]; see
for example [6, 11, 13, 27–29]. Our rather loose definition is inspired by Smith [27].
As further preparation, we then recall in Section 4.3 the well-known decomposition
of the wave equation parametrix into components involving reflections and refrac-
tions, when the wave speed is discontinuous. We conclude in Section 5 with the
main result.

4.1. Wave packets and propagation of singularities. Let ϕ be a Schwartz
function (the standard wave packet) satisfying

• supp ϕ̂ ⊂ {1 < ξ1};
• supp ϕ̂ compact;
• ‖ϕ‖L2 = 1.

We then introduce parabolic dilates of ϕ, given by a scale factor λ:

(4.1) ϕλ = λ(n+1)/4ϕ(λx1,
√
λx2, . . . ,

√
λxn).

The leading power of λ ensures that ‖ϕλ‖L2 = 1. Finally, we introduce translations
and rotations as follows. For (x, ξ) ∈ S∗Rn, let ϕλ,x,ξ = ϕλ ◦Mx,ξ, where Mx,ξ is
a rigid motion such that dM∗

x,ξ(0, e1) = (x, ξ), where e1 = (1, 0, . . . , 0). The result

ϕλ,x,ξ is a wave packet of frequency λ centered at (x, ξ). For brevity, we accumulate
the indices into a single index μ = (λ, x, ξ).

Next, we describe the frequency and spatial concentration of ϕμ. Define Ξμ =
cone(supp ϕ̂μ) ⊂ Rn, where cone(Y ) =

⋃
a∈R+aY is the smallest conic set contain-

ing Y . On the spatial side, choose neighborhoods Uλ � 0 satisfying as λ → ∞
• diamUλ → 0;
•
∫
Uλ

|ϕλ|2 dx → 1.

Such Uλ exist, since by (4.1) ϕλ becomes increasingly concentrated near the origin
as λ → ∞; we may take Uλ = Br(λ)(0) with radius r(λ) ∼ λ−1/2+ε, for instance.

Licensed to Rice Univ. Prepared on Mon Mar 15 16:02:22 EDT 2021 for download from IP 168.7.246.107.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECONSTRUCTION OF PIECEWISE SMOOTH WAVE SPEEDS 1229

Next, define slightly larger sets U ′
λ satisfying the same conditions, with Uλ ⊂ U ′

λ.

Set Uλ,x,ξ = M−1
x,ξ (Uλ,0,e1), and similarly for U ′

λ,x,ξ, and choose cutoffs ρμ satisfying

ρμ(x) =

{
1, x ∈ Uμ,

0, x /∈ U ′
μ.

(4.2)

This completes the construction. Intuitively speaking, a graph FIO maps wave
packets to wave packets, preserving microlocal concentration [27, 28]. Here, we
only need the fact that an FIO preserves a wave packet’s spatial concentration, as
expressed in the following lemma.

Lemma 4.1. Let T be a graph FIO of order zero with associated symplectomor-
phism χ. Let (x0, ξ0) ∈ S∗Θ, and let (y0, η0) = χ(x0, ξ0). Then for any neighbor-
hood V � y0,

(4.3) ‖Tρλ,x0,ξ0ϕλ,x0,ξ0‖L2(Rn\V ) → 0 as λ → ∞.

Proof. We start by cutting off T near (x0, ξ0) and away from y. Choose a smooth
cutoff σy supported in V and equal to 1 on a smaller neighborhood V ′ � y0. Let

W = χ−1(V ′ × Rn), and pick W ′ with (x0, ξ0) ∈ W ′ ⊂ W ′ ⊂ W . Let α(x, ξ)
be a smooth conic cutoff supported in W and equal to one on W ′, and let σxu =
(2π)−n

∫
eix·ξα(x, ξ)û(ξ) dξ be the associated pseudodifferential cutoff.

For the lemma, it suffices to show ‖(1 − σy)Tρμϕμ‖ → 0. Actually, since |(1 −
ρμ)ϕμ| → 0 as λ → ∞, by L2 boundedness of T it is enough to show that ‖(1 −
σy)Tϕμ‖ → 0. For this we split (1− σy)T :

(1− σy)T = K + L, K = (1− σy)Tσx, L = (1− σy)T (1− σx).(4.4)

By definition, Lϕμ = 0, since [1−α(x, ξ)]ϕ̂μ(ξ) is identically zero. By construction,
K is smoothing, since its amplitude is zero on the graph of χ. In particular, K is
continuous from H−s → L2 for any s, so

(4.5)

‖Kϕμ‖2L2 � ‖ϕμ‖2H−s

=
1

(2π)n

∫
〈ξ〉−2s|ϕ̂μ(ξ)|2 dξ

≤ 〈λ〉−2s 1

(2π)n

∫
|ϕ̂μ(ξ)|2 dξ

� λ−2s,

using the fact that |ξ| > λ/2 on supp ϕ̂μ. This completes the proof. �

4.2. Recovery of principal symbols. With the framework laid in the previous
subsection, we now show that a graph FIO scales the L2 norm of a wave packet by
the principal symbol, to leading order.

Proposition 4.2. Let T be a graph FIO of order zero with associated symplec-
tomorphism χ, with principal symbol p. Let (x0, ξ0) ∈ S∗Θ, and let (y0, η0) =
χ(x0, ξ0). Then for any neighborhood V of (y0, η0),

(4.6) ‖Tρλ,x,ξϕλ,x,ξ‖2L2(V ) → |p(x0, ξ0)|2 as λ → ∞.
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Proof. Let p0 = p(x0, ξ0), μ = μ(λ) = (λ, x0, ξ0). Since (1−ρμ)ϕμ → 0 and because
of Lemma 4.1, it suffices to prove that this limit holds with a norm on all of Rn,
that is,

(4.7) ‖Tϕμ‖2L2(Rn) → |p0|2.

Given ε > 0, there exists a λ0 such that for all λ ≥ λ0,

(4.8) q = |p0|2 − ε < |p(x, ξ)|2 < |p0|2 + ε = q for x ∈ Uλ,x0,ξ0 , ξ ∈ Ξλ,x0,ξ0 .

Fix λ1 > λ0, and choose a smooth conic cutoff α(x, ξ) supported in Uλ0,x0,ξ0 ×
Ξλ0,x0,ξ0 and equal to 1 on Uλ1,x0,ξ0×Ξλ1,x0,ξ0 . Let σu = (2π)−n

∫
eix·ξα(x, ξ)û(ξ) dξ

be the associated pseudodifferential cutoff.
Assuming from now on λ > λ1, we note (Id−σ)ϕμ = 0. Letting Q = T ∗T ∈ Ψ0,

‖Tϕμ‖2L2 = 〈ϕμ, Qϕμ〉 = 〈ϕμ, Qσϕμ〉.(4.9)

Applying the sharp G̊arding inequality to (Q− qI)σ and (qI −Q)σ,

〈ϕμ, Qσϕμ〉 ≥ q‖ϕμ‖2L2 + 〈ϕμ,Kϕμ〉,(4.10)

〈ϕμ, Qσϕμ〉 ≤ q‖ϕμ‖2L2 + 〈ϕμ,Kϕμ〉,(4.11)

for smoothing operatorsK, K. Arguing as in the proof of Lemma 4.1, Kϕμ,Kϕμ →
0 as λ → ∞. Hence

(4.12) |p0|2 − ε < lim
λ→∞

‖Tϕμ‖2L2 < |p0|2 + ε,

assuming the limit exists. Since ε was arbitrary, we conclude limλ→∞‖Tϕμ‖2L2 =

|p0|2. �

4.3. Directly transmitted constituent of the parametrix. For T > 0, let
RT be the solution operator for the wave equation (1.1) on Rn with wave speed
c. As is well known, RT is (away from glancing rays) the sum of graph FIOs
associated with sequences of reflections and refractions. The first step is a microlocal
diagonalization.

Let B ∈ Ψ1(Rn \ Γ) be a pseudodifferential square root of the elliptic spatial
operator −c2Δ; choose a parametrix B−1 ∈ Ψ−1(Rn \ Γ). Away from Γ,

(4.13) ∂2
t − c2Δ ≡ (∂t − iB)(∂t + iB).

The factors ∂t + iB, ∂t − iB are responsible for propagating singularities (x, ξ) in
the initial data forward and backward along bicharacteristics, respectively. If u±
are solutions to (∂t ± iB)u± ≡ 0, then u = u+ + u− solves (∂2

t − c2Δ)u ≡ 0.
If g± = u±(0, ·), then u has Cauchy data (h0, h1) = (g+ + g−, iBg+ − iBg−).
Conversely, given h = (h0, h1) and solving for g+, g−,

(4.14)

[
g−
g+

]
≡ 1

2

[
I iB−1

I −iB−1

] [
h0

h1

]
.

Let Λ: (g+, g−) �→ (h0, h1). Then R = Λ
[
R+

R−

]
Λ−1 for operators R+ and R−

which are order-0 FIOs away from glancing.
Given y ∈ Ωr, let T = d(y, ∂Ω) and suppose γy intersects Γ exactly k times.

Define dt+(y) to be the principal symbol of the directly transmitted component
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DT+
k of R+ at (p(y), ν), where ν is the inward-pointing normal covector at p. More

precisely, in the notation of [5, Appendix A],

(4.15) DT+
k =

{
rTJC�S, k = 0,

rTJ∂�SιMT(J∂�∂ιMT)
k−1JC�∂ , k > 0.

It can be shown that

(4.16) |dt+(y)| =
k∏

i=1

2
√
cotαi cotβi

cotαi + cotβi
,

where αi, βi are the angles between γ′ and the normal to Γ at the ith intersection
of γ with Γ.

5. Interface recovery

We are now ready to apply the results of the previous sections and demonstrate
how the discontinuities of c can be located in boundary normal coordinates using
outside measurements. The basic idea is to track the energy of a conormal wave
packet as it travels into Ω; each time it passes through a discontinuity in c a
known fraction of its energy is lost to reflection. As usual, a high-frequency limit
is employed.

We begin with a result on recovery of the direct transmission’s principal symbol,
using wave packets.

Theorem 5.1. Let y ∈ Ωr, let p = p(y), let T = d(y, p), and let ε > 0 be sufficiently
small. Then there exists a domain Θ ⊃ Ω and a covector (p∗, ν∗) ∈ S∗Θ such that∣∣dt+(y)∣∣2 = lim

λ→∞
KEΘT+ε

RT+εh0,λ, h0,λ = Λ

[
−icB−1ρλ,p∗,ν∗ϕλ,p∗,ν∗

0

]
.(5.1)

The key interest in Theorem 5.1 is that KEΘT+ε
RT+εh0,λ is the kinetic energy

of the almost direct transmission of wave packet h0,λ. With scattering control, it
can be obtained from measurements outside Ω [5, Props. 2.7, 2.8].

According to (4.16), dt+(y) is smooth (in fact, constant) along each normal
broken geodesic, except at discontinuities in c. This means scattering control can
recover the discontinuities of c in boundary normal coordinates as a direct conse-
quence of Theorem 5.1, and this recovery is completely constructive.

Theorem C. Assume c is discontinuous on Γ, and let y ∈ Ωr, and let T =
d(y, ∂Ω). Then the locations of the singularities intersected by the normal broken
geodesic segment γy (in geodesic normal coordinates) are uniquely determined by
the outside measurement operator F , and given by

(5.2) γ−1
y (Γ) = singsupp

(
|dt+ ◦ γy|

)
.

Remark. Theorems 5.1 and C may be viewed as a numerically implementable al-
gorithm for locating interfaces. An approximation for the kinetic energy of the
almost direct transmission can be computed from partial sums of the scattering
control series (or a faster-converging variant); cf. [5, Props. 2.7, 2.8]. Applied to a
suitably high-frequency wave packet, we approximately recover |dt+ ◦γy|, by (5.1).
Due to the finite frequency and the finite gap between Θ and Ω, the sharp jumps
in |dt+ ◦ γy| will be smoothed somewhat.
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∂Ω
p

∂Θ

α2

Γ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρμ

α1

p∗

Figure 5.1. Cutoffs αi used in the proof of Theorem 5.1.

Proof of Theorem 5.1. We indicate just one method for choosing Θ, noting that
many others are possible. Namely, let Θ = Ω−2ε; that is, Θ is the 2ε-neighborhood
of Ω. Assume ε is sufficiently small that no two distinct geodesics normal to
∂Ω ∩ B4T (p) intersect before reaching Θ (that is, no caustics form near p). Then
d∗(x,Θ) = d∗(x,Ω) + 2ε for any x ∈ B2T (p) ∩ Ω.

We next choose the wave packet covector (p∗, ν∗). Define γ as the maximal
unit-speed geodesic with γ(0) = p and γ′(0) as the inward normal to ∂Ω. Let
(p∗, ν∗) = γ′
(−ε), and let μ = μ(λ) = (λ, p∗, ν∗). For the rest of the proof, assume
λ is sufficiently large that supp ρμ ⊂ Θ \Ω: the wave packet’s cutoff lies inside the
initial data region.

Now, we examine the energy distribution of the wavefields generated by cor-
responding wave packets at time T . In particular, we would like to show that
the region ΘT+ε, whose energy we probe with scattering control, contains only
the directly transmitted component of the wavefield, in the high-frequency limit.
If there were no glancing rays on any reflected branches, we could directly apply
Proposition 4.2 to conclude the proof. Instead, we follow a more careful argument.

To this end, we will decompose the energy of the wavefields generated by cor-
responding wave packets at time T . Since y is a regular point, γ intersects only
finitely many interfaces, and each intersection is transversal. Let t̃1, . . . , t̃m be the
times of intersection. Let γ1, . . . , γm be the (unit-speed) reflected geodesics, pa-
rameterized so that γi(t̃i) = γ(t̃i). Now choose slightly later times t1, . . . , tm such
that

(5.3) t̃1 < t1 < t̃2 < t2 < · · · < t̃m < tm < T.

such that γi intersects no interfaces in the time interval (t̃1, t1].
After each intersection, we capture the reflected energy with cutoffs α1, . . . , αm.

Namely, let αi be a smooth bump function equal to 1 in a neighborhood of γi(ti)
and supported away from Γ∪{γ(ti)}. Because γi is not a minimal length path from
γi(ti) to ∂Θ, we can choose suppαi small enough that d(suppαi, ∂Θ) < ti + ε − δ
for some δ > 0 (independent of ε). Figure 5.1 illustrates the setup.
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Then we may divide RT+ε into reflected and directly transmitted components
as follows:

(5.4)

RT+ε = Rt2+···+tmα1Rt1+ε

+Rt3+···+tmα2Rt2(1− α1)Rt1+ε

+Rt4+···+tmα3Rt3(1− α2)Rt2(1− α1)Rt1+ε

+ · · ·+
+ αmRtm(1− αm−1)Rtm−1

· · · (1− α1)Rt1+ε

+ (1− αm)Rtm(1− αm−1)Rtm−1
· · · (1− α1)Rt1+ε.

Assuming now that ε is chosen smaller than δ, finite speed of propagation ensures
that the first m (reflected) terms in (5.4) vanish on ΘT+ε, leaving only the final
(transmitted) term:

(5.5) DT ≡ (1− αm)Rtm(1− αm−1)Rtm−1
· · · (1− α1)Rt1+ε.

This equivalence is modulo smoothing operators holding in a conic neighborhood
of (p∗, ν∗). A single graph FIO is required for applying Proposition 4.2, so we
define D̃T+ = c−1BDT+cB−1, a graph FIO of order 0. Then the vanishing of the
reflected terms in (5.4) implies

(5.6) KEΘT+ε
RT+εΛ

[
−icB−1ρμϕμ

0

]
=

∥∥∥D̃T+ρμϕμ

∥∥∥2
L2(ΘT+ε)

.

By Proposition 4.2,

(5.7) lim
λ→∞

∥∥∥(D̃T++K)ρμϕμ

∥∥∥2
L2(ΘT+ε)

= |s(p∗, ν∗)|2,

where s is the principal symbol of D̃T+, equal to that of DT+. Since R+
ε has a

principal symbol of unity, |s(p∗, ν∗)|2 = |s(p, ν)|2 = |dt+(y)|2. �
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