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Abstract
We discuss the inverse problem of determining the, possibly anisotropic, 
conductivity of a body Ω ⊂ Rn  when the so-called Neumann-to-Dirichlet 
map is locally given on a non-empty curved portion Σ of the boundary 
∂Ω. We prove that anisotropic conductivities that are a priori known to be 
piecewise constant matrices on a given partition of Ω with curved interfaces 
can be uniquely determined in the interior from the knowledge of the local 
Neumann-to-Dirichlet map.

Keywords: Calderòn’s problem, electrical impedance tomography, direct 
current (DC) method, anisotropy

1. Introduction

The inverse problem of recovering the conductivity of a body by taking measurements of volt-
age and current on its surface is studied in the present paper. More specifically, the case when 
the conductivity is anisotropic and it is a priori known to be a piecewise-constant matrix on a 
given partition of a domain (the body under investigation) is considered. It is well known that 
in absence of internal sources, the electrostatic potential u in a conducting body, described by 
a domain Ω ⊂ Rn , is governed by the elliptic equation

div(σ∇u) = 0 in Ω, (1.1)

where the symmetric, positive definite matrix σ = σ(x), x ∈ Ω represents the (possibly aniso-
tropic) electric conductivity. The inverse conductivity problem consists of finding σ when the 
so called Dirichlet-to-Neumann (D-N) map
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Λσ : u|∂Ω ∈ H
1
2 (∂Ω) −→ σ∇u · ν|∂Ω ∈ H− 1

2 (∂Ω)

is given for any u ∈ H1(Ω) solution to (1.1). Here, ν denotes the unit outer normal to ∂Ω. If 
measurements can be taken only on one portion Σ of ∂Ω, then the relevant map is called the 
local D-N map (ΛΣ

σ ).
Different materials display different electrical properties, so that a map of the conductiv-

ity σ(x), x ∈ Ω can be used to investigate internal properties of Ω. This problem has many 
important applications in fields such as geophysics, medicine and non-destructive testing of 
mat erials. The first mathematical formulation of the inverse conductivity problem is due to 
Calderón [C], where he addressed the problem of whether it is possible to determine the (iso-
tropic) conductivity σ = γI by the D-N map. [C] opened the way to the solution to the unique-
ness issue where one is asking whether σ can be determined by the knowledge of Λσ (or ΛΣ

σ  
in the case of local measurements). We introduce the following function spaces

0H
1
2 (∂Ω) =

{
f ∈ H

1
2 (∂Ω)|

∫

∂Ω

f = 0
}

,

0H− 1
2 (∂Ω) =

{
ψ ∈ H− 1

2 (∂Ω)| 〈ψ, 1〉 = 0
}

.

We observe that the D-N map Λσ maps onto 0H− 1
2 (∂Ω), and, when restricted to 0H

1
2 (∂Ω), 

is injective with bounded inverse called the Neumann-to-Dirichlet (N-D) map. The precise 
definitions of the D-N, N-D and their local versions will be given in section 2. For now, we 
simply recall that the N-D map associates to specified current densities supported on a portion 
Σ ⊂ ∂Ω the corresponding boundary voltages measured on the same portion Σ of ∂Ω. For the 
applications of the inverse conductivity problem to the direct-current (DC) resistivity method 
that we have in mind, the choice of taking the surface measurements by means of the (local) 
N-D map over the (local) D-N map seems to be appropriate.

The case when measurements can be taken over the full boundary has been studied exten-
sively in the past. Fundamental papers like [Ko-V1, Ko-V2, N, Sy-U1] and [Al] show that the 
isotropic case can be considered solved. More recently these uniqueness results have been 
extended in dimension n � 3 for conductivities in C1 [Ha-T], for Lipschitz conductivities 
 [Ca-R] and for conductivities in Ws,p(Ω) � W1,∞(Ω) [Ha], again, while assuming full bound-
ary data. The original uniqueness result by Sylvester and Uhlmann [Sy-U1] required the con-
ductivity to be C∞. For the two-dimensional case we refer to [Bro-U] and the breakthrough 
paper [As-P] where uniqueness has been proven for conductivities that are merely L∞. We 
also recall the uniqueness results of Druskin who, independently from Calderón, dealt directly 
with the geophysical setting of the problem in [D1–D3]. His uniqueness result obtained in 
[D2] was for conductivities described by piecewise constant functions (see also [Al-V]). In 
the present paper, we consider conductivities that are piecewise constant matrices. We refer 
to [Bo, C-I-N] and [U] for an overview regarding the issues of uniqueness and reconstruction 
of the conductivity.

The problem of recovering the conductivity σ by local measurements has been treated more 
recently. Lassas and Uhlmann [La-U] recovered a connected compact real-analytic Riemannian 
manifold (M, g) with boundary by making use of the Green’s function of the Laplace–Beltrami 
operator ∆g; see also [La-U-T]. For the procedure of reconstructing the conductivity at the 
boundary by local measurements we refer to [Bro, NaT1, NaT2, K-Y]. An overview on recon-
struction formulas for the conductivity and its normal derivative can be found in [NaT3]. For 
related results of uniqueness in the interior in the case of local boundary data, we refer to 
Bukhgeim and Uhlmann [B-U], Kenig, Sjöstrand and Uhlmann [Ke-S-U] and Isakov [Is1], 
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and, for stability, Heck and Wang [He-W]. Results of stability for cases of piecewise constant 
conductivities and local boundary maps have also been obtained in [Al-V, Be-Fr] and [D].

The inverse problem with anisotropic conductivities, however, has remained open. Since 
Tartar’s observation [Ko-V1] that any diffeomorphism of Ω which keeps the boundary points 
fixed has the property of leaving the D-N map unchanged, whereas σ is modified, different 
lines of research have been pursued. One direction has been to find the conductivity up to a 
diffeomorphism which keeps the boundary fixed (see [Le-U, Sy, N, La-U, La-U-T, Be] and 
[As-La-P]). Another direction has been the one to formulate suitable a priori assumptions (pos-
sibly fitting some physical context) which constrain the structure of the unknown anisotropic 
conductivity. For instance, one can formulate the hypothesis that the directions of anisotropy 
are known while some scalar space dependent parameter is not. Along this line of reasoning, 
we mention the results in [Ko-V1, Al, Al-G, Al-G1, G-Li, G-S] and [Li]. The case when n = 2 
and the anisotropic conductivity is assumed to be divergence free has been treated in [Al-C].

Here, we follow this second direction by a priori assuming that the conductivity is piece-
wise constant in a known finite partition of the domain (a segmentation), whereas the constant, 
matrix-valued, conductivities in each subdomain are unknown. An additional (apparently nec-
essary) assumption that we pose is that contiguous subdomains of the partition can be joined 
by curved smooth surfaces and also that the boundary portion Σ where measurements are col-
lected also contains a curved portion of a surface. Under such assumptions we show, theorem 
2.1, that a local boundary map uniquely determines the conductivity, also in the interior. For 
the sake of concreteness we focus our analysis on the local N-D map. But it will be evident 
from the proof that also other choices of the boundary maps could be treated.

We give an outline of the underlying ideas in our approach. As is well known, [B-G-M, U], 
the solutions to equation (1.1) are the harmonic functions on the Riemannian manifold {Ω, g} 
where the metric g is linked to the conductivity σ through the relation

g = (detσ)
1

n−2 σ−1.

We obtain, in lemma 3.5, that, under a few regularity assumptions, one can uniquely deter-
mine from the knowledge of the local N-D map near a point P ∈ ∂Ω, the tangential part of 
g(P), that is, the (n − 1)× (n − 1) minor of g(P) relative to the tangent (hyper)plane to ∂Ω 
at P. Incidentally, we recall that a similar result was already contained in proposition 1.3 of 
Lee and Uhlmann [Le-U]; under stronger regularity assumptions, it was shown that the same 
minor is determined by the D-N map. If the local N-D map is known on a non-flat portion Σ 
of ∂Ω and σ is constant nearby, then we have enough different tangent planes to completely 
recover g, and hence σ, see lemma 3.6. Thus, the crucial point in our argument stands in 
proving uniqueness at the boundary of the anisotropic conductivity. It may be surprising that 
such a result appears after more than three decades since the seminal result of boundary deter-
mination by Kohn and Vogelius in the isotropic case [Ko-V, Ko-V1]. However, the present 
approach is rather different from those originally used with highly oscillating boundary data 
[Ko-V], the analysis of the symbol of the D-N map as a pseudodifferential operator [Sy-U] 
and the use of singular solutions [Is, Al]. The approach used here, relies on an accurate inspec-
tion of the asymptotics of the Neumann kernel (which enters in the integral representation of 
the N-D map). Such an asymptotics has indeed its roots in the potential theoretic approach to 
studying elliptic equations [Mi], but its application to inverse boundary value problems is, to 
the best of our knowledge, a novelty.

The proof is then completed by an iteration argument and by the use of the unique continu-
ation property. For this step (from the boundary to the interior) a well-known approach that 
could be used, and is well rooted in fundamental papers [Ko-V2, Is], is the one based on the 
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application of the Runge approximation property [Lax]. However, we chose here to develop 
arguments of a slightly different character, which have a more constructive flavor and have the 
potential of being translated into stability estimates.

Finally, in example 4.2, which is a variation of the celebrated Tartar’s example, [Ko-V1], 
we show that the N-D map for the half space is not sufficient to uniquely determine a con-
stant anisotropic conductivity. Thus, this example provides a strong indication that indeed, flat 
boundary and interfaces may constitute an obstruction to uniqueness and thus our assumptions 
on curved interfaces and boundary are well motivated. For other kinds of examples of nonu-
niqueness we may refer to [G-La-U1] and [G-La-U2].

We gave an overview of the introduction and application of the DC method (or ERT) in 
geophysical exploration and geothermal prospecting in a companion paper [Al-dH-G-S 1]. 
As early as 1920, Conrad Schlumberger [Sc] recognized that anisotropy may affect geologi-
cal formations’ DC electrical properties. Anisotropic effects when measuring electromagnetic 
fields in geophysical applications have been studied ever since. From an inverse problems 
perspective, it is interesting that Maillet and Doll [M-Do] already identified obstructions to 
recovering an anisotropic resistivity from (boundary) data. Individual minerals are typically 
anisotropic but rocks composed of them can appear to be isotropic. Simpson and Tommasi 
[Si-T] discussed the application of effective medium models to calculate the (degree of) aniso-
tropy in electrical conductivity in an aggregate with non-random crystallographic orientations. 
In fact, there are many heterogeneous material configurations in Earth’s sedimentary basins 
that possibly lead to anisotropy [Ne-S]. It might be that there are some preferred directions in 
the subsurface rocks, or some preferred orientation of grains in the sediments. Fine layering 
or a pronounced strike direction can lead to an effective anisotropy. For example, alternations 
of sandstone and shales can cause hydrocarbon reservoir anisotropy, but anisotropy in shale-
free sandstones can occur as well [Ken-H]. Resistivity anisotropy has also been measured in 
volcanic reservoir rock [No].

In view of practical constraints on the data acquisition, DC resistivity methods are lim-
ited to probing Earth’s (upper) crust. Resolving conductive structures to depths of the upper 
mantle requires magnetotelluric (MT) data. The analysis of the MT inverse boundary value 
problem associated with the low-frequency Maxwell equations will be presented in a separate 
paper. Most minerals in Earth’s deeper interior (lower crust, upper mantle and transition zone) 
have been shown to have anisotropic conductivities that are sensitive not only to temperature, 
but also to hydrogen (water) content, major element chemistry and oxygen fugacity [Ka-W]. 
Consequently, there is a potential to infer the distribution of these chemical factors (as well as 
temperature) from the study of electrical conductivities. Here, the influence of partial melting4 
needs to be accounted for. Indeed, to infer the water distribution in Earth’s mantle, electrical 
conductivity plays a primary role [Ka]5.

The paper is organized as follows. Our main assumptions and our main result (theorem 
2.1) are contained in section  2, whereas section  3 contains some preliminary results. The 
proof of theorem 2.1, that is, the proof of the unique determination of the piecewise constant 
anisotropic conductivity from the knowledge of the local N-D map, is contained in section 4. 
We emphasize that the consideration of the local N-D map, rather than the local D-N map, is 
motivated by the application of this inverse problem to the DC resistivity method in geophysi-
cal prospecting.

4 Melts in general have higher electrical conductivity than minerals. This is essentially due to the high diffusion 
coefficients of charged species in melts [Ho]. As a consequence, the presence of partial melt will contribute to 
relatively high electrical conductivity.
5 Hydrogen (water) has an important influence on rheological properties [Ka-J] and melting relationship ([Ku-Syo-Ak, I]) 
that control the dynamics and evolution of our planet.
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2. Main result

2.1. Notation and definition

In several places in this manuscript it will be useful to single out one coordinate direction. 
To this purpose, the following notations for points x ∈ Rn will be adopted. For n � 3, a 
point x ∈ Rn will be denoted by x = (x′, xn), where x′ ∈ Rn−1 and xn ∈ R. Moreover, given 
a point x ∈ Rn, we shall denote with Br(x), B′

r(x) the open balls in Rn,Rn−1 respectively 
centred at x with radius r and by Qr(x) the cylinder B′

r(x
′)× (xn − r, xn + r). We shall 

denote Rn
+ = {(x′, xn) ∈ Rn|xn > 0}, B+

r = Br ∩ Rn
+, where we understand Br = Br(0) and 

Qr = Qr(0).
We shall assume throughout that Ω is a bounded domain with Lipschitz boundary, see e.g. 

[A-F, 4.9].

Definition 2.1. Let Ω be a domain in Rn. Given α, α ∈ (0, 1), we say that a portion Σ of 
∂Ω is of class C1,α if for any P ∈ Σ there exists a rigid transformation of Rn under which we 
have P = 0 and

Ω ∩ Qr0 = {x ∈ Qr0 | xn > ϕ(x′)},

where ϕ is a C1,α function on B′
r0

 satisfying

ϕ(0) = |∇x′ϕ(0)| = 0.

Definition 2.2. Given Σ as above, we shall say that such a portion of a surface is non-flat 
(and equivalently the function ϕ) if, there exists P ∈ Σ such that, considering the reference 
system and the function ϕ as above, we have that ϕ is not identically zero near P = 0.

2.1.1. The Dirichlet-to-Neumann map. We begin with defining the D-N map. We denote by 
Symn the class of n × n symmetric real valued matrices. Let Ω be a domain in Rn with Lip-
schitz boundary ∂Ω and assume that σ ∈ L∞(Ω , Symn) satisfies the ellipticity condition

λ−1|ξ|2 � σ(x)ξ · ξ � λ|ξ|2, for almost every x ∈ Ω,
for every ξ ∈ Rn.

 (2.1)

We shall also denote by 〈·, ·〉 the L2(∂Ω)-pairing between H
1
2 (∂Ω) and its dual H− 1

2 (∂Ω).

Definition 2.3. The Dirichlet-to-Neumann (D-N) map associated with σ is the operator

Λσ : H
1
2 (∂Ω) −→ H− 1

2 (∂Ω) (2.2)

defined by

〈Λσ f , g〉 =

∫

Ω

σ(x)∇u(x) · ∇ϕ(x) dx, (2.3)

for any f, g ∈ H
1
2 (∂Ω), where u ∈ H1(Ω) is the weak solution to

{
div(σ(x)∇u(x)) = 0, in Ω,
u = f , on ∂Ω,

and ϕ ∈ H1(Ω) is any function such that ϕ|∂Ω = g in the trace sense.

G Alessandrini et alInverse Problems 33 (2017) 125013
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Note that, by (2.3), it is easily verified that Λσ is selfadjoint. Given σ(i) ∈ L∞(Ω , Symn), 
satisfying (2.1), for i = 1, 2, we recall Alessandrini’s identity (see [Al, b, p 253])

〈(Λσ(1) − Λσ(2)) f1, f2〉 =
∫

Ω

(
σ(1)(x)− σ(2)(x)

)
∇u1(x) · ∇u2(x), (2.4)

for any fi ∈ H
1
2 (∂Ω), i = 1, 2 and ui ∈ H1(Ω) being the unique weak solution to the Dirichlet 

problem
{

div(σ(i)(x)∇ui(x)) = 0, in Ω,
ui = fi, on ∂Ω.

We define now the local N-D map.

2.1.2. The Neumann-to-Dirichlet map. We consider the following function spaces

0H
1
2 (∂Ω) =

{
f ∈ H

1
2 (∂Ω)|

∫

∂Ω

f = 0
}

,

0H− 1
2 (∂Ω) =

{
ψ ∈ H− 1

2 (∂Ω)| 〈ψ, 1〉 = 0
}

.

As previously observed, the D-N map Λσ maps onto 0H− 1
2 (∂Ω), and, when restricted to 

0H
1
2 (∂Ω), it is injective with bounded inverse. Then we can define the global Neumann-to-

Dirichlet map as follows.

Definition 2.4. The Neumann-to-Dirichlet (N-D) map associated with σ,

Nσ : 0H− 1
2 (∂Ω) −→ 0H

1
2 (∂Ω)

is given by

Nσ =
(
Λσ|

0H
1
2 (∂Ω)

)−1
. (2.5)

Note that Nσ can also be characterized as the selfadjoint operator satisfying

〈ψ, Nσψ〉 =

∫

Ω

σ(x)∇u(x) · ∇u(x) dx, (2.6)

for every ψ ∈ 0H− 1
2 (∂Ω), where u ∈ H1(Ω) is the weak solution to the Neumann problem




div(σ∇u) = 0, in Ω,
σ∇u · ν|∂Ω = ψ, on ∂Ω,∫
∂Ω

u = 0.
 (2.7)

Given σ(i) ∈ L∞(Ω , Symn), satisfying (2.1), for i = 1, 2, the following identity can be 
recovered from (2.4)

〈σ(1)∇u1 · ν, (Nσ(2) −Nσ(1))σ(2)∇u2 · ν〉 =
∫

Ω

(
σ(1)(x)− σ(2)(x)

)
∇u1(x) · ∇u2(x),

 (2.8)
for any ui ∈ H1(Ω) weak solution to

div(σ(i)(x)∇ui(x)) = 0, in Ω, (2.9)

G Alessandrini et alInverse Problems 33 (2017) 125013
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for i = 1, 2.
Now we introduce the local version of the N-D map. Let Σ be an open portion of ∂Ω and 

let ∆ = ∂Ω \ Σ. We introduce the subspace of H
1
2 (∂Ω),

H
1
2
co(∆) =

{
f ∈ H

1
2 (∂Ω) | supp( f ) ⊂ ∆

}
.

We denote by H
1
2
00(∆) the closure in H

1
2 (∂Ω) of the space H

1
2
co(∆) and we introduce

0H− 1
2 (Σ) =

{
ψ ∈ 0H− 1

2 (∂Ω)| 〈ψ, f 〉 = 0, for any f ∈ H
1
2
00(∆)

}
, (2.10)

that is the space of distributions ψ ∈ H− 1
2 (∂Ω) which are supported in Σ  and have zero aver-

age on ∂Ω. The local N-D map is then defined as follows.

Definition 2.5. The local Neumann-to-Dirichlet map associated with σ, Σ is the operator 

NΣ
σ : 0H− 1

2 (Σ) −→
(

0H− 1
2 (Σ)

)∗ ⊂ 0H
1
2 (∂Ω) given by

〈NΣ
σ ϕ, ψ〉 = 〈Nσ ϕ, ψ〉, (2.11)

for every ϕ,ψ ∈ 0H− 1
2 (Σ).

Given σ(i) ∈ L∞(Ω , Symn), satisfying (2.1), for i = 1, 2, we also recover from (2.4)

〈
ψ1,

(
NΣ

σ(2) −NΣ
σ(1)

)
ψ2

〉
=

∫

Ω

(
σ(1)(x)− σ(2)(x)

)
∇u1(x) · ∇u2(x), (2.12)

for any ψi ∈ 0H− 1
2 (Σ), for i = 1, 2 and ui ∈ H1(Ω) being the unique weak solution to the 

Neumann problem



div(σ(i)∇ui) = 0, in Ω,
σ(i)∇ui · ν|∂Ω = ψi, on ∂Ω,∫
∂Ω

ui = 0.
 (2.13)

2.2. The a priori assumptions

2.2.1. Assumptions pertaining to the domain partition.

 1. Ω ⊂ Rn  is a bounded domain, with n � 3.
 2. ∂Ω is of Lipschitz class.
 3. We fix an open non-empty subset Σ of ∂Ω (where the measurements in terms of the local 

N-D map are taken).
 4. There exists N ∈ (N \ {0}) such that

Ω =

N⋃
j=1

Dj,

  where Dj, j = 1, . . . , N are known open sets of Rn, satisfying the conditions below.

 (a) Dj, j = 1, . . . , N are connected and pairwise nonoverlapping.
 (b) ∂Dj, j = 1, . . . , N are of Lipschitz class.

G Alessandrini et alInverse Problems 33 (2017) 125013
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 (c) There exist α, α ∈ (0, 1) and one region, say D1, such that ∂D1 ∩ Σ contains a non flat 
C1,α portion Σ1.

 (d) For every i ∈ {2, . . . , N} there exists j1, . . . , jK ∈ {1, . . . , N} such that

Dj1 = D1, DjK = Di (2.14)

  and such that for every i = 1, . . . , K
(

i⋃
k=1

Djk

)◦

and Ω \

(
i⋃

k=1

Djk

)

  are Lipschitz domains.
  In addition we assume that there exists α, α ∈ (0, 1), such that for every k = 2, . . . , K , 

∂Djk ∩ ∂Djk−1 contains a non flat C1,α portion Σk (for the time being we agree that 
Dj0 = Rn \ Ω), such that

Σk ⊂ Ω.

  More specifically we assume that for every k = 2, . . . , K  there exists Pk ∈ Σk and a 
rigid transformation of coordinates under which we have Pk = 0 and

Σk ∩ Qr0/3 = {x ∈ Qr0/3|xn = ϕk(x′)}
Djk ∩ Qr0/3 = {x ∈ Qr0/3|xn > ϕk(x′)}

Djk−1 ∩ Qr0/3 = {x ∈ Qr0/3|xn < ϕk(x′)},
 (2.15)

where ϕk is a non flat C1,α function on B′
ro/3 satisfying

ϕk(0) = |∇ϕk(0)| = 0.

2.2.2. Assumption pertaining to the conductivity. We assume that the conductivity σ is of 
type

σ(x) =
N∑

j=1

σjχDj(x), x ∈ Ω, (2.16)

where σj ∈ Symn are positive definite constant matrices, satisfying the uniform ellipticity 
condition

λ−1|ξ|2 � σjξ · ξ � λ|ξ|2, for every ξ ∈ Rn, (2.17)

for j = 1, . . . , N, and Dj, j = 1, . . . , N are the subdomains introduced in section 2.2.1.

2.3. Global uniqueness

Our main result is stated below.

Theorem 2.1. Let Ω, Dj, j = 1, . . . , N and Σ be a domain, N subdomains of Ω and a por-
tion of ∂Ω as in section 2.2.1 respectively and let σ(i), i = 1, 2 be two conductivities of type

σ(i)(x) =
N∑

j=1

σ
(i)
j χDj(x) x ∈ Ω, i = 1, 2, (2.18)
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where σ(i)
j ∈ Symn are positive definite constant matrices, satisfying the uniform ellipticity 

condition (2.17), for j = 1, . . . , N. If

NΣ
σ(1) = NΣ

σ(2) ,

then

σ(1) = σ(2), in Ω. (2.19)

3. The Neumann kernel

From now on we shall denote by σ(x) = {σij(x)}i,j=1,...,n, x ∈ Ω a symmetric, positive definite 
matrix-valued function satisfying (2.17) and denote by L the operator

L = div (σ∇·) . (3.1)

We shall also introduce the matrix

g = (detσ)
1

n−2 σ−1. (3.2)

Remark 3.1. If we endow the open set Ω with the Riemannian metric g, then

1√
det g

L = ∆g,

that is, up to the factor 1√
det g , the operator L can be viewed as the Laplace–Beltrami operator 

for the Riemannian manifold {M, g}, see for instance [B-G-M, U]. We emphasize that, being 
n > 2, the knowledge of σ is equivalent to the knowledge of g.

We digress and consider the operator (3.1) on the half space Rn
+ with σ constant. We denote 

by

Πn = {x = (x′, xn) ∈ Rn | xn = 0}

the hyperplane in Rn of points with vanishing nth coordinate. From now on we will denote by 
ξ · ρ  the Euclidean scalar product of vectors ξ, ρ ∈ Rn.

Note that when σ is constant, the same is true for g. We shall denote by g(n−1) the 
(n − 1)× (n − 1) submatrix of g obtained by removing the nth row and column from g.

Lemma 3.2. Let Nσ be the Neumann kernel for the operator (3.1), with constant σ ∈ Symn, 
on the half space Rn

+ and pole at the boundary. That is, for any y′ ∈ Πn, let Nσ be the distri-
butional solution to




L Nσ(·, y′) = 0, in Rn
+,

σ∇Nσ(·, y) · ν = δ(· − y′), on Πn,
Nσ(x, y′) → 0, as |x| → ∞.

For every x ∈ Rn
+ and y′ ∈ Πn we have

Nσ(x, y′) = 2Cn (g(x − y′) · (x − y′))
2−n

2 , (3.3)
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where

Cn =
1

n(n − 2)ωn
,

 (3.4)

with ωn denoting the volume of the unit ball in Rn. In particular, if Nσ(x′, y′) is known for 
every x′, y′ ∈ Πn then g(n−1) is uniquely determined.

Proof. The verification of (3.3) is straightforward when σ is the identity. The general case 
follows straightforwardly through a linear change of variables. Furthermore, when x′, y′ ∈ Πn, 
we may write

Nσ(x′, y′) = 2Cn (g(x′ − y′) · (x′ − y′))
2−n

2 (3.5)

or as is the same

g(x′ − y′) · (x′ − y′) =
(

Nσ(x′, y′)
2Cn

) 2
2−n

, for all x′, y′ ∈ Πn.

Consequently g(n−1) is uniquely determined by Nσ(x′, y′), x′, y′ ∈ Πn. □ 

We shall also introduce the Neumann kernel NΩ
σ  for the boundary value problem associated 

with the operator (3.1) and Ω by defining it, for any y ∈ Ω, NΩ
σ (·, y) to be the distributional 

solution to
{

L NΩ
σ (·, y) = −δ(· − y), in Ω

σ∇NΩ
σ (·, y) · ν = − 1

|∂Ω| , on ∂Ω.

Note that NΩ
σ  is uniquely determined up to an additive constant. For simplicity we impose 

the normalization
∫

∂Ω

NΩ
σ (·, y) dS(·) = 0.

With this convention we obtain by Green’s identities that

NΩ
σ (x, y) = NΩ

σ (y, x), for all x, y ∈ Ω, x �= y. (3.6)

Remark 3.3. NΩ
σ (x, y) extends continuously up to the boundary ∂Ω (provided that x �= y) 

and in particular, when y ∈ ∂Ω, it solves
{

L NΩ
σ (·, y) = 0, in Ω

σ∇NΩ
σ (·, y) · ν = δ(· − y)− 1

|∂Ω| , on ∂Ω.

Theorem 3.4. Let y ∈ ∂Ω and assume that there exists a neighborhood U of y such 
that ∂Ω ∩ U is a portion of class C1,α, with 0 < α < 1, of ∂Ω and σ in (3.1) is such that 
σ ∈ Cα(U ∩ Ω). Then the Neumann kernel NΩ

σ (·, y) satisfies

NΩ
σ (x, y) = 2Cn

(
det(σ(y))

)−1/2
(
σ−1(y)(x − y) · (x − y)

) 2−n
2

+ O(|x − y|2−n+α),
 (3.7)

as x → y, x ∈ Ω \ {y} and Cn is the constant given in (3.4).
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Proof. This result is typical and possibly well known. We refer to [Mi, section 1] and [Mit-
T, 1.31–1.33] for the case σ ∈ Cα(Ω), with ∂Ω of class C1,α. We sketch a proof for the sake 
of completeness. We represent Σ = ∂Ω ∩ U  according to definition 2.1, and assume without 
loss of generality that y = 0. Let r > 0 be such that Br ⊂ U . For any ψ ∈ C0,1

0 (Br), we have
∫

Ω∩Br

σ(x)∇xNΩ
σ (x, 0) · ∇xψ(x) dx = ψ(0)− 1

|∂Ω|

∫

∂Ω∩Br

ψ(x) dS(x). (3.8)

We introduce the change of coordinates z = z(x) (x = x(z))
{

z′ = x′

zn = xn − ϕ(x′) .

We have

z = x + O(|x′|1+α) (3.9)

and also, setting J = ∂z
∂x ,

J = I + O(|x′|α). (3.10)

Next, we define

σ̃(z) =
(

1
det(J)

JσJT
)
(x(z)) (3.11)

Ñ(z) = NΩ
σ (x(z), 0) . (3.12)

We obtain
∫

{zn>0}
σ̃(z)∇zÑ(z) · ∇zψ(x(z)) dz = ψ(0)− 1

|∂Ω|

∫

Πn

ψ(z′, 0)
√

1 + |∇z′ϕ|2 dz′.

 (3.13)

We denote

q(z′) =
1

|∂Ω|

√
1 + |∇z′ϕ|2

which is bounded. We have

σ̃(z) = σ(0) + O(|z′|α). (3.14)

We let N0 denote the Neumann function for Rn
+ with σ = σ(0) and write

R(z) = Ñ(z)− N0(z, 0). (3.15)

We have
∫

{zn>0}
σ̃(0)∇zR(z) · ∇zψ(x(z)) dz

=

∫

{zn>0}
(σ̃(0)− σ̃(z))∇zÑ(z) · ∇zψ(x(z)) dz −

∫

Πn

ψ(z′, 0)q(z′) dz′.
 

(3.16)
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Hence, for a sufficiently small ρ > 0, we have
{

divz (σ(0)∇zR(z)) = divz

(
(σ(0)− σ̃(z))∇zÑ(z)

)
in B+

ρ ,

σ(0)∇zR(z) · ν = (σ(0)− σ̃(z))∇zÑ(z) · ν − q(z′) in Bρ ∩Πn.

We recall that

|NΩ
σ (x, 0)| � C|x|2−n, for every x ∈ Ω, (3.17)

where C > 0 is a constant that only depends on ellipticity and on the Lipschitz regularity of 
∂Ω (see e.g. [Ke-P]). Next using the local regularity of σ and of Σ ⊂ ∂Ω we also obtain

|∇xNΩ
σ (x, 0)| � C|x|1−n, for every x ∈ Bρ ∩ Ω. (3.18)

Consequently

|R(z)|+ |z| |∇zR(z)| � C for every z ∈ ∂Bρ ∩ Rn
+. (3.19)

By Green’s identities, for every w ∈ B+
ρ  we obtain

R(w) = −
∫

B+
ρ

R(z) divz (σ(0)∇zN0(z, w)) dz

= −
∫

∂B+
ρ

(
R(z)σ(0)∇zN0(z, w) · ν − N0(z, w)σ(0)∇zR(z) · ν

)
dS(z)

−
∫

B+
ρ

N0(z, w) divz (σ(0)∇zR(z)) dz

= −
∫

∂B+
ρ

(
R(z)σ(0)∇zN0(z, w) · ν − N0(z, w)σ(0)∇zR(z) · ν

)
dS(z)

−
∫

∂B+
ρ

N0(z, w) (σ(0)− σ̃(z))∇zÑ(z, w) · ν dS(z)

+

∫

B+
ρ

(σ(0)− σ̃(z))∇zN0(z, w) · ∇zÑ(z) dz.

 

(3.20)

If we split ∂B+
ρ =

(
∂Bρ ∩ Rn

+

)
∪ (Bρ ∩Πn), we obtain

R(w) = −
∫

∂Bρ∩Rn
+

(
R(z)σ(0)∇zN0(z, w) · ν − N0(z, w)σ(0)∇zR(z) · ν

)
dS(z)

−
∫

∂Bρ∩Rn
+

N0(z, w) (σ(0)− σ̃(z))∇zÑ(z, w) · ν dS(z)

−
∫

Bρ∩Πn

N0(z′, w)q(z′) dz′

+

∫

B+
ρ

(σ(0)− σ̃(z))∇zN0(z, w) · ∇zÑ(z) dz.

 (3.21)

Upon taking |w| < ρ
2, all the boundary integrals in (3.21) are uniformly bounded. In view of 

(3.14) and of (3.18), the volume integral in (3.21) can be estimated as follows
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∣∣∣∣∣
∫

B+
ρ

(σ(0)− σ̃(z))∇zN0(z, w) · ∇zÑ(z) dz

∣∣∣∣∣

� C
∫

B+
ρ

|z′|α |z − w|1−n |z|1−n dz � C|w|2−n+α,
 (3.22)

hence |R(z)| � C|z|2−n+α on B+
ρ  and recalling that |z| = O(|x|) the thesis follows. □ 

Therefore, we have

Lemma 3.5. If y′ ∈ ∂Ω and there is a neighborhood U of y′ such that ∂Ω ∩ U is a portion 
of ∂Ω of class C1,α and L is the operator (3.1), with coefficients matrix σ ∈ Cα(U ∩ Ω), with 
0 < α < 1, then the knowledge of NΩ

σ (x, y′), for every x ∈ ∂Ω ∩ U  uniquely determines

g(n−1)(y′) = {g(y′)vi · vj}i,j=1,...,(n−1) , (3.23)

where v1, . . . , vn−1 is a basis for Ty′(∂Ω), the tangent plane to ∂Ω at y′.

Proof. Without loss of generality, we choose a coordinate system at y′ ∈ ∂Ω such that 
y′ = 0 and the tangent plane to ∂Ω at y′ is T0(∂Ω) = Πn. For any ξ ∈ Πn, |ξ| = 1, we choose 
x′ = rξ , with r small and denote x = (x′,ϕ(x′)) ∈ ∂Ω, then by (3.7)

lim
r→0

NΩ
σ (x, y′) r

n−2
2 = 2Cn (g(y′)ξ · ξ)

2−n
2 ,

for all ξ ∈ Πn, |ξ| = 1. Hence g(n−1)(y′) is uniquely determined. □ 

Lemma 3.6. Let Ω be a domain in Rn with boundary ∂Ω of Lipschitz class and let Σ be an 
open portion of ∂Ω of class C1,α and non flat near some point y′0 ∈ Σ. If σ ∈ L∞(Ω , Symn) 
satisfies (2.1) and it is constant near y′0 and Σ, then the knowledge of NΩ

σ (x
′, y′), for every 

x′, y′ ∈ Σ uniquely determines σ(y′0).

Proof. We denote by {e1, . . . , en} the canonical basis in Rn. We assume, without loss of gener-
ality, that y′0 = 0 ∈ Σ, that the tangent space to ∂Ω at 0 ∈ Σ is T0(∂Σ) = Πn =< e1, . . . , en−1 > 
and the outer unit normal to ∂Ω at 0 is −en. For any P ∈ ∂Ω, we will denote by ν(P) the outer 
unit normal to ∂Ω at P (ν(0) = −en). If Σ is not flat near 0, then there are points P ∈ Σ nearby 
such that ν(P) slightly deflects from ν(0) = −en, therefore without loss of generality, we can 
assume that there exists a point P ∈ Σ and some ε �= 0 such that

ν(P) =
1√

1 + ε2
(−en + εen−1) . (3.24)

Depending on the geometry of Σ near 0, there is an alternative:

 (a) The deflection of ν is everywhere in the en−1 direction.
 (b) There are points P̃ ∈ Σ near 0 in which the deflection of ν is in a direction independent of 

en−1 and without loss of generality, we can assume that there is a point P̃ ∈ Σ and some 
α,β ∈ R, with α �= 0 such that

ν(P̃) =
1√

1 + α2 + β2
(−en + αen−2 + βen−1) . (3.25)
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Next, we show that in either cases (a) and (b), g(0) (hence σ(0)) can be uniquely deter-
mined. We denote by

g = g(0)

and start with case (a). In this case an orthonormal basis for the tangent space TP(Σ) is given 
by

{
e1, . . . en−2,

1√
1 + ε2

en−1 +
ε√

1 + ε2
en

}
. (3.26)

Suppose ε > 0. By continuity, we can find a continuous path Q = Q(t), for 0 < t < ε along 
Σ such that Q(0) = 0, Q(ε) = P, g(Q(t)) = g, 0 < t < ε and such that an orthonormal basis 
for the tangent space TQ(t)(Σ) is given by

{
e1, . . . en−2,

1√
1 + t2

en−1 +
t√

1 + t2
en

}
. (3.27)

Recalling that by lemma 3.5 we know

gvi · vj, i, j = 1, . . . , n − 1, (3.28)

for all vi, i = 1, . . . , n − 1, forming a basis for TQ(t)Σ, for any t, 0 < t < ε, we have that the 
following functions

gei ·
(

1√
1 + t2

en−1 +
t√

1 + t2
en

)
, (3.29)

g
(

1√
1 + t2

en−1 +
t√

1 + t2
en

)
·
(

1√
1 + t2

en−1 +
t√

1 + t2
en

)
 (3.30)

are known for any i = 1, . . . , n − 1 and any t, 0 < t < ε. From (3.29) we obtain that the func-
tion

gi, n−1 + tgi, n (3.31)

is known for any any t, 0 < t < ε, for any i = 1, . . . , n − 2 and hence gi, n is known for any 
i = 1, . . . , n − 2. From (3.30) we obtain that the polynomial

gn−1, n−1 + 2tgn−1, n + t2gn,n (3.32)

is known for any t, 0 < t < ε, hence all of its coefficients are known, in particular gn−1, n and 
gn,n are known too, therefore the full matrix g is determined in case (a).

Next, we consider case (b). For P̃  near 0, we have that

g(P̃) = g

and that gi,j is known for any i, j = 1, . . . , n − 1 by lemma 3.5. gi,n is also known for 
i = 1, . . . , n − 2 by recalling that the following scalar product

gei ·
(

1√
1 + ε2

en−1 +
t√

1 + ε2
en

)
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is known. To determine the remaining entries gn−1,n, gn,n of the matrix g, we note that a basis 
for the tangent space TP̃Σ is given by

{e1, . . . en−3, en−2 + αen, en−1 + βen} . (3.33)

The following expressions

g (en−2 + αen) · (en−2 + αen) , (3.34)

g (en−1 + βen) · (en−2 + αen) (3.35)

are known and from (3.34) and (3.35) we recover that the following expressions

gn−2,n−2 + 2αgn−2,n + α2gn,n, (3.36)

gn−1,n−2 + βgn,n−2 + αgn−1,n + αβgn,n (3.37)

are known too. From (3.36), recalling that gn−2,n−2, gn−2,n  are known and that α �= 0, we de-
termine gn,n. From (3.37), recalling that

gn−1,n−2, gn,n−2, gn,n

are known and again that α �= 0, we determine gn−1,n, hence the matrix g is completely deter-
mined in this case too. □ 

Definition 3.1. Given distinct points x, y, w, z ∈ Σ, we define

Kσ(x, y, w, z) = Nσ(x, y)− Nσ(x, w)− Nσ(z, y) + Nσ(z, w). (3.38)

Note that, fixing w, z ∈ Σ, Kσ, as a function of x, y, has the same asymptotic behaviour of 
Nσ(x, y) as x → y.

Remark 3.7. It is well known that the knowledge of the full N-D map is equivalent to the 
knowledge of the boundary values of the Neumann kernel. It can also be verified that the lo-
cal knowledge of the kernel implies knowing the local N-D map. Here we make precise the 
adjustments needed in the local determination of the kernel from the knowledge of the local 
map. The following lemma states that from NΣ

σ  one can determine locally Nσ(x, y) up to a 
bounded function which is the sum of two terms Nσ(x, w), Nσ(z, y)− Nσ(z, w), one depend-
ing on x only and the other depending on y only.

Lemma 3.8. NΣ
σ  is known if and only if Kσ is known for any x, y, w, z ∈ Σ.

Proof. For any ϕ,ψ ∈ C0,1
0 (Σ) ∩0 H− 1

2 (Σ) we have

〈
ψ,NΣ

σ ϕ
〉
=

∫

Σ

ψ(ξ)dS(ξ)
∫

Σ

Nσ(ξ, η)ϕ(η)dS(η) (3.39)

=

∫

Σ×Σ

Nσ(ξ, η)ψ(ξ)ϕ(η)dS(ξ) dS(η). (3.40)

Note that the right hand side of

Nσ(ξ, η)− Kσ(ξ, η, w, z) = Nσ(ξ, w) + Nσ(z, η)− Nσ(z, w) (3.41)
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is a sum of terms which depend on at most one of the two variables ξ and η. Recalling that 
ϕ,ψ  have zero average it follows that Nσ(ξ, η)− Kσ(ξ, η, w, z) is orthogonal to ψ(ξ)ϕ(η) in 
L2(Σ× Σ), therefore (3.40) leads to

〈
ψ,NΣ

σ ϕ
〉
=

∫

Σ×Σ

Kσ(ξ, η, w, z)ψ(ξ)ϕ(η) dS(ξ) dS(η). (3.42)

Hence Kσ uniquely determines NΣ
σ . Vice versa, we pick

ψ(ξ) = δε(ξ; x)− δε(ξ; z),
ϕ(η) = δε(η; y)− δε(η; w),

where δε are approximate Dirac’s delta functions on Σ centered on the second argument. From 
(3.40), by letting ε → 0 we can determine

Kσ(x, y, w, z),

which concludes the proof. □ 

4. Proof of the main result

Proof of theorem 2.1. Without loss of generality, we can assume that

Σ = Σ1.

Let σ(i), i = 1, 2, be two conductivities of type (2.18) satisfying (2.17). If

NΣ1
σ(1) = NΣ1

σ(2) ,

then

σ(1) = σ(2), in D1. (4.1)

We shall proceed by induction. Let DK be a subdomain of Ω, with K �= 1 and recall that 
there exist j1, . . . , jK ∈ {1, . . . , N} such that

Dj1 = D1, . . .DjK = DK ,

with Dj1 , . . .DjK satisfying assumption 4(d). For simplicity, we rearrange the indices of these 
subdomains so that the above mentioned chain is simply denoted by D1, . . . , DK , K � N . We 
assume that

σ(1) = σ(2), in Di, for every i, 1 � i � K (4.2)

and show that

σ(1) = σ(2), in DK+1 too.

We shall set

D =

(
K⋃

i=1

Di

)◦

; E = Ω \ D.
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We shall denote by NΣK+1

σ(i)  the local N-D map for the domain E relative to the conductivity 
σ(i) and localized on ΣK+1, for i = 1, 2.

Claim 4.1. If NΣ1
σ(1) = NΣ1

σ(2) and σ(1) = σ(2) in D then NΣK+1

σ(1) = NΣK+1

σ(2) .

Proof of claim 4.1. Here we shall adapt some arguments already used in [Al-K]. Recall 
that up to a rigid transformation of coordinates we can assume that

P1 = 0 ; (Rn \ Ω) ∩ Br0 = {(x′, xn) ∈ Br0 | xn < ϕ(x′)},

where ϕ is a Lipschitz function such that

ϕ(0) = 0 and ||ϕ||C0,1(B′
r0
) � Lr0.

Denoting by

D0 =

{
x ∈ (Rn \ Ω) ∩ Br0

∣∣∣∣ |xi| <
2
3

r0, i = 1, . . . , n − 1,
∣∣∣xn −

r0

6

∣∣∣ < 5
6

r0

}
,

it turns out that the augmented domain Ω0 = Ω ∪ D0 is of Lipschitz class with constants r0
3  and 

L̃, where L̃ depends on L only. For any number r ∈
(
0, 2

3 r0
)
 we also denote

(D0)r = {x ∈ D0 | dist(x,Ω) > r} .

For i = 1, 2 we consider the operator Li = div(σ(i)∇·) in Ω and extend σ(i) to σ̃(i) on Ω0, 
by setting σ̃(i)|D0 = I , where I denotes the n × n identity matrix. For y ∈ Ω0 we define the 
modified Neumann kernel Ñσ(i) as the solution to




LiÑΩ
σ̃(i)(·, y) = −δ(x − y), in Ω0

σ̃(i)∇ÑΩ
σ̃(i) · ν = 0, on ∂Ω0 ∩ ∂Ω

σ̃(i)∇ÑΩ
σ̃(i) · ν = − 1

|∂Ω0\Ω̄| , on ∂Ω0 \ Ω̄.

Here we convene to normalize ÑΩ
σ̃(i), by prescribing

∫

∂Ω0

ÑΩ
σ̃(i)(·, y) dS(·) = 0.

Again, with this choice we obtain

ÑΩ
σ̃(i)(x, y) = ÑΩ

σ̃(i)(y, x), for all x, y ∈ Ω0, x �= y. (4.3)

From now on we will simplify our notation by denoting

ÑΩ
σ̃(i) = Ñ(i).

Given ψ ∈ C0,1(∂E), with suppψ ⊂ ΣK+1 and 
∫
∂E η = 0, we let u(i) solve

{
Liu(i) = 0, in E
σ(i)∇u · ν = ψ, on ∂E.
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We consider a bounded extension operator

T : H
1
2 (∂E ∩ Ω) −→ H1(Ω),

such that, given f ∈ H
1
2 (∂E ∩ Ω), we have

Tf
∣∣
Σ1

= 0.

We denote

u(i) =

{
u(i), in E
T
(
u(i)

∣∣
∂E∩Ω

)
, in D.

Clearly ū(i) ∈ H1(Ω). For x ∈ E we have

u(i)(x) = −
∫

Ω

u(i)(y) divy

(
σ(i)(y)∇yÑ(i)(y, x)

)
dy

= −
∫

∂Ω

u(i)(y) σ(i)(y)∇yÑ(i)(y, x) · ν dS(y)

+

∫

Ω

σ(i)(y)∇yu(i)(y) · ∇yÑ(i)(y, x) dy

=

∫

E
σ(i)(y)∇yu(i)(y) · ∇yÑ(i)(y, x) dy

+

∫

D
σ(i)(y)∇yu(i)(y) · ∇yÑ(i)(y, x) dy

=

∫

ΣK+1

ψÑ(i)(y, x) dS(y) +
∫

D
σ(i)(y)∇yu(i)(y) · ∇yÑ(i)(y, x) dy.

 

(4.4)

By differentiating under the integrals and by using Fubini, we form

∇xu(1)(x) · ∇xu(2)(x)

=

∫

ΣK+1×ΣK+1

ψ(y)ψ(z)∇xÑ(1)(y, x) · ∇xÑ(2)(z, x) dy dz

+

∫

ΣK+1×D
ψ(y)σ(2)

lk (z)∂zl u
(2)(z)∂zk

(
∇xÑ(1)(y, x) · ∇xÑ(2)(z, x)

)
dy dz

+

∫

D×ΣK+1

ψ(z)σ(1)
lk (y)∂yl u

(1)(z)∂yk

(
∇xÑ(2)(z, x) · ∇xÑ(1)(y, x)

)
dy dz

+

∫

D×D
σ
(2)
lk (z)∂zl u

(2)(z)σ(1)
nm (y)∂yn u(1)(z)∂zk∂ym

(
∇xÑ(2)(z, x) · ∇xÑ(1)(y, x)

)
dy dz.

Here, and in what follows, the summation convention over repeated indices is used. We 
define for y, z ∈ D ∪ D0

S(y, z) =
∫

E

(
σ(1)(x)− σ(2)(x)

)
∇xÑ(1)(y, x) · ∇xÑ(2)(z, x) dx. (4.5)
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For any y, z ∈
(
D ∪ D0

) ◦ we verify that

divy

(
σ(1)(y)∇y S(y, z)

)
= 0,

divz

(
σ(2)(z)∇z S(y, z)

)
= 0.

 (4.6)

Moreover,

S(y, z) =
∫

Ω

(
σ(1)(x)− σ(2)(x)

)
∇xÑ(1)(y, x) · ∇xÑ(2)(z, x), (4.7)

because σ(1) = σ(2) on D by assumption. For y, z ∈ D0, being these singular points outside Ω, 
by the identity (2.12) we obtain

S(y, z) =
〈
σ(1)∇Ñ(1)(y, ·) · ν,

(
NΣ1

σ(2) −NΣ1
σ(1)

)
σ(2)∇Ñ(2)(y, ·) · ν

〉
= 0.

We recall that by the C1,α regularity of the interfaces Σjk within D, S(y, z) satisfies the 
unique continuation property in each variable y, z ∈

(
D ∪ D0

) ◦. Hence,

S(y, z) = 0, for any y, z ∈ D. (4.8)

As a consequence, we obtain
∫

E

(
σ(1)(x)− σ(2)(x)

)
∇xu(1)(x) · ∇xu(2)(x) dx

=

∫

ΣK+1×ΣK+1

ψ(y)ψ(z)S(y, z) dy dz

+

∫

ΣK+1×D
ψ(y)σ(2)

lk (z)∂zl u
(2)(z)∂zk S(y, z) dy dz

+

∫

D×ΣK+1

ψ(z)σ(1)
lk (y)∂yl u

(1)(z)∂yk S(y, z) dy dz

+

∫

D×D
σ
(2)
lk (z)∂zl u

(2)(z)σ(1)
nm (y)∂yn u(1)(z)∂zk∂ym S(y, z) dy dz = 0.

 (4.9)

Hence
〈
ψ,

(
NΣK+1

σ(1) −NΣK+1

σ(2)

)
ψ
〉
=

∫

E

(
σ(2)(x)− σ(1)(x)

)
∇xu(1)(x) · ∇xu(2)(x) dx = 0,

 (4.10)

which concludes the proof of the claim. □ 

From NΣK+1

σ(1) = NΣK+1

σ(2)  and by lemma 3.6 we obtain

σ(1)(x) = σ(2)(x), for any x ∈ ΣK+1,

hence

σ(1)(x) = σ(2)(x), for any x ∈ DK+1,

which concludes the proof.

G Alessandrini et alInverse Problems 33 (2017) 125013



20

Example 4.2. Let v = (v′, vn) ∈ Rn
+ be an arbitrary point (note that vn > 0). Consider the 

matrix

M =

(
I(n−1) v′

0′T vn

)
,

where we understand

v′ =




v1

...

vn−1




and 0′ denotes the column null (n − 1)-vector. M is a linear transformation of Rn
+ into itself 

which fixes the boundary Πn. Let us form

σ =
QQT

detQ
,

where Q = M−1. σ is the push-forward of the isotropic homogeneous conductivity I through 
the change of coordinates x = Mξ. In this case

g = MTM =

(
I(n−1) 0′

v′T vn

)(
I(n−1) v′

0′T vn

)

=

(
I(n−1) v′

v′T |v′|2 + v2
n

)
.

Hence

g(n−1) = I(n−1),

for any choice of v ∈ Rn
+.

In other words, the whole family of anisotropic conductivities

σ =
QQT

detQ
= vn

(
I(n−1) +

1
v2

n
v′v′T − 1

v2
n
v′

− 1
v2

n
v′T 1

v2
n

)

is such that

Nσ(x′, y′) = NI(x′, y′) for all x′, y′ ∈ Πn.

That is, any such σ is indistinguishable from the identity I when the corresponding N-D map 
(or D-N map) on Πn is given.

5. Conclusions

The problem of uniquely determining anisotropic conductivities by local measurements has 
been studied in this paper. The conductivity is assumed to be piecewise constant on a domain 
Ω ⊂ Rn , n � 3, with unknown constant, matrix-valued functions in each subdomain of a 
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given (known) partition of Ω. Such partition needs to satisfy the additional property of having 
contiguous subdomains joined by curved smooth surfaces. The measurements are collected on 
some open set Σ ⊂ ∂Ω that contains a curved portion of a surface. Under such assumptions it 
was shown, in theorem 2.1, that a local boundary map (localized on Σ) uniquely determines 
the conductivity, also in the interior. This is, to our knowledge, the first result of uniqueness 
of anisotropic conductivities from local measurements in dimension n � 3. The additional 
requirement of taking the measurement on a curved portion of the boundary appears to be a 
necessary assumption: this was elucidated in example 4.2 where, in the case when Ω is the 
half-space and measurements are taken on the flat hyperplane Πn = {xn = 0}, uniqueness is 
no longer obtained.

It is anticipated that the present paper will serve as a first step towards future work that will 
lead to a better understanding of what the obstructions to uniqueness (in the case of aniso-
tropy) are and that further developments of the result presented here will follow from it. After 
the appearance of the preprint of the present paper, a more general result in this direction has 
been written by the same authors together with Sincich. In this subsequent manuscript [Al-dH-
G-S 2], the problem of determining simultaneously the piecewise constant conductivity matrix 
and the (unknown) interfaces defining the partition of Ω, is studied and a result of uniqueness 
is presented in a similar setting. At the same time, in the corresponding inverse problem in 
elastostatics, Cârstea, Honda and Nakamura [C-H-N] have also obtained uniqueness from a 
local boundary map of a piecewise constant anisotropic elasticity tensor. In fact, in [C-H-N] 
the partition is also allowed to be unknown, provided it is formed by subanalytic sets, [B-M].
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