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Abstract

We analyze the inverse spectral problem on the half line associated with elastic

surface waves. Here, we focus on Love waves. Under certain generic condi-

tions, we establish uniqueness and present a reconstruction scheme for the

S-wavespeed with multiple wells from the semiclassical spectrum of these

waves.

Keywords: inverse spectral problem, semiclassical analysis, elastic surface

waves

(Some �gures may appear in colour only in the online journal)

1. Introduction

We analyze the inverse spectral problem on the half line associated with elastic surface waves.

Here, we focus on Love waves. In a companion paper we present the corresponding inverse

problem for Rayleigh waves. Surface waves have played a key role in revealing Earth’s

structure from the shallow near-surface to several hundred kilometers deep into the mantle,

depending on the frequencies and data acquisition con�gurations considered.
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1.1. Seismology

The inverse spectral problem for surface waves �ts in the seismological framework of surface-

wave tomography. Surface-wave tomography has a long history. Since pioneering work on

inference from the dispersion of surface waves half a century ago [5, 13, 15, 18, 24, 26, 32,

34, 36], surface wave tomography based on dispersion of waveforms from earthquake data has

played an important role in studies of the structure of the Earth’s crust and upper mantle on

both regional and global scales [4, 14, 19, 20, 22, 23, 25, 27, 28, 33, 35, 37, 40].

In order to avoid the effects of scattering due to complex crustal structure, these studies

focused on the analysis, measurement, and inversion of surface wave dispersion at relatively

low frequencies (that is, 4–20 mHz, or periods between 50 to 250 s) at which the funda-

mental modes sense mantle structure to 200–300 km depth and higher modes reach across

the upper mantle and transition zone to some 660 km depth. Most methods assume some form

of (WKB) asymptotic and path-average approximation [10] in line with our semiclassical point

of view.

More than a decade ago, Campillo and his collaborators discovered that cross correla-

tion of ambient noise yields Green’s function for surface waves [12, 30, 31]. This enabled

the possibility to extend the applicability of surface-wave tomography not only to any area

where seismic sensors can be placed, but also to short-path measurements and frequencies at

which the data are most sensitive to shallow depths. Crustal studies based on ambient noise

tomography are typically conducted in the period band of 5–40 s, but shorter period surface

waves (∼ 1 s, using station spacing of ∼ 20 km or less) have been used to investigate shallow

crustal or even near surface shear-wave speed variations [17, 21, 29, 38–40].

1.2. Semiclassical analysis perspective

In a separate contribution [11], we presented the semiclassical analysis of surface waves.

Such an analysis leads to a geometric-spectral description of the propagation of these waves

[1, 36]. This semiclassical analysis is built on the work of Colin de Verdière [7, 8]. The

main contribution of this paper is the construction of the Bohr–Sommerfeld quantization for

Love waves. Colin de Verdière also considered the inverse spectral problem of scalar sur-

face waves allowing wavespeed pro�les that contain a well [9]. His result does not account

for the Neumann boundary condition at the surface, although a re�ection principle could be

invoked, but his methodology directly applies once the Bohr–Sommerfeld quantization is

obtained. The re�ection principle does not apply to general elastic surface waves and the

remedy is presented in this paper. In the process, we show that with the Neumann bound-

ary condition at the surface, in fact, ambiguities arising in the recovery of the S-wave speed on

the line (that is, without this boundary condition) can be resolved.

We study the elastic wave equation in X = R2 × (−∞, 0]. In coordinates,

(x, z), x = (x1, x2) ∈ R2, z ∈ R− = (−∞, 0],

we consider solutions, u = (u1, u2, u3), satisfying the Neumann boundary condition at ∂X =

{z = 0}, to the system

∂2
t ui +Milul = 0,

u(t = 0, x, z) = 0, ∂tu(t = 0, x, z) = h(x, z),

ci3kl

ρ
∂kul(t, x, z = 0) = 0,

(1)

2
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where

Mil =− ∂

∂z

ci33l(x, z)

ρ(x, z)

∂

∂z
−

2∑

j,k=1

ci jkl(x, z)

ρ(x, z)

∂

∂x j

∂

∂xk
−

2∑

j=1

∂

∂x j

ci j3l(x, z)

ρ(x, z)

∂

∂z

−
2∑

k=1

ci3kl(x, z)

ρ(x, z)

∂

∂z

∂

∂xk
−

2∑

k=1

(
∂

∂z

ci3kl(x, z)

ρ(x, z)

)
∂

∂xk

−
2∑

j,k=1

(
∂

∂x j

ci jkl(x, z)

ρ(x, z)

)
∂

∂xk
.

Here, the stiffness tensor, cijkl, and density, ρ, are smooth and obey the following scaling:

introducing Z = z
ǫ
,

ci jkl

ρ
(x, z) = Ci jkl

(
x,
z

ǫ

)
, ǫ ∈ (0, ǫ0];

Ci jkl(x, Z) = Ci jkl(x, ZI) = CI
i jkl(x), Z 6 ZI < 0.

As discussed in [11], with the Neumann boundary condition, surface waves travel along the

surface z = 0.

The remainder of the paper is organized as follows. In section 2, we give the formulation

of the inverse problems as an inverse spectral problem on the half line. In section 3, we treat

the simple case of recovery of a monotonic pro�le of wave speed. In section 4, we discuss the

relevant Bohr–Sommerfeld quantization, which is the corner stone in the study of the inverse

spectral problem. In section 5, we give the reconstruction scheme under generic assumptions.

2. Semiclassical description of Love waves

2.1. Surface wave equation, trace and the data

For the convenience of the readers, we brie�y summarize the semiclassical description of elas-

tic surface waves. The operatorM can be viewed as a semiclassical pseudodifferential operator

in (x1, x2) with small parameter ǫ. The leading-order (operator-valued) symbol associated with

Mil is given by

H0,il(x, ξ) =− ∂

∂Z
Ci33l(x, Z)

∂

∂Z
− i

2∑

j=1

Ci j3l(x, Z)ξ j
∂

∂Z

− i

2∑

k=1

Ci3kl(x, Z)
∂

∂Z
ξk − i

2∑

k=1

(
∂

∂Z
Ci3kl(x, Z)

)
ξk

+

2∑

j,k=1

Ci jkl(x, Z)ξ jξk. (2)

3
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Here we use the standard quantization of the symbol [42, section 4.1]. We view H0(x, ξ) as
ordinary differential operators in Z, with domain

D =

{
v ∈ H2(R−)

∣∣
3∑

l=1

(
Ci33l(x, 0)

∂vl
∂Z

(0)+ i

2∑

k=1

Ci3klξkvl(0)

)
= 0

}
.

For an isotropic medium,

Ci jkl = λ̂δi jδkl + µ̂(δikδ jl + δilδ jk),

where λ̂ = λ
ρ
and µ̂ = µ

ρ
. The S-wavespeed, cS, is then cS =

√
µ̂. The decoupling of Love and

Rayleigh waves is observed in practice, and explained in [11]. We denote

P(ξ) =




|ξ|−1ξ2 |ξ|−1ξ1 0

−|ξ|−1ξ1 |ξ|−1ξ2 0

0 0 1


 .

Then

P(ξ)−1H0(x, ξ)P(ξ) =

(
HL

0 (x, ξ)
HR

0 (x, ξ)

)
,

where

HL
0 (x, ξ)ϕ1 = − ∂

∂Z
µ̂
∂ϕ1

∂Z
+ µ̂ |ξ|2ϕ1 (3)

supplemented with boundary condition

∂ϕ1

∂Z
(0) = 0,

for Love waves. We will consider only the Love waves in this paper.

We assume that Λα(x, ξ) is an eigenvalue of H0(x, ξ) with eigenfunction Φα,0(Z, x, ξ). By
[11, theorem 2.1], we have

HL
0 ◦ Φα,0 = Φα,0 ◦ Λα +O(ǫ). (4)

We de�ne

Jα,ǫ(Z, x, ξ) =
1√
ǫ
Φα,0(Z, x, ξ). (5)

Microlocally (in x), we can construct approximate solutions of the system (1) with initial values

h(x, ǫZ) =

M∑

α=1

Jα,ǫ(Z, x, ǫDx)Wα,ǫ(x, Z),

representing surface waves. We assume that all eigenvalues Λ1 < · · · < Λα < · · · < ΛM are

eigenvalues of the operator given in (3). We let Wα,ǫ solve the initial value problems (up to

leading order)

[ǫ2∂2
t + Λα(x,Dx)]Wα,ǫ(t, x, Z) = 0, (6)

Wα,ǫ(0, x, Z) = 0, ∂tWα,ǫ(0, x, Z) = Jα,ǫWα(x, Z), (7)

4
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α = 1, . . . , M. We let G0(Z, x, t, Z
′, ξ; ǫ) denote the approximate Green’s function (microlo-

calized in x), up to leading order, for Love waves. We may write [11]

G0(Z, x, t, Z
′, ξ; ǫ)

=

M∑

α=1

Jα,ǫ(Z, x, ξ)

(
i

2
Gα,+,0(x, t, ξ, ǫ)−

i

2
Gα,−,0(x, t, ξ, ǫ)

)
Λ−1/2
α (x, ξ) Jα,ǫ(Z

′, x, ξ), (8)

where Gα,±,0 are Green’s functions for half wave equations associated with (6) and (7). We

have the trace

∫

R−
ǫ̂∂tG0(Z, x,ω, Z, ξ; ǫ) dǫZ =

M∑

α=1

δ(ω2 − Λα(x, ξ))Λ
1/2
α (x, ξ)+O(ǫ−1)

from which we can extract the eigenvalues Λα, α = 1, 2, . . . , M as functions of ξ. We use

these to recover the pro�le of c2S.

In practice, these eigenvalues are obtained from surface-wave tomography and to ensure

that all eigenvalues are observed, measurements of surface-waveforms should be taken in

boreholes. Most seismic observations are made at or near Earth’s surface, but modern net-

works increasingly include borehole sensors indeed. For example, the Hi-net seismographic

network in Japan6 includes more than 750 sensors located in > 100 m deep boreholes and

permanent sites of USArray7 include sensors placed around 100 m depth.

2.2. Semiclassical spectrum

From here on, we only consider the operatorHL
0 (x, ξ) for Love waves. We suppress the depen-

dence on x, and introduce h = |ξ|−1 as another semiclassical parameter.Within this setting, we

also change the notation from ∂
∂Z

to d
dZ
. We arrive at the operator

Lh = −h2 d

dZ

(
µ̂(Z)

d

dZ

)
+ µ̂(Z)

with Neumann boundary condition at Z = 0. The assumption on the stiffness tensor gives us

the following assumption on µ̂:

Assumption 2.1. The (unknown) function µ̂ satis�es µ̂(Z) = µ̂(ZI) for all Z 6 ZI and

0 < µ̂(0) = E0 = inf
Z60

µ̂(Z) < µ̂I = sup
Z60

µ̂(Z) = µ̂(ZI).

The assumption that µ̂ attains its mininum at the boundary, and its maximum in some deep

zone, is realistic in practice.

We �rst observe that the spectrum of Lh is divided in two parts,

σ(Lh) = σpp(Lh) ∪ σac(Lh),

where the point spectrum σpp(Lh) consists of a �nite number of eigenvalues in (E0, µ̂I) and the

continuous spectrum σac(Lh) = [µ̂I,∞). We write λα = h2Λα. Since this is a one-dimensional

problem, the eigenvalues are simple and satisfy

E0 < λ1(h) < λ2(h) < · · · < λM(h) < µ̂I;

6 http://hinet.bosai.go.jp
7 http://usarray.org

5
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the number of eigenvalues,M increases as h decreases.

We will study how to reconstruct the pro�le µ̂ using only the asymptotic behavior of λα(h)

in h. To this end, we introduce the semiclassical spectrum as in [9].

Definition 2.1. For givenEwith E0 < E 6 µ̂I and positive real numberN, a sequenceµα(h),

α = 1, 2, . . . .is a semiclassical spectrum of Lh mod o(hN) in (−∞,E) if, for all λα(h) < E,

λα(h) = µα(h)+ o(hN)

uniformly on every compact subset K of (−∞,E).

3. Reconstruction of a monotonic profile

In this section, we give a reconstruction scheme for the simple situation where the pro�le µ̂ is

monotonic. First it is well known that

Lemma 3.1. The �rst eigenvalue of Lh satis�es limh→0 λ1(h) = E0.

Similar to theorem 3 in [7], we have

Theorem 3.1. Assume that µ̂ is decreasing in [ZI, 0] (then assumption 2.1 is satis�ed). Then
the asymptotics of the discrete spectra λ j(h), 1 6 j 6 M j as h→ 0 determine the function µ̂.

Before giving the proof, we recall the Abel transform and its inverse. We introduce

Ag(E) =
∫ E

E0

√
E − ug(u) du.

Then

d

dE
Ag(E) = 1

2
Tg(E), Tg(E) =

∫ E

E0

g(u)√
E − u

du,

where Tg denotes the Abel transform of g. By the inversion formula for the Abel transform,

d

dE
T2g(E) = πg(E),

we get

(
4

π

d2

dE2
A d

dE
A
)
g(E) = g(E). (9)

Proof. First, we note that E0 = µ̂(0) is determined by the �rst semiclassical eigenvalueλ1(h)

by lemma 3.1. Then, we invoke Weyl’s law. For E < µ̂I, let N(h,E) = #{λj(h) 6 E}, where
λj(h) is an eigenvalue for Lh. Then [11]

N(h,E) =
1

2πh

[
area({(Z, ζ) : µ̂(Z)(1+ ζ2) 6 E})+ o(1)

]
. (10)

Thus, from the leading order asymptotic behavior (in h) of λj(h) we can recover

Area({(Z, ζ) : µ̂(Z)(1+ ζ2) 6 E}) = 2S̃10(E), S̃10(E) =

∫ 0

f (E)

√
E − µ̂

µ̂
dZ,

6
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with µ̂( f (E)) = E. We change variable of integration, Z = f(u), with

d

dZ
µ̂(Z)

∣∣∣∣
Z= f (u)

=
1

f ′(u)
(11)

and get

S̃10(E) = Ag(E), g(u) =
f ′(u)√
u
.

Applying (9) above, we recover g, that is,

f ′(E) =

(
4

π

√
E

d2

dE2
A d

dE

)
S̃10(E), E0 < E < µ̂I.

Then

f (E) =

∫ E

E0

f ′(u) du,

using that f(E0) = 0 and knowledge of E0 = µ̂(0) from the �rst eigenvalue (lemma 3.1), from

which we recover µ̂ by the inverse function theorem. �

4. Bohr–Sommerfeld quantization

The Bohr–Sommerfeld rules give a quantization for the semiclassical spectrum [6]. We will

derive these rules making use of theWKB–Maslov ansatz for the eigenfunctions.We obtain an

alternative proof to the one given in [8, 9], which enables to explicitly incorporate Neumann

boundary conditions at the surface. It opens the way for studying inverse problems also for

Rayleigh waves; these will be investigated in the subsequent paper.

We construct WKB solutions of the form

uh(Z) = C exp



1
h

∞∑

j=0

h jS j(Z)



 (12)

that satisfy

−h2µ̂(Z)u′′h(Z)− h2µ̂′(Z)u′h(Z)+ µ̂(Z)uh(Z) = Euh(Z). (13)

We will follow various calculations from [3] in the following analysis.

4.1. Half well

We �rst consider the eigenvalue problem (13) on the half line R−, with Neumann boundary

condition at Z = 0. We further assume that there exists a unique ZE such that µ̂(ZE) = E. For

exposition of the construction, we change the variable Z→ ZE − Z such that µ̂(0) = E and ZE
is the boundary point. Furthermore,we assume that µ̂(Z)− E > 0 for Z > 0 and µ̂(Z)− E < 0

for ZE < Z < 0. The original domain (−∞, 0] changes to [ZE,∞). We divide the domain

[ZE,∞) into three regions: region I(Z > 0), region II (|Z| is small) and region III(ZE 6 Z < 0).

We will construct WKB solutions in each region and glue them together.

7
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First, we construct the WKB solution, uI(Z), in region I. We substitute solutions of the form

(12), collect terms of equal orders in h, and arrive at an in�nite family of equations which may

be solved recursively. The O(h0) terms give the eikonal equation for S0,

µ̂(Z)(1− (S ′
0(Z))

2) = E.

We select the solution

S0(Z) = −
∫ Z

0

√
µ̂− E

µ̂
dZ′. (14)

Then the O(h) term yields

µ̂S ′′
0 + 2µ̂S ′

0S ′
1 + µ̂′S ′

0 = 0,

which implies that

S ′
1 = −1

2
(log(µ̂S ′

0))
′ = −1

4
(log[µ̂(µ̂− E)])′;

we select the solution

S1 = −1

4
log[µ̂(µ̂− E)]. (15)

The lower order terms give us a sequence of equations,

2µ̂S ′
0S ′

j + (µ̂S ′
j−1)

′ + µ̂

j−1∑

k=1

S ′
j−kS ′

k = 0, j > 2.

We write down the explicit form of S2 for later use

S2(δ, Z) =

∫ Z

δ

[
(Eµ̂′ − 2µ̂µ̂′)2

32µ̂3/2(µ̂− E)5/2
+

−E2µ̂′′ + 3Eµ̂µ̂′′ − 2µ̂2µ̂′′ + E(µ̂′)2

8(µ̂− E)5/2µ̂1/2

]
dZ′,

(16)

up to a constant difference; here, δ is any small �xed positive constant. Upon integrating by

parts, we obtain

S2(δ, Z)= − (3E+ 2µ̂)µ̂′

48µ̂1/2(µ̂− E)3/2
− µ̂′

24(µ̂− E)1/2µ̂1/2

+

∫ Z

δ

[
− (µ̂′)2

24µ̂3/2(µ̂− E)1/2
+

(7E− 8µ̂)µ̂′′

48µ̂1/2(µ̂− E)3/2

]
dZ′.

(17)

Next, we consider region II containing the turning point. When |Z| is small, we expand

µ̂(Z)− E = a1Z + a2Z
2 + a3Z

3 + · · · .

Here, a1 > 0. We write uII(Z) = µ̂−1/2(Z) vII(Z) = (E+ a1Z + a2Z
2 + a3Z

3 + · · · )−1/2vII(Z).
Then we obtain

−h2 d

dZ

(
µ̂
duII

dZ

)
= −h2 d

dZ

(
µ̂

d

dZ
µ̂−1/2(Z)vII(Z)

)
= −h2µ̂1/2v′′II + h2(µ̂1/2)′′vII.

8
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Thus, by (13), we have the following equation for vII:

h2v′′II =

(
1− Eµ̂−1 + h2

(µ̂1/2)′′

µ̂1/2

)
vII. (18)

We further employ the simple asymptotic expansion

1− Eµ̂−1(Z) = b1Z + b2Z
2 + · · · ,

where b1 =
a1
E
and b2 =

a2E−a21
E2

. Temporarily, we introduce the scaling Z = h2/3b
−1/3
1 Y. With

abuse of notation for vII, (18) gives

−h2h−4/3b
2/3
1

d2vII
dY2

= (b1h
2/3b

−1/3
1 Y + b2h

4/3b
−2/3
1 Y2 + · · · ) vII,

which can be simpli�ed to

d2vII
dY2

∼ (Y + h2/3b
−4/3
1 b2Y

2) vII, (19)

keeping the second-order approximation. We then seek an approximate solution of the form

vII(Y) ∼ (1+ α1h
2/3Y) Ai(Y + β1h

2/3Y2),

where Ai is the Airy function and α1 and β1 are constants to be determined. By tedious

calculations, we �nd that

d2vII
dY2

∼D
[
α1h

2/3Ai′(Y + β1h
2/3Y2)+ α1h

2/3(1+ 2β1h
2/3Y) Ai′(Y + β1h

2/3Y2)

+ (1+ α1h
2/3Y)(1+ 2β1h

2/3Y)2Ai′′(Y + β1h
2/3Y2)

+ (1+ α1h
2/3Y) 2β1h

2/3Ai′(Y + β1h
2/3Y2)

]
.

Comparing this equation with differential equation (19), and using the property for Airy

functions,

Ai′′(Y + β1h
2/3Y2) = (Y + β1h

2/3Y2) Ai(Y + β1h
2/3Y2),

we must have

α1 + β1 = 0,

and

5β1 = b
−4/3
1 b2.

Hence, undoing the scaling and returning to the original (depth) coordinate, we have

vII(Z) ∼ D

(
1− b2

5b1
Z

)
Ai

[
b
1/3
1 h−2/3

(
Z +

b2Z
2

5b1

)]
.

9
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Or equivalently, we write

uII(Z) ∼ D

(
E−1/2 − 1

2
E−3/2a1Z

)(
1− a2E − a21

5Ea1
Z

)
Ai

[(a1
E

)1/3
h−2/3

(
Z +

a2E − a21
5Ea1

Z2

)]
.

(20)

We examine uI(Z) for small Z. We make the following approximations:

[µ̂(Z)(µ̂(Z)− E)]−1/4 ∼ Z−1/4(Ea1)
−1/4

(
1− 1

4

Ea2 + a21
Ea1

Z

)
,

∫ Z

0

√
µ̂− E

µ̂
dZ′ ∼ 2

3
Z3/2

(a1
E

)1/2
+
Ea2 − a21
5Ea1

(a1
E

)1/2
Z5/2,

S2(δ, Z) ∼ − 5

48
E1/2a

−1/2
1 Z−3/2 − E1/2a2a

−3/2
1

12
δ−1/2.

In the asymptotic expansionofS2, we neglect termsO(Z−1/2), which is justi�ed because hZ−1/2

is small (compared to hδ−1/2, hZ−3/2) in the limit h→ 0. Substituting these formulas into uI
gives

uI ∼CZ−1/4(Ea1)
−1/4

(
1− 1

4

Ea2 + a21
Ea1

Z

)
exp

[
− 2

3h
Z3/2

(a1
E

)1/2

− 1

5h

Ea2 − a21
Ea1

(a1
E

)1/2
Z5/2 − h

48
E1/2a

−5/2
1 Z−3/2

− h

12
a−3/2(2a1 − E)E−1/2Z−3/2 − hE1/2a2a

−3/2
1

12
µ−1/2

]
.

In order to glue uI and uII, we revisit asymptotic of uII(Z) (20). We employ the asymptotic

behavior of the Airy function Ai(s) for large positive s,

Ai(s) ∼ 1

2
√
π
s−1/4

(
1− 5

48
s−3/2

)
exp

[
−2

3
s3/2
]

to obtain

uII(Z) ∼D
1

2
√
π

(a1
E

)−1/12

h1/6Z−1/4E−1/2

(
1− Ea2 + a21

4Ea1
Z

)(
1− 5

48
hZ−3/2

(a1
E

)−1/2
)

× exp

[
−2

3

(a1
E

)1/2
h−1Z3/2

(
1+

3

2

(
a2E − a21
5Ea1

)
Z

)]
.

Uniformly asymptotically matching uI and uII then leads to the relation of the constants C and

D:

C =
D

2
√
π
h1/6 exp

[
hE1/2a2a

−3/2
1

12
µ−1/2

]
a
1/6
1 E−1/3. (21)

10
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In region III, we construct the (oscillatory) WKB solution,

uIII(Z)∼ F[(E− µ̂)µ̂]−1/4 exp

[
i

h
S0(Z)+ ihS2(µ, Z)

]

+G[(E−µ̂)µ̂]−1/4 exp

[
− i

h
S0(Z)− ihS2(µ, Z)

]
, Z → 0−, h→ 0+,

(22)

where

S0(Z) =

∫ 0

Z

√
E − µ̂

µ̂
dZ′ (23)

and

S2(δ, Z) = −
∫ −δ

Z

[
(Eµ̂′ − 2µ̂µ̂′)2

32µ̂3/2(E − µ̂)5/2
+

−E2µ̂′′ + 3Eµ̂µ̂′′ − 2µ̂2µ̂′′ + E(µ̂′)2

8(E− µ̂)5/2µ̂1/2

]
dZ′

=
(3E+ 2µ̂)µ̂′

48µ̂1/2(E − µ̂)3/2
+

µ̂′

24(E − µ̂)1/2µ̂1/2

+

∫ −δ

Z

[
(µ̂′)2

24µ̂3/2(E − µ̂)1/2
− (7E− 8µ̂)µ̂′′

48µ̂1/2(E − µ̂)3/2

]
dZ′. (24)

Next, we uniformly asymptotically match uII and uIII. To this end, we consider the asymptotic

behavior of Ai(s) for large negative s,

Ai(s) ∼ 1√
π
(−s)−1/4 sin

[
2

3
(−s)3/2 + π

4

]
,

and obtain

uII(Z) ∼D
1√
π

(a1
E

)−1/12

h1/6(−Z)−1/4E−1/2

(
1− Ea2 + a21

4Ea1
Z

)

× sin

[
2

3

(a1
E

)1/2
h−1(−Z)3/2

(
1+

3

2

(
a2E − a21
5Ea1

)
Z

)
+

π

4

]
, Z → 0−, h→ 0+.

Matching requires that uIII(Z) has the form

uIII(Z) ∼
D√
π

(a1
E

)−1/12

h1/6E−1/2[(E− µ̂)µ̂]−1/4

× sin

[
1

h
S0(Z)+

π

4
+ hS2(δ, Z)−

hE1/2a2a
−3/2
1

12
δ−1/2

]
, Z → 0−, h→ 0+.

Thus,

F =
D

2
√
π

(a1
E

)−1/12

h1/6E−1/2 exp

[
iπ

4
− i

hE1/2a2a
−3/2
1 δ−1/2

12

]
, (25)

G = − D

2
√
π

(a1
E

)−1/12

h1/6E−1/2 exp

[
− iπ

4
+ i

hE1/2a2a
−3/2
1 δ−1/2

12

]
. (26)

11
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This completes the construction of WKB solutions.

TheNeumann boundary condition pertains to region III, is applied at Z = ZE in the shifted

coordinate and yields the Bohr–Sommerfeld rule. It takes the implicit form

cot

[
1

h
S0(ZE)+

π

4
+ hS2(δ, ZE)−

hE1/2a2a
−3/2
1

24
δ−1/2

]
= F(h,E),

F(h,E) =
h(E − 2µ̂)µ̂′

4(E− µ̂)µ̂
(
−
√

E−µ̂
µ̂

+ h2S ′
2

)

∣∣∣∣∣∣
Z=ZE

. (27)

We carry out an asymptotic expansion of cot−1(F(h,E)) in the small h limit

cot−1(F(h,E)) =
π

2
+ hF1(E)+O(h2),

where

F1(E) =
(E− 2µ̂)µ̂′

4(E − µ̂)3/2µ̂1/2

∣∣∣∣
Z=ZE

.

We undo the shift and return to the original (depth) coordinate. We consider, again, a func-

tion f such that µ̂( f (E)) = E when ZE = f(E). Substituting (23) and (24), (27) takes the form

1

h

∫ 0

f (E)

√
E − µ̂

µ̂
dZ +

π

4
+

(3E+ 2µ̂(0))µ̂′(0)

48µ̂1/2(E − µ̂(0))3/2
+

µ̂′(0)

24(E− µ̂(0))1/2µ̂1/2(0)

+

∫ 0

f (E)+δ

[
(µ̂′)2

24µ̂3/2(E − µ̂)1/2
− (7E− 8µ̂)µ̂′′

48µ̂1/2(E − µ̂)3/2

]
dZ− hE1/2a2a

−3/2
1

24
δ−1/2

=

(
α− 1

2

)
π + hF1(E), α = 1, 2, . . . ,

where

F1(E) =
(−E+ 2µ̂(0))µ̂′(0)

4(E− µ̂(0))3/2µ̂1/2(0)
.

By letting δ ↓ 0, using that

µ̂( f (E)+ δ)− E ∼ −a1δ + a2δ
2,

where a1 > 0, and that

E1/2a2a
−3/2
1

24
δ−1/2 ∼ − Eµ̂′′( f (E))

12
√
µ̂( f (E))(E− µ̂( f (E)− δ))

1

µ̂′(E)
,

we obtain the quantization rule,

1

h

1

4
S̃0(E)+

π

4
+ h

1

4
S̃2(E) =

(
α− 1

2

)
π +O(h2),

12
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where

S̃0(E) = 4

∫ 0

f (E)

√
E − µ̂

µ̂
dZ (28)

and

1

4
S̃2(E)=

(3E+ 2µ̂(0))µ̂′(0)

48µ̂1/2(0)(E− µ̂(0))3/2
+

µ̂′(0)

24(E − µ̂(0))1/2µ̂1/2(0)

− 1

24

d

dE
J̃(E)− 1

8
K̃(E)− F1(E),

(29)

in which

J̃(E) =

∫ 0

f (E)

(
Eµ̂′′ − 2(E− µ̂)

µ̂
(µ̂′)2

)
dZ√

µ̂(E − µ̂)
, (30)

K̃(E) =

∫ 0

f (E)

µ̂′′ dZ√
µ̂(E − µ̂)

. (31)

Remark 4.1. The above quantization rule suggest that λ1 = E0 +O(h2/3) under assumption

2.1, since the �rst eigenvalue is (semiclassically) associated with the half well. This would give

us an improved version of lemma 3.1. If µ̂′(0) = 0, then the same quantization rule would lead

to λ1 = E0 +O(h).

4.2. Full well

Here, we consider the eigenvalue problem on the entire real line. We assume that there are

two simple turning points, at Z = f−(E) and at Z = f+(E); that is, µ̂ < E on (f−(E), f+(E)), and
µ̂ > E on (−∞, f−(E)) and (f+(E),+∞). Clearly, µ̂( f−(E)) = µ̂( f+(E)) = E. Similar to the

half-well case, now, we construct WKB solutions in the different regions and match them in

the neighborhoods of the two turning points f−(E) and f+(E). We let a1,−, a2,− and a1,+, a2,+
be the expansion coef�cients of µ̂− E in the neighborhoods of f−(E) and f+(E), respectively.
We now have

lim
δ↓0

∫ f+(E)−δ

f−(E)+δ

− 7E − 8µ̂′′

48µ̂1/2(E− µ̂)3/2
dZ − E1/2a2,−a

−3/2
1,−

12
δ−1/2 − E1/2a2,+a

−3/2
1,+

12
δ−1/2

= lim
δ↓0

∫ f+(E)−δ

f−(E)+δ

(
− µ̂′′

24µ̂1/2(E − µ̂)1/2
+

Eµ̂′′

48µ̂1/2(E − µ̂)3/2

)
dZ

+
Eµ̂′′( f−(E))

24
√
µ̂( f−(E))(E− µ̂( f−(E)+ δ))

1

µ̂′( f−(E))

− Eµ̂′′( f+(E))

24
√
µ̂( f+(E))(E− µ̂( f+(E)− δ))

1

µ̂′( f+(E))
−
∫ f+(E)

f−(E)

µ̂′′

8µ̂1/2(E − µ̂)1/2
dZ

+

∫ f+(E)

f−(E)

(µ̂′)2

24µ̂3/2(E− µ̂)1/2
dZ = − 1

24

d

dE
J(E)− 1

8
K(E),

where

J(E) =

∫ f+(E)

f−(E)

(
Eµ̂′′ − 2(E− µ̂)

µ̂
(µ̂′)2

)
dZ√

µ̂(E − µ̂)
, (32)

13
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K(E) =

∫ f+(E)

f−(E)
µ̂′′ dZ√

µ̂(E − µ̂)
. (33)

That is, we arrive at the quantization rule

1

h

1

2
S0(E)+ h

1

2
S2(E) ∼

(
α− 1

2

)
π,

where

S0(E) =
1

2

∫ f+(E)

f−(E)

√
E − µ̂

µ̂
dZ (34)

and

S2(E) = − 1

12

d

dE
J(E)− 1

4
K(E). (35)

We note that the above form has also been derived in [9] using the method introduced in [6].

4.3. Multiple wells

In the case of multiple wells we invoke

Assumption 4.1. There is a Z∗ < 0 such that µ̂′(Z∗) = 0, µ̂′′(Z∗) < 0 and µ̂′(Z) < 0 for

Z ∈ (Z∗, 0).

Assumption 4.2. The function µ̂(Z) has non-degenerate critical values at a �nite set

{Z1, Z2, . . . , ZM}

in (ZI, 0) and all critical points are non-degenerate extrema. None of the critical values of µ̂(Z)
are equal, that is, µ̂(Z j) 6= µ̂(Zk) if j 6= k.

We label the critical values of µ̂(Z) as E1 < · · · < EM < µ̂I and the corresponding critical

points by Z1, . . . , ZM. We use the fact that µ̂(0) = infZ60µ̂(Z) and denote Z0 = 0 and E0 =

µ̂(Z0).
We de�ne a well of order k as a connected component of {Z ∈ (ZI , 0) : µ̂(Z) < Ek} that is

not connected to the boundary, Z = 0. We refer to the connected component connected to the

boundary as a half well of order k. We denote Jk = (Ek−1,Ek), k = 1, 2, 3, . . . . and let Nk (6 k)

be the number of wells of order k (see �gure 1 top). The set {Z ∈ (ZI , 0) : µ̂(Z) < Ek} consists
of Nk wellsW

k
j (E), j = 1, 2, . . . , Nk, and one half well W̃

k(E) such that

(∪Nk
j=1W

k
j (E)) ∪ W̃k(E) ⊂ [ZI , 0).

The half well W̃k(E) is connected to the boundary Z = 0.

Similar to proposition 10.1 in [9], we can divide the semiclassical spectrum of Lh in Jk
into Nk + 1 parts, where each part is associated with a single well or half-well. The result is

summarized in the following proposition.

Proposition 4.1. The semiclassical spectrum of Lh mod o(h
5/2) in Jk is the union of Nk + 1

spectra: ∪Nk
j=1Σ

k
j(h) ∪ Σ̃k(h). Here, Σk

j(h) is the semiclassical spectrum associated to well Wk
j ,

and Σ̃k(h) is the semiclassical spectrum for half well W̃k.

14
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Figure 1. Wells of different orders and periodic trajectories.

The above separation of semiclassical spectra comes from the fact that the eigenfunctions

are O(h∞) outside the wells, and is related to the exponentially small ‘tunneling’ effects [16,

41]. For a full well the quantization rule for Σk
j(h) is the same as the whole real line case, and

for the half well the quantization rule for Σ̃k(h) is the same as the half line case.We refer further

to [3] for more details. Therefore, we have Bohr–Sommerfeld rules for separated wells, that

is,

Σk
j(h) = {µα(h) : Ek−1 < µα(h) < Ek and S

k, j(µα(h)) = 2πhα}, (36)

where Sk, j = Sk, j(E) : (Ek−1,Ek)→ R admits the asymptotics in h

Sk, j(E) = S
k, j
0 (E)+ hπ + h2S

k, j
2 (E)+ · · ·

and

Σ̃k(h) = {να(h) : Ek−1 < να(h) < Ek and S̃
k(να(h)) = 2πhα}, (37)

where S̃k = S̃k(E) : (Ek−1,Ek)→ R admits the asymptotics

S̃k(E) =
1

2
S̃k0(E)+

3

2
hπ +

1

2
h2S̃k2(E)+ · · · .

The form of Sk,j is similar to the one given in (34) and (35) and the form of S̃k is similar to the

one given in (28)–(31). We will give more details below.

For alternative representations of Sk,j and S̃k, we introduce the classical Hamiltonian

p0(Z, ζ) = µ̂(Z)(1+ ζ2). For any k, p−1
0 (Jk) is a union of Nk topological annuli Akj and a

15
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Figure 2. Behavior of a half trajectory.

half annulus Ãk. The map p0 : A
k
j → Jk is a �bration whose �bers p−1

0 (E) ∩ Akj are topolog-

ical circles γkj (E) that are periodic trajectories of classical dynamics (illustrated in �gure 1

bottom). The map p0 : Ã
k → Jk is a topological half circle γ̃k(E). If E ∈ Jk then p−1

0 (E) =

(∪Nk
j=1γ

k
j (E)) ∪ γ̃k(E). The corresponding classical periods are

Tkj (E) =

∫

γk
j
(E)

|dt|.

We let t be the parametrization of γkj (E) by time evolution in

dZ

dt
= ∂ζ p0,

dζ

dt
= −∂Z p0 (38)

for a realized energy level E.

For the half well W̃k, (Z, ζ) follows a periodic (half) trajectory as shown in �gure 2. After

one (half-) period T, the trajectory reaches the boundary Z(T) = 0, and encounters a perfect

re�ection, so that

ζ(T+) = −ζ(T−) =

√
E − µ̂(0)

µ̂(0)
,

and then continues following the Hamilton system (38).

4.3.1. Wells separated from the boundary. For a well Wk
j separated from the boundary, the

associated semiclassical spectrum mod o(h5/2) follows from (36) and (32)–(35). We have

Sk, j(E) = S
k, j
0 (E)+ hπ + h2S

k, j
2 (E), (39)

16
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where

S
k, j
0 (E) =

∫

γk
j
(E)

ζ dZ = area{(Z, ζ) : p0(Z, ζ) 6 E, Z ∈ Wk
j} (40)

and

S
k, j
2 (E) = − 1

12

d

dE

∫

γk
j
(E)

(
Eµ̂′′ − 2

(E− µ̂)

µ̂
(µ̂′)2

)
|dt| − 1

4

∫

γk
j
(E)

µ̂′′|dt|. (41)

The explicit forms of S
k, j
0 and S

k, j
2 are equivalent to those given in (34) and (33). Here, the

integration over (f−(E), f+(E)), E ∈ [Ek−1,Ek], in the Z coordinate has been changed into inte-

gration along the periodic trajectory γ. One can get the same results by using the method in [6,

9]. From (40) it is immediate that

(S
k, j
0 )′(E) = Tkj (E). (42)

4.3.2. Half well connected to the boundary. For the half well W̃k connected to the boundary,

we have, modO(h2),

S̃k(E) =
1

2
S̃k0(E)+ h

3

2
π, (43)

where

S̃k0(E) = 2

∫

γ̃k(E)

ζ dZ. (44)

The explicit form of S̃k0 is equivalent to the one given in (28). Here, the integration over (f(E), 0),

E ∈ [Ek−1,Ek], in the Z coordinate has been changed into integration along the (half) periodic

trajectory γ̃. As before, it follows that

1

2
(S̃k0)

′(E) =
1

2
T̃k(E). (45)

The explicit form of S̃k2 will not be needed in the following and hence we omit it.We note that

S
k, j
0 and S̃k0 depend only on periodic trajectories.

Remark 4.2. In the further analysis of the inverse problem, the explicit form of Sk2 is only

needed for the wells separated from the boundary (between two turning points) and there the

formulas are exactly as in [9] (on the whole line without boundary conditions). Near the bound-

ary (between a turning point and the boundary) the function µ̂ is strictly decreasing and only

Sk0 or the counting function for semiclassical eigenvalues suf�ce to reconstruct the pro�le.

5. Unique recovery of µ̂ from the semiclassical spectrum

5.1. Trace formula

The inverse problem is addressed with a trace formula as it re�ects the data.

Lemma 5.1. ([9], lemma 11.1). Let S : J → R be a smooth function with S′ > 0. Then we

have the following identity as Schwartz distributions in J, meaning that the equality holds

17
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when applying both sides to a test function φ ∈ C∞
0 (J),

∑

α∈Z
δ(E − S−1(2πhα)) =

1

2πh

∑

m∈Z
eimS(E)/hS′(E). (46)

Substituting the action in (39), (43) and the Bohr–Sommerfeld rules in (46) yields, on Jk
with {µα(h)}α = ∪Nk

j=1Σ
k
j(h),

∑

α∈Z
δ(E− µα(h)) =

1

2πh

Nk∑

j=1

∑

m∈Z
eim(S

k, j
0

(E)h−1+π+hS
k, j
2
(E)+O(h2))((S

k, j
0 )′(E)+ h2(S

k, j
2 )′(E)+O(h3))

=
1

2πh

Nk∑

j=1

∑

m∈Z
eimS

k, j
0

(E)h−1

eimπ(S
k, j
0 )′(E)(1+ imhS

k, j
2 (E)+O(h2))

and with {να(h)}α = Σ̃k(h):

∑

α∈Z
δ(E− να(h)) =

1

2πh

∑

m∈Z
eim(

1
2
S̃k
0
(E)h−1+

3
2
π+h 1

2
S̃k
2
(E)+O(h2))

(
1

2
(S̃k0)

′(E)+
h2

2
(S̃k2)

′(E)+O(h3)

)

=
1

2πh

∑

m∈Z
eim

1
2
S̃k
0
(E)h−1

eim
3
2
π 1

2
(S̃k0)

′(E)

(
1+ imh

1

2
S̃k2(E)+O(h2)

)
.

Therefore, we have

Theorem 5.1. Let {µα(h)} be the semiclassical spectrum of H0,h modulo o(h5/2). As

distributions on Jk, we have

∑

α∈Z
δ(E − µα(h)) =

1

2πh

Nk∑

j=1

∑

m∈Z
(−1)m eimS

k, j
0

(E)h−1

Tkj (E)(1+ imhS
k, j
2 (E))

+
1

2πh

∑

m∈Z
eim

1
2 S̃

k
0
(E)h−1

eim
3
2πT̃k(E)

(
1+ imh

1

2
S̃k2(E)

)
+o(1).

(47)

The direct way to obtain this trace formula is starting from (2.1), that is,

∫

R−
ǫ̂∂tG0(Z, x,ω, Z, ξ; ǫ) d(ǫZ) ∼

1

2h2

∑

α∈Z
δ(E− µα(h)),

upon substituting E = h2ω2. We then expand the parametrix (8) in the WKB eigenfunctions

(12) from the previous section.

We will use the notation

Zkm, j(E) =
1

2πh
(−1)m eimS

k, j
0

(E)h−1

Tkj (E)(1+ imhS
k, j
2 (E)), j = 1, . . . , Nk,

(48)

Zkm,Nk+1(E) =
1

2πh
eim

3
2
π eim

1
2
S̃k
0
(E)h−1

TkNk+1(E)

(
1+ imh

1

2
S̃k2(E)

)
, (49)
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TkNk+1(E): = T̃k(E) (50)

for m ∈ Z. To further unify the notation, we write

S
k,Nk+1
0,2 (E) :=

1

2
S̃k0,2(E).

The micro-support of Zkm, j, j = 1, . . . ,Nk + 1, is given by the Lagrangian submanifold

Lkm, j = {(E,mTkj (E)) : E ∈ Jk}

of T∗Jk associated with phase function mS
k, j
0 (E).

5.2. Separation of clusters and the weak transversality condition

We observe that the singular points of the counting function,
∫
p0(Z,ζ)6E

|dZ dζ|, are precisely

the critical values, E1,E2, . . . ,EM, of µ̂ [9, lemma 11.1] and, hence, are determined using the

Weyl asymptotics �rst. From the singularity at Ek one can extract the value of µ̂
′′(Zk). We then

invoke

Assumption 5.1. For any k = 1, 2, . . . .and any j with 1 6 j < l 6 Nk + 1, the classical

periods (half-period if j = Nk + 1) Tkj (E) and T
k
l (E) are weakly transverse in Jk, that is, there

exists an integer N such that the Nth derivative (Tkj − Tkl )
(N)(E) does not vanish.

We introduce the sets

B = {E ∈ Jk : ∃ j 6= l, Tkj (E) = Tkl (E)},

while suppressing k in the notation. By the weak transversality assumption, it follows that B is

a discrete subset of Jk.

We let the distributions Dh(E) =
∑

α∈Zδ(E − µα(h)) be given on intervals J = Jk modulo

o(1) using (47). These distributions are determined mod o(1) by the semiclassical spectra mod

o(h5/2). We denote by Zh the �nite sum de�ned by the right-hand side of (47) restricted to

m = 1, that is,

Zh(E) =

Nk+1∑

j=1

Zk1, j(E).

By analyzing the micro-support of Dh and Zh [9, lemmas 12.2 and 12.3], we �nd

Lemma 5.2. Under the weak transversality assumption, the sets B and the distributions Zh
mod o(1) are determined by the distributions Dh mod o(1).

Lemma 5.3. Assuming that the Sj’s are smooth and the aj’s do not vanish, there is a unique

splitting of Zh as a sum

Zh(E) =
1

2πh

Nk+1∑

j=1

(a j(E)+ hb j(E))e
iS j(E)/h + o(1).

It follows that the spectrum in Jk mod o(h5/2) determines the actions S
k, j
0 (E), S

k, j
2 (E) and

S̃k0(E). This provides the separation of the data for the Nk wells and the half well.
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Figure 3. Reconstruction step 1 in green.

For the reconstruction of µ̂ from these actions, we need one more assumption

Assumption 5.2. The function µ̂ has a generic symmetry defect: if there existX± satisfying

µ̂(X−) = µ̂(X+) < E, and for all N ∈ N, µ̂(N)(X−) = (−1)Nµ̂(N)(X+), then µ̂ is globally even

with respect to 1
2
(X+ + X−) in the interval {Z : µ̂(Z) < E}.

We will carry out the reconstruction of µ̂ successively in intervals Jk, k = 1, . . . ,M and then

on the interval [EM,EM+1] with EM+1 = µ̂I.

5.3. Reconstruction of a single well,with barrier and descreasing profile

We discuss in detail the case of one local minimum for Z < 0 and global minimum at Z = 0

(µ̂(0) < µ̂(Z) ∀ Z < 0, µ̂′(0) 6 0). This means that the global minimum occurs at Z = 0 and

E1 = µ̂(Z1) is the local minimum. Then E2 = µ̂(Z2) is attained at Z2 ∈ (Z1, 0) and E3 = µ̂I.

Step 1. For E ∈ (E0,E1), there is only one (half) well, W̃1(E), of order 1 with W̃1(E1) =

[Z′
1, 0]. Since µ̂ is strictly decreasing in W̃1(E1), we may reconstruct µ̂ on this interval as in

section 3. This is illustrated in �gure 3 in green.

Step 2. We note that Z2 in this case is the Z∗ de�ned above assumption 4.1. We consider

E ∈ (E1,E2) which corresponds to wells of order k = 2withNk = 1 (one connected component

for Z < 0 separated from the boundary). The two wells areW2,1(E) and W̃2(E) withW2,1(E2) =

[Z−, Z2] and W̃2(E2) = [Z2, 0]. Here, Z− is the unique point in [ZI, Z1] such that E2 = µ̂(Z−).
We are given S2,10 , S2,12 and S̃20 (and S̃

2
2).

We continue to reconstruct µ̂ from [Z′1, 0] to [Z2, 0] from S̃20. For the reconstruction of µ̂ on

the interval I = [Z−, Z2], more effort is needed. We note that, up to this point, I itself cannot

be determined yet. The following theorem is a version of [9, theorem 5.1].

Theorem 5.2. Under assumption 5.2, the function µ̂ is determined on I by S2,10 and S2,12 up

to a symmetry µ̂(Z)→ µ̂(c− Z), where c
2
is the midpoint of I.

Proof. For any E ∈ [E1,E2) the functions f± : [E1,E2)→ I, are de�ned so that W2
1 (E) =

[ f−(E), f+(E)]. We have µ̂′(Z) < 0 for Z ∈ (f−(E), Z1) and µ̂′(Z) > 0 for Z ∈ (Z1, f+(E)). We

introduce

Φ(E) = f ′+(E)− f ′−(E) and Ψ(E) =
1

f ′+(E)
− 1

f ′−(E)
.
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Figure 4. Reconstruction step 2, �rst part in green and second part in blue.

As in the proof of theorem 3.1, we have

(S2,10 )′(E) = Tg(E), Tg(E) =

∫ E

E1

g(u)√
E − u

du with g(u) =
Φ(u)√
u
.

The inversion formula for the Abel transform yields Φ(E) for E ∈ [E1,E2).

Concerning the recovery ofΨ, we have

S2,12 (E) = − 1

12

d

dE
BΨ(E),

BΨ(E) =

∫ E

E1

(
(7E− 6u)Ψ′(u)− 2

(
E

u
− 1

)
Ψ(u)

)
du√

u(E− u)
,

which follows from (35) with (32) and (33) upon changing variable of integration, Z = f±(u).
Thus, from S2,12 (E) and the fact BΨ(E1) = π

√
2E1µ̂′′(Z1), we can recover BΨ(E). It can be

shown that

π

E3/2

d2

dE2
(T ◦ BΨ)(E) = E2Ψ′′(E)+ 4EΨ′(E)−Ψ(E).

That is, we obtain a second-order inhomogeneous ordinary differential equation for Ψ on the

interval [E1,E2). This equation is supplemented with the ‘initial’ conditions

Ψ(E1) = 0, lim
E↓E1

√
E − E1Ψ

′(E) =
√
2µ̂′′(Z1)

As mentioned in section 5.2, this second derivative is obtained from the limiting behavior of

the counting function which coincides with S2,10 (E) as E ↓ E1. We use that the period of small

oscillations of the ‘pendulum’ associated to the local minimum of µ̂ at Z1 is given by

(S2,10 )′(E) =

∫ f+(E)

f−(E)

dZ√
µ̂(E − µ̂)

= π

√
2

E1µ̂′′(Z1)
+ o(1) asE↓E1.

Thus we obtain Ψ(E) for E ∈ [E1,E2).

With ± f ′±(E) > 0 for E ∈ (E1,E2), we then �nd

2 f ′± = ±Φ+ σ

√
Φ2 − 4

Φ

Ψ
(51)
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with

σ = sign( f ′+ + f ′−) =





+1 if f ′+ + f ′− > 0,

0 if f ′+ + f ′− = 0,

−1 if f ′+ + f ′− < 0.

We note that the sign is not (yet) determined, and only if the well is mirror-symmetric with

respect to its vertex then f ′+ + f ′− = 0 and the square root in (51) vanishes. However, later, we

will �nd the sign by a gluing argument.

By assumption 5.2, the function σ = σ(E) is constant for E ∈ (E1,E2). Hence, in what

follows we will exchange σ with ±. We have

f+(E) = Z1 +
1

2

∫ E

E1

(
Φ±

√
Φ2 − 4

Φ

Ψ

)
dE,

f−(E) = Z1 +
1

2

∫ E

E1

(
−Φ±

√
Φ2 − 4

Φ

Ψ

)
dE.

Since f+(E2) = Z2 and f−(E2) = Z−, we �nd that

Z2 = Z1 +
1

2

∫ E2

E1

(
Φ±

√
Φ2 − 4

Φ

Ψ

)
dE,

Z− = Z1 +
1

2

∫ E2

E1

(
−Φ±

√
Φ2 − 4

Φ

Ψ

)
dE.

Hence, the distance, Z2 − Z1, between the two critical points is recovered (modulomirror sym-

metry of Z1 with respect to c
2
). Since f± are both monotonic on (E1,E2), µ̂ can be recovered

(up to mirror symmetry) on I. �

With this result, the reconstructions on [Z′1, 0] and I can be smoothly glued together, and

the uncertainty in the translation of I and the ‘orientation’ of µ̂ on I are eliminated. Thus µ̂ is

uniquely determined on the interval [Z−, 0]. This is illustrated in �gure 4.
Step 3. On the interval [ZI, Z−] we may use the Weyl asymptotics again to recover µ̂. The

counting function in the interval [E2,E3] is obtained from S̃3 which corresponds with

Area({(Z, ζ) : µ̂(Z)(1+ ζ2) 6 E}) = A1(E)+ A2(E),

where

A1(E) = area({(Z, ζ) : µ̂(Z)(1+ ζ2) 6 E, Z− 6 Z 6 0})

is already known, and

A2(E) = 2

∫ Z−

f (E)

√
E − µ̂

µ̂
dZ,

ZI 6 f(E) < Z− sinceE2 6 E 6 E3 = µ̂I. Thuswemay recover µ̂ on the interval [ZI, Z−] where
µ̂ is decreasing while applying theorem 3.1. Step 3 is illustrated in �gure 5.

The two pro�les for µ̂ on [ZI, Z−] and on [Z−, Z2] are then glued together at Z = Z− which

is already known. This completes the reconstruction procedure.
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Figure 5. Reconstruction step 3 in light blue.

Figure 6. Illustration of f±.

5.4. Reconstruction of multiple wells

If µ̂ has multiple wells, we follow an inductive procedure. First, we consider the reconstruction

of the half well W̃k of order k between Ek−1 and Ek. We note that W̃k must be a continuation

of the half well W̃k−1, or be joined with some well Wk−1
j′ of order k− 1. This can be done in a

fashion similar to the process presented above (on [ZI, Z−]).
Secondly, we consider the reconstruction of a well, Wk

j , separated from the boundary, of

order k. The wellWk
j might be a newwell, and can be reconstructed as in theorem 5.2. The well,

Wk
j , might also be joining two wells of order k− 1, or extending a single well of order k− 1.

Let the pro�le under Ek−1 already be recovered. The smooth joining of two wells can be carried

out under assumption 5.2. We consider now functions f−(E) and f+(E) for E ∈ [Ek−1,Ek] such

thatWk
j is the union of three connected intervals,

Wk
j (Ek) = [ f−(Ek), f−(Ek−1)) ∪ [ f−(Ek−1), f+(Ek−1)] ∪ ( f+(Ek−1), f+(Ek)];

see �gure 6. The semiclassical spectrum in (Ek−1,Ek) up to o(h5/2) gives the actions S
k, j
0 and

S
k, j
2 .
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From S
k, j
0 we obtain

Tkj (E) = (S
k, j
0 )′(E) =

∫ f+(E)

f−(E)

dZ√
µ̂(E− µ̂)

which signi�es the periods of the trajectories of energy E. We write Z− = f−(Ek−1) and Z+ =

f+(Ek−1), and decompose the interval:

[ f−(E), f+(E)] = [ f−(E), Z−) ∪ [Z−, Z+] ∪ (Z+, f+(E)].

In accordance with this decomposition,

Tkj (E) = T−(E)+ Tk−1(E)+ T+(E),

where

T−(E) =

∫ Z−

f−(E)

dZ√
µ̂(E − µ̂)

,

Tk−1(E) =

∫ Z+

Z−

dZ√
µ̂(E − µ̂)

,

T+(E) =

∫ f+(E)

Z+

dZ√
µ̂(E− µ̂)

.

We note that Tk−1(E) is already known. In T∓(E) we change the variable of integration, Z =

f∓(u). Using that µ̂( f∓(u)) = u, we get

T∓(E) = ∓
∫ E

Ek−1

f ′∓(u)√
u(E− u)

du;

then,

Tkj (E)− Tk−1(E) = Tg(E), Tg(E) =

∫ E

Ek−1

g(u)√
E − u

du with g(u) =
Φ(u)√
u

and Φ(u) = f ′+ (u) − f ′− (u) as before. Inverting this Abel transform [2], we obtain Φ on

[Ek−1,Ek).

From S
k, j
2 we obtain

− 1

12

d

dE
J(E)− 1

4
K(E),

where

J(E) =

∫ f+(E)

f−(E)

(
Eµ̂′′ − 2

(E− µ̂)

µ̂
(µ̂′)2

)
dZ√

µ̂(E − µ̂)
,

K(E) =

∫ f+(E)

f−(E)
µ̂′′ dZ√

µ̂(E − µ̂)
.

Using that

µ̂( f±(E)) = E, µ̂′|Z= f±(E) =
1

f ′±(E)
, µ̂′′|Z= f±(E) =

(
1

f ′±

)′
(E)

1

f ′±(E)
,
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changing variables of integration in J and K, Z = f±(u) and introducing

Ψ(E) =
1

f ′+(E)
− 1

f ′−(E)
,

we have

J(E)− Jk−1(E) =

∫ E

Ek−1

(
EΨ′(u)− 2

(
E

u
− 1

)
Ψ(u)

)
du√

u(E− u)
,

K(E)− Kk−1(E) =

∫ E

Ek−1

Ψ′(u)
du√

u(E− u)
,

where

Jk−1(E) =

∫ Z+

Z−

(
Eµ̂′′ − 2

(E− µ̂)

µ̂
(µ̂′)2

)
dZ√

µ̂(E − µ̂)
,

Kk−1(E) =

∫ Z+

Z−
µ̂′′ dZ√

µ̂(E − µ̂)

are already known. Thus, from S
k, j
2 , we recover

BΨ(E) =

∫ E

Ek−1

(
(7E− 6u)Ψ′(u)− 2

(
E

u
− 1

)
Ψ(u)

)
du√

u(E− u)
.

Then similar to the proof of theorem 5.2, we recover Ψ on [Ek−1,Ek) by inverting B through

the introduction of a second-order ordinary differential equation.

From Φ and Ψ we obtain

2 f ′+ = Φ±
√
Φ2 − 4

Φ

Ψ
, 2 f ′− = −Φ±

√
Φ2 − 4

Φ

Ψ

and then

f+(E) = Z+ +
1

2

∫ E

Ek−1

(
Φ±

√
Φ2 − 4

Φ

Ψ

)
dE,

f−(E) = Z− +
1

2

∫ E

Ek−1

(
Φ±

√
Φ2 − 4

Φ

Ψ

)
dE.

From f− we recover µ̂ on the interval [f−(E), Z−] and from f+ we recover µ̂ on the interval

[Z+, f+(E)]. The ± signs in f± are disentangled by smoothly joining the newly reconstructed

pieces to the previously reconstructed part and assumption 5.2, as in previous section. Since the

pro�le in [Z−, Z+] can only be determined up to translation and symmetry, the determination

of the pro�le inWk
j is up to the same translation and symmetry.

The symmetry and translation freedom for all the wells will be gradually eliminated during

the whole process. At the �nal step, there is a single half well connected to the boundary, and

then we can reconstruct exactly the entire pro�le.
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