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We study an inverse boundary value problem for the Helmholtz equation using
the Dirichlet-to-Neumann map. We consider piecewise constant wave speeds on an
unknown tetrahedral partition and prove a Lipschitz stability estimate in terms of
the Hausdorff distance between partitions.
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stability.
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1. Introduction

We consider an inverse boundary value problem for the Helmholtz equation

�u + �2q�x�u = 0 in � ⊂ �3�

where q = c−2 and c is the wavespeed. The data are the Dirichlet-to-Neumann
map and the objective is to recover the wavespeed. The uniqueness of this inverse
problem was established by Sylvester and Uhlmann [20] for q ∈ L����. Concerning
stability, conditional logarithmic continuous dependence of the wavespeed on the
Dirichlet-to-Neumann map has been proven in [1] in the case of wavespeeds in
Hs��� with s > 3

2 . We refer to Novikov [13] for a refinement of this stability
estimate. The logarithmic rate of stability is optimal [12]. For the inverse
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conductivity problem the authors of [3] proposed restricting the class of unknown
coefficients to a finite dimensional set to obtain Lipschitz stability estimates. The
result was extended to complex-valued conductivities in [6]. In this finite dimensional
setting, in [4, 5], a Lipschitz stability estimate for the recovery of piecewise constant
wavespeeds for a given domain partition from boundary data for the Helmholtz
equation, and an estimate for the stability constant in terms of the number of
domains in the partition, were obtained.

Here, we study the problem of determining the finite partition from boundary
data given a (possibly large) finite set of attainable values for the wavespeed. Due to
the severe nonlinearity of the problem the derivation of Lipschitz stability estimates
is more subtle. For this reason, we consider a partitioning of the domain with a
(regular) unstructured tetrahedral mesh. In fact, an unstructured tetrahedral mesh
admits a local refinement and, with piecewise constant wavespeeds, can accurately
approximate realistic models in applications. In geophysics, we mention as an
example the work of Rüger and Hale [16]. Here, knowledge of a set of attainable
values for the wavespeed can be motivated by the general knowledge of relevant
rock types. The deformation allows one to adjust the mesh and recover structures
in the models. In geodynamics, these structures can be an imprint of the local
geology and tectonics [18]. Moreover, one can parametrize major discontinuities at
(polyhedral) surfaces by connecting boundaries of subdomains in the partition via
a segmentation for example.

In this paper, we establish a Lipschitz stability estimate expressed in terms of
the Hausdorff distance between partitions using tetrahedra from the Dirichlet-to-
Neumann map. Lipschitz stability estimates provide a framework for optimization,
specifically, iterative reconstruction of the wavespeed with a convergence radius
determined by the stability constant [7, 8]. The recovery of polyhedral interfaces
then becomes a shape optimization. The analysis in [7] makes explicit use of a
Landweber iteration. Via successive approximations, and making use of estimates
for the corresponding growth of the stability constant, the reconstruction can be cast
into a multi-level scheme [8] effectively enlarging the radius of convergence. As an
important application, we mention so-called time-harmonic full waveform inversion
(FWI) developed in reflection seismology [14, 15, 19, 21] with the goal to image
wavespeed variations in Earth’s interior. The data, here, are essentially the single-
layer potential operator. However, stability estimates for the Dirichlet-to-Neumann
map directly carry over to stability estimates for this operator.

We give an outline of the paper. We first state the main result and the main
assumptions (Section 2). Then we establish a rough stability estimate for the
potentials using complex geometrical optics (CGO) solutions following the outline
of an estimate in Beretta et al. [5] (Section 3). The CGO solutions were introduced
by Sylvester and Uhlmann [20] in their proof of uniqueness of this inverse boundary
value problem. The CGO solutions in our analysis differ slightly from theirs to
obtain better constants in the stability estimates as proposed in [17]. We proceed
with establishing the recovery of the number of tetrahedra in the mesh from the
potential, and with expressing the Hausdorff distance between meshes in terms of
the difference of piecewise constant potentials defined on these meshes. Naturally,
the information on the Hausdorff distance between meshes can be transformed
to information on the vertices of the tetrahedra forming the meshes (Section 4).
The main part of the proof of our result pertains to obtaining a lower bound for
the Gateaux derivative of the Dirichlet-to-Neumann map under mesh deformation
(Section 5).
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Notation. We use the Fourier transform convention,

f̂ ��� =
∫
�3
f�x�eix·�dx	

If the function f is defined on a subset of �3, it is extended to �3 attaining the
value zero. We denote by f̌ the inverse Fourier transform of f ,

f̌ �x� = 1
�2
�3

∫
�3
f���e−ix·�d�	 (1.1)

We introduce coordinates, x = �x′� x3�, in �3, where x′ ∈ �2 and x3 ∈ �. We denote
the open ball in �3 centered at x of radius r by Br�x�, and the open ball in �2

centered at x′ of radius r by B′
r �x

′�.

2. Assumptions and Main Result

We let � be a bounded domain in �3 such that �3 \ � is connected,

� ⊂ BR�0� for some R > 0� (2.1)

and

� has a Lipschitz boundary with constants r0 and K0� (2.2)

that is, for any point P ∈ ��, there exists a rigid transformation of coordinates
under which P = 0 and

� ∩ ��x′� x3� ∈ �3 
 �x′� < r0� �x3� < K0r0� = ��x′� x3� 
 �x′� < r0� x3 > ��x′���

where � is a Lipschitz continuous (level set) function in B′
r0

such that

��0� = 0 and ����L��B′
r0
� ≤ K0	

We consider the boundary value problem for the Helmholtz equation,{
�u + �2qu = 0 in ��

u = � on ��
(2.3)

for � ∈ H1/2����, and introduce the Dirichlet-to-Neumann map

�q 
 H
1/2 ���� → H−1/2 ���� (2.4)

according to

� → �q��� 
=
�u

��

∣∣∣∣
��

	 (2.5)

The normal derivative is defined in the weak sense as〈
�u

��
� ����

〉
=
∫
�
��u · �� − �2qu��dx
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for every � ∈ H1���. In the above, q ∈ L���� is identified with c−2 where c denotes
the wavespeed. The solution of (2.3) exists in H1

(
�2
)

and is unique if � is not in
the Dirichlet spectrum of q−1� on �.

We introduce �0, �1 such that 0 < �0 < �1 and

�1 ≤
√
�1�BR�

2Q0

� (2.6)

where �1�BR� is the first eigenvalue of −� on BR. We recall that �1�BR� = �1�B1�R
−2.

(If we detect the spectrum, we substitute the true first eigenfrequency for �1.) We
then assume that

�0 ≤ � ≤ �1	 (2.7)

Unstructured tetrahedral mesh. We let �Tj�
N
j=1 be a regular partition of � into

tetrahedra, namely a collection of closed tetrahedra such that

� = ∪N
j=1Tj� (2.8)

for j �= k either Tj ∩ Tk = ∅ or it consists of a common vertex, (2.9)

a common edge or a common facet;

the radius of the insphere of each tetrahedron is larger than r1 > 0	 (2.10)

We say that two different tetrahedra of such regular partition are adjacent if they
share a common facet.

Remark 1. Assumption (2.10), together with (2.1) implies that the tetrahedra of the
partition are not degenerate. In particular, there are two positive numbers d1 and �1

(depending on R and r1 only) such that

for each Tj the distance between vertices is greater than d1 (2.11)

and internal angles of triangular facets are greater than �1	

Indeed, we point out that assumptions (2.10) and (2.1) are equivalent to the
following

Assumption 1. There exists a positive constant C1 such that∣∣Br�P� ∩ Tj
∣∣ ≥ C1r

3� (2.12)

for every j = 1� 	 	 	 � N , every P ∈ Tj , and r ≤ r1.

We show an illustration of a typical model and the assumptions pertaining to the
mesh in Figure 1.
We introduce a finite set of numbers,

� = �q̃1� 	 	 	 � q̃L�
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Figure 1. Left: Quantities associated with the assumptions, and deformation of the mesh
(cf. (4.4)) Right: An example model, containing polyhedral interfaces, in the “stable” class.

representing the possible values which the wavespeed can attain in the domain �,

Q0 = max��q̃j� 
 j = 1� 	 	 	 � L�� (2.13)

and

c0 = min
{�q̃j − q̃k� 
 j� k = 1� 	 	 	 � L� j �= k

}
	 (2.14)

Assumption 2. The potentials are piecewise constant and of the form

q�x� =
N∑
j=1

qj�Tj �x� (2.15)

such that �Tj�
N
j=1 is a regular partition of � with

N ≤ N0 (2.16)

for some N0,

qj ∈ � for every j = 1� 	 	 	 � N� (2.17)

and

qj �= qk if Tj is adjacent to Tk	 (2.18)

We denote by � · �� the norm in �
(
H1/2�����H−1/2����

)
defined by

�T�� = sup��T���� 
 �� � ∈ H1/2����� ���H1/2���� = ���H1/2���� = 1�	

We refer to the values of R, r0, K0, r1, Q0, c0, �0, �1 and N0 as to the a priori data.
In the sequel we will introduce a number of constants that we will always denote
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by C and, unless otherwise stated, will depend on ‘data only. The values of these
constants might differ from one line to the other.

We state the main result

Theorem 2.1. Given a domain � satisfying (2.1) and (2.2), a set of values �, and � ∈
��0� �1�, there exist two positive constants �0 and C0 depending on the a priori data
and on N0 only such that, for every pair of potentials

q�0� =
N∑
j=1

q
�0�
j �

T
�0�
j

and q�1� =
M∑
k=1

q
�1�
k �

T
�1�
k

(2.19)

satisfying Assumptions 1 and 2, if

��q�0� − �q�1��� ≤ �0� (2.20)

then

N = M (2.21)

and the order of the tetrahedra can be rearranged so that for every j = 1� 	 	 	 � N we
have

q
�0�
j = q

�1�
j � (2.22)

and

d��T
�0�
j � T

�1�
j � ≤ C0��q�0� − �q�1���� (2.23)

where d� denotes the Hausdorff distance.

3. A Rough Stability Estimate

We begin with developing a rough stability estimate for the recovery of the potential
or wavespeed.

Theorem 3.1. Given �, q�0�, q�1� and � as in Theorem 2.1, there exist two positive
constants �1 < 1 and C2 depending on R, r0, K0, Q0, �0, �1 such that, for ��q�0� −
�q�1��� < �1,

�q�0� − q�1��L2��� ≤ C2

√
N0

∣∣log
(��q�0� − �q�1���

)∣∣−1/7
	 (3.1)

Proof. We proceed as in [5]. Alessandrini’s identity states that

�2
∫
�
�q�0� − q�1��u0u1dx = ���0 − �1��u0����� u1���� (3.2)

for every pair of functions u0 and u1 such that

�uk + �2q�k�uk = 0 in � for k = 0� 1�

where we use the shorthand notation, �k = �q�k� .
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We fix � ∈ �3 and let �1 and �2 be unit vectors in �3 such that ��� �2� �2� is an
orthogonal set of vectors. We let � > 0 be a parameter to be chosen later, and set,
for k = 0� 1,

�k =

⎧⎪⎪⎨⎪⎪⎩
�−1�k+1 �√

2

(√
1 − ���2

2�2 �1 + �−1�k√
2�

� + i �2

)
if ���

�
√

2
< 1�

�−1�k+1 �√
2

(
�−1�k√

2�
� + i

√
���2
2�2 − 1 �1 + �2

)
if ���

�
√

2
≥ 1	

(3.3)

As can be easily checked,

�0 + �1 = ��

�k · �k = 0 for k = 0� 1

and

��k� = max
{
��

���√
2

}
	 (3.4)

We use here complex geometrical optics (CGO) solutions of the Helmholtz equation
and, in particular, the estimates in [17, Theorem 3.8] which are due to [9]. For ��k� ≥
max��1

2Q0� 1� =
 c1, there is a solution uk of

�uk + �2q�k�uk = 0 in �

of the form

uk�x� = eix·�k �1 + �k�x��� (3.5)

with

��k�L2��� ≤ C�1
2Q0

��k�
≤ C�1

2Q0

�
�

(3.6)

���k�L2��� ≤ C�1
2Q0�

where C = C�R�.
Inserting (3.5) into (3.2), we get

�2
∣∣�̂q�0� − q̂�1�����

∣∣ ≤ ����0 − �1��u0����� u1�����
+�2

∣∣∣∫
�
�q�0��x� − q�1��x��ei�·x��0�x� + �1�x� + �0�x��1�x��dx

∣∣∣
≤ ��0 − �1���u0�H1����u1�H1��� + 2�2Q0

∣∣∣∫
�
��0 + �1 + �0�1�dx

∣∣∣ 	
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Hence, ∣∣�̂q�0� − q̂�1�����
∣∣2

≤ 2
�0

4
��0 − �1�2

��u0�2
H1����u1�2

H1��� + 8Q2
0

∣∣∣∫
�
��0 + �1 + �0�1�dx

∣∣∣2
≤ 2

�0
4
��0 − �1�2

��u0�2
H1����u1�2

H1��� + 8Q2
0��� (��0�L2��� + ��1�L2���

)
+8B2

0��0�L2�����1�L2���	

With (3.5) and (3.6) we find that there exists a constant c2 depending only on R such
that, for � > c2,

�uk�H1��� ≤ Ce2R��+����� (3.7)

k = 0� 1, where C = C�R��1� Q0�. Hence,

∣∣�̂q�0� − q̂�1�����
∣∣2 ≤ C

(
e8R��+������0 − �1�2

� + 1
�2

)
� (3.8)

where C = C�R��0� �1� Q0�. But then, for � ≥ max�c1� c2�,

�q�0� − q�1��2
L2��� =

∫
���≤ 

∣∣�̂q�0� − q̂�1�����
∣∣2 d� +

∫
���> 

∣∣�̂q�0� − q̂�1�����
∣∣2 d�

≤ C 3

(
e8R��+ ���0 − �1�2

� + 1
�2

)
(3.9)

+
∫
���> 

∣∣�̂q�0� − q̂�1�����
∣∣2 d�	

To estimate the integral in (3.9) we show that for every s ∈ �0� 1/2�

�q�0� − q�1��2
Hs��� ≤ C

√
N0� (3.10)

where C = C�R� r0� Q0�. Indeed, by [11] we have

�q�0� − q�1��2
Hs��� ≤ 2

(
�q�0��2

Hs��� + �q�1��2
Hs���

)
≤ 2

(
N∑
j=1

�q�0�j �2�T�0�
j �1−2s��T �0�

j �2s +
M∑
k=1

�q�1�k �2�T�1�
k �1−2s��T �1�

k �2s
)

≤ CN0�

where C = C�R� r0� Q0�.
Using (3.10),∫

���> 

∣∣(̂q�0� − q̂�1�
)
���
∣∣2 d� ≤ 1

 2s

∫
���> 

�1 + ���s�2 ∣∣(̂q�0� − q̂�1�
)
���
∣∣2 d�

≤ 1
 2s

�q�0� − q�1��2
Hs��� ≤ CN0

 2s
	 (3.11)
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Finally, by inserting (3.11) into (3.9), we get that

�q�0� − q�1��2
L2��� ≤ CN0

{
 3

(
e8R��+ ���0 − �1�2

� + 1
�2

)
+ 1

 2s

}
�

where C = C�R� r0� �0� �1� Q0�. We then choose

 = �
2

3+2s �

and observe that there is a constant c3 depending only on R such that, for � ≥ c3,

 3e8R��+ � ≤ e18R�

so that

�q�0� − q�1��2
L2��� ≤ CN0

(
e18R���0 − �1�2

� + 1

�
4s

3+2s

)
�

where C = C�R� r0� �0� �1� Q0�.
We now take

� = 1
18R

�log ��0 − �1���

and assume that

��0 − �1�� ≤ e−18Rc3 =
 �1

so that � ≥ max�c1� c2� c3�. Then

�q�0� − q�1��2
L2��� ≤ CN0

(
��0 − �1�2

� +
∣∣∣ log ��0 − �1��

∣∣∣−�
)
�

where � = 2s
3+2s . The claim follows upon choosing s = 1

4 . �

Next, we establish an estimate for the Haussdorff distance between two domain
partitions in terms of the difference of potentials defined on these partitions.

Proposition 3.2. Given �, q�0� and q�1� as in Theorem 2.1, there exists a positive
constant !1 depending on R, r1, Q0 and c0 such that, if

�q�0� − q�1��L2��� ≤ !1 (3.12)

then

N = M (3.13)

and the order of the tetrahedra can be rearranged so that for every j = 1� 	 	 	 � N

q
�0�
j = q

�1�
j (3.14)
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and

d��T
�0�
j � T

�1�
j � ≤ �q�0� − q�1��2/3

L2���(
c2

0C1

)1/3 � (3.15)

where c0 is given by (2.14) and C1 by (2.12).

Proof. We write

! = �q�0� − q�1��L2���	 (3.16)

For every l ∈ �1� 	 	 	 � L� we let

��0�
l =

{
j ∈ �1� 	 	 	 � N� 
 q

�0�
j = q̃l

}
(3.17)

and

��1�
l =

{
k ∈ �1� 	 	 	 �M� 
 q

�1�
k = q̃l

}
	 (3.18)

We note that

�q�0� − q�1��2
L2��� =

L∑
l=1

⎛⎝ ∑
j∈��0�

l

∑
k���1�

l

∣∣∣q�0�j − q
�1�
k

∣∣∣2 ∣∣∣T�0�
j ∩ T

�1�
k

∣∣∣
⎞⎠ 	 (3.19)

If j ∈ ��0�
l and k � ��1�

l then, by (2.14),∣∣∣q�0�j − q
�1�
k

∣∣∣ ≥ c0�

hence, by (3.19) and (3.16), we have

!2 ≥ c2
0

L∑
l=1

∑
j∈��0�

l

∑
k���1�

l

∣∣∣T�0�
j ∩ T

�1�
k

∣∣∣ (3.20)

so that ∣∣∣T�0�
j ∩ T

�1�
k

∣∣∣ ≤ !2

c2
0

for every j� k such that q�0�j �= q
�1�
k 	 (3.21)

By assumption (2.11), estimate (3.21) implies that T�0�
j ∩ T

�1�
k is close to �T

�0�
j . To

make this precise, we introduce

T
�0�
j�" =

{
x ∈ T

�0�
j 
 d�x� �T

�0�
j � > "

}
and prove that

T
�1�
k ∩ T

�0�
j�"!

= ∅ (3.22)
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with

"! =
(

!2

c2
0C1

)1/3

	 (3.23)

Indeed, assume that j ∈ ��0�
l for some l ∈ �1� 	 	 	 � N�, k � ��1�

l and that there is a
point P ∈ T

�0�
j ∩ T

�1�
k such that

d�P� �T
�0�
j � ≥ "� (3.24)

that is, B"�P� ⊂ T
�0�
j . Using assumption (2.11) and (2.12) in Remark 1, it then follows

that ∣∣∣T�0�
j ∩ T

�1�
k

∣∣∣ ≥ ∣∣∣B"�P� ∩ T
�1�
k

∣∣∣ ≥ C1"
3 (3.25)

if " < r1. By (3.21)

C1"
3 ≤ !2

c2
0

	 (3.26)

Thus (3.22) holds provided that

"! =
(

!2

c2
0C1

)1/3

≤ r1�

that is,

! ≤ !1 =
√
r3

1c
2
0C1	 (3.27)

Now we consider T
�0�
j�"!

for ! ≤ !1 and j ∈ ��0�
l for some l. Since �T

�1�
k �k is a

partition of �, we can write

T
�0�
j�"!

= T
�0�
j�"!

∩
(

M⋃
k=1

T
�1�
k

)

=
M⋃
k=1

(
T
�0�
j�"!

∩ T
�1�
k

)
	

Using (3.22),

T
�0�
j�"!

∩ T
�1�
k = ∅ for k � ��1�

l �

and we then obtain

T
�0�
j�"!

= ⋃
k∈��1�

l

(
T
�0�
j�"!

∩ T
�1�
k

)
	 (3.28)
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If k1 and k2 ∈ ��1�
l , then T

�1�
k1

and T
�1�
k2

cannot be adjacent by assumption (2.18). This
means that there is a unique k ∈ ��1�

l such that

T
�0�
j�"!

∩ T
�1�
k �= ∅ (3.29)

and, with (3.28),

T
�0�
j�"!

= T
�0�
j�"!

∩ T
�1�
k ⊂ T

�1�
k 	

Thus we proved that for every j ∈ �1� 	 	 	 � N� there is a unique index k�j� ∈
�1� 	 	 	 �M� such that

q
�0�
j = q

�1�
k�j�

(3.30)

and

T
�0�
j�"!

⊂ T
�1�
k�j�

	 (3.31)

In particular, this implies that M ≥ N .
By interchanging the roles of q�0� and q�1� it follows that M = N , k is a

permutation on �1� 	 	 	 � N� and

T
�0�
j�"!

⊂ T
�1�
k�j�

and T
�1�
k�j��"!

⊂ T
�0�
j

that, by (3.23), gives (3.15). �

Combining Theorem 3.1 and Proposition 3.2, we obtain the following
logarithmic stability estimate

Corollary 3.3. Under the assumptions of Theorem 3.1, there is a constant �2 < 1
depending only on the a priori data such that, if

��q�0� − �q�1��� ≤ �2

then

N = M

and the order of tetrahedra can be rearranged so that

q
�0�
j = q

�1�
j

and

d��T
�0�
j � T

�1�
j � ≤

(
C2

2N0

c2
0C1

)1/3 ∣∣log
(��q�0� − �q�1���

)∣∣−2/21
	 (3.32)
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4. Geometric Estimates, Construction of an Intermediate Partition and
Augmenting the Domain

Here, we map the information on the Haussdorff distance of tetrahedra in
information on the distance between vertices of these tetrahedra. It is straight-
forward to see that if T�k�, k = 0� 1, are tetrahedra generated by vertices P

�k�
i , i =

1� 2� 3� 4, that then

d��T
�0�� T �1�� ≤ min

℘
max
1≤i≤4

∣∣∣P�0�
i − P

�1�
℘�i�

∣∣∣ � (4.1)

where ℘ denotes a permutation on the set �1� 2� 3� 4�. Moreover, if T�k� ⊂ BR�0�
and satisfies assumption (2.10) for k = 0� 1, then there exists a positive constant A1,
depending on R and r1 only, such that

min
℘

max
1≤i≤4

∣∣∣P�0�
i − P

�1�
℘�i�

∣∣∣ ≤ A1d��T
�0�� T �1��	 (4.2)

Using Corollary 3.3 we then obtain

Proposition 4.1. Under the assumptions of Theorem 3.1, there is a positive constant
�3 < 1 such that if

��q�0� − �q�1��� ≤ �3

then for every vertex P�0�
j�i of T�0�

j (with i = 1� 2� 3� 4) there is a unique vertex P�1�
j�i of T�1�

j

such that

d�P
�0�
j�i � P

�1�
j�i � ≤ d1

4
(4.3)

for d1 as in 2.11.

Proof. It is sufficient to consider �3 < 1, such that

A1

(
C2

2N0

c2
0C1

)1/3

�log ��3��−2/21 <
d1

4
�

and the statement follows. �

We introduce a deformation of the tetrahedra forming the partition of �. To
this end, for each j ∈ �1� 	 	 	 � N�, we define tetrahedra T

�t�
j by its vertices,

P
�t�
j�i = P

�0�
j�i + tvj�i for t ∈ �0� 1�� (4.4)

where

vj�i = P
�1�
j�i − P

�0�
j�i 	 (4.5)
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The resulting partition �T
�t�
j �j is a regular partition of � satisfying condition (2.10).

We point out that, by (4.1) and (4.2), there is a positive constant A2 > 1 such that

A−1
2

(
4∑
i=1

�vj�i�2
)1/2

≤ d�

(
T
�0�
j � T

�1�
j

)
≤ A2

(
4∑
i=1

�vj�i�2
)1/2

	 (4.6)

We define

q�t� =
N∑
j=1

qj�T�t�
j
�

where we denoted by qj = q
�0�
j = q

�1�
j . A suggestion of Alessandrini [2] allows us to

avoid the assumption that q is known on ��. To this aim we extend our domain
and introduce a regular domain �̃ containing �; we extend each potential q�t�, for
t ∈ �0� 1�, to �̃ with the same constant value, q̃0. The particular choice of value q̃0

for this extension does not matter, as long as we are able to ensure well-posedness
of the corresponding Dirichlet problem. For this reason we choose a special value.
We take R̃ = 2√

3
R, so that

�1�BR̃� = 3
4
�1�BR�� (4.7)

and choose

�̃ = BR̃�0�	 (4.8)

We then define

q̃�t� = q̃0 + �q�t� − q̃0��� for t ∈ �0� 1�� (4.9)

with q̃0 = Q0 (cf. (2.13)). For � ≤ �1 and t ∈ �0� 1�, we have

∣∣�2q̃�t�
∣∣ ≤ �1

2Q0 ≤ 1
2
�1�BR� = 2

3
�1��̃��

cf. (4.7) and (2.6), whence the Dirichlet problem{
�u + �2q̃�t�u = 0 in �̃�

u = � on ��̃�
(4.10)

has a unique solution u ∈ H1��̃� for every � ∈ H1/2���̃�. Thus the one-parameter
family of Dirichlet-to-Neumann maps,

�̃t = �q̃�t� � for t ∈ �0� 1� (4.11)

is well defined in ��H1/2���̃��H−1/2���̃��. We denote the norm in this space by
�T��̃.
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To proceed, we take ��� ∈ H1/2���̃� and let ũ0 and ũ1 be the solutions to{
�ũ0 + �2q̃�0�ũ0 = 0 in �̃�

ũ0 = � on ��̃�
and

{
�ũ1 + �2q̃�1�ũ1 = 0 in �̃�

ũ1 = � on ��̃	

We then use Alessandrini’s identity and write

���̃1 − �̃0����� �� =
∫
�̃
�q̃�1� − q̃�0��ũ0ũ1dx =

∫
�
�q�1� − q�0��ũ0ũ1dx

= ���1 − �0��ũ0����� ũ1���� ≤ ��1 − �0���ũ0�H1/2�����ũ1�H1/2����	

Moreover, by trace and regularity estimates, we have

�ũk�H1/2���� ≤ C�ũk�H1��̃� ≤ C�ũk�H1/2���̃�for k = 0� 1�

where C depends on the a priori data. We have then shown that

��̃1 − �̃0��̃ ≤ C3��1 − �0��	 (4.12)

5. Proof of Lipschitz Stability

In this section, we give the proof of Lipschitz stability starting from the logarithmic
estimate obtained in Corollary 3.3. We split the proof into three steps:

First step. We show that for any pair of functions � and � in H1/2���̃�, the function

� �t� �� �� = ��̃t���� ��
is differentiable.

Second step. We show that there is a positive constant L1 and a number � ∈ �0� 1�
depending on the a priori data such that for any � and � in H1/2���̃�,∣∣∣∣ ddt� �t� �� �� − d

dt
� �t� �� ���t=0

∣∣∣∣ ≤ L1d
1+�
T ���H1/2���̃����H1/2���̃�	 (5.1)

Third step. Finally, we prove that there is a positive constant m1 such that, for
special choices of non-zero functions �0 and �0, we have∣∣∣∣ ddt� �t� �0� �0��t=0

∣∣∣∣ ≥ m1dT��0�H1/2���̃���0�H1/2���̃�	 (5.2)

Here, dT =∑N
j=1 d�

(
T
�0�
j � T

�1�
j

)
.

Once these three steps have been proven we conclude that∣∣∣���̃1 − �̃0���0�� �0�
∣∣∣ = �� �1� �0� �0� − � �0� �0� �0�� =

∣∣∣∣∫ 1

0

d

dt
� �t� �0� �0�

∣∣∣∣
≥
∣∣∣∣ ddt� �t� �0� �0��t=0

∣∣∣∣− ∫ 1

0

∣∣∣∣ ddt� �t� �0� �0� − d

dt
� �t� �0� �0��t=0

∣∣∣∣
≥ ��0�H1/2��0�H1/2dT �m1 − L1d

�
T � �
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that is,

��̃1 − �̃0�� ≥ dT �m1 − L1d
�
T � 	 (5.3)

By Corollary 3.3, there exists a positive constant �0 ≤ �3 such that, if

��1 − �0�� ≤ �0

then

�m1 − L1d
�
T � ≥ m1

2

and, hence, by (4.12)

dT ≤ m1

2
��̃1 − �̃0��̃ ≤ m1C3

2
��1 − �0���

which implies (2.23).

5.1. First Step: Differentiability of � �t� �� ��

Let ��� ∈ H1/2���̃� and let t0 ∈ �0� 1�. For h �= 0 such that t0 + h ∈ �0� 1� we
introduce the finite difference

R�h� = 1
h
�� �t0 + h����� − � �t0� �� ��� 	 (5.4)

For t ∈ �0� 1� fixed, we let u�x� t� and v�x� t� be the (unique) solutions in H1��̃� to
the boundary value problems,{

�u�x� t� + �2q̃�t��x�u�x� t� = 0for x ∈ �̃�

u�x� t� = ��x�for x ∈ ��̃

and {
�v�x� t� + �2q̃�t��x�v�x� t� = 0for x ∈ �̃�

v�x� t� = ��x�for x ∈ ��̃	

Applying Alessandrini’s identity and the definition of q̃�t�, we find that

R�h� = �2

h

∫
�

(
q�t0+h��x� − q�t0��x�

)
u�x� t0 + h�v�x� t0�dx

= �2

h

N∑
j=1

qj

{∫
T
�t0+h�
j

u�x� t0 + h�v�x� t0�dx −
∫
T
�t0�
j

u�x� t0 + h�v�x� t0�dx

}
	

For any index j ∈ �1� 	 	 	 � N� we define $j�t0

 �3 → �3 as the affine map with

the property that

$j�t0
�P

�0�
j�i + t0vj�i� = vj�i for i = 1� 2� 3� 4� (5.5)
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where P
�0�
j�i is defined in (4.4) and vj�i in (4.5). We let

F
t0
j�%�x� = x + %$j�t0

�x� (5.6)

so that Ft0
j�%�T

�t0�
j � = T

�t0+%�
j . We note that with assumption (2.11)∣∣$j�t0

∣∣+ ∣∣ div$j�t0

∣∣ ≤ C�R� r1�	 (5.7)

By using F
t0
j�h as a change of variable, we get

R�h� = �2

h

N∑
j=1

qj

∫
T
�t0�
j

�j�x� t0�dx� (5.8)

where

�j�x� t0� = u�F
t0
j�h�x�� t0 + h�v�F

t0
j�h�x�� t0�� detDFt0

j�h�x�� − u�x� t0 + h�v�x� t0�	 (5.9)

We proceed with the analysis on each tetrahedron T
�t0�
j in the same way and for

simplicity of notation drop the index j.
By standard regularity estimates for solutions of elliptic equations, we know

that u�·� t� and v�·� t� belong to C1�� ��� for some � ∈ �0� 1� and that

�u�·� t��C1����� ≤ C���H1/2���̃�� (5.10)

�v�·� t��C1����� ≤ C���H1/2���̃�� (5.11)

where C depends on the a priori data. Thus,

u�F
t0
h �x�� t0 + h� − u�x� t0 + h� = h�u�x� t0 + h� · $t0

�x� + �1�h�	 (5.12)

For some � between x and F
t0
h �x� = x + h$t0

�x�,

��1�h�� = ∣∣h�u��� t0 + h� · $t0
�x� − h�u�x� t0 + h� · $t0

�x�
∣∣

≤ �h��u�·� t0 + h��C1������� − x�� ∣∣$t0
�x�
∣∣

≤ C���H1/2���̃� ��h��1+�
∣∣$t0

�x�
∣∣

≤ C���H1/2���̃��h�1+�� (5.13)

where we used (5.7) in the last estimate. A similar estimate holds for v�F t0
h �x�� t0 +

h� − v�x� t0 + h�. Moreover, by direct calculation,∣∣detDFt0
h �x�

∣∣ = 1 + h div
(
$t0

)+ o�h�	 (5.14)

Using (5.9), (5.12), (5.13) and (5.14), we get

��x� t0� = h div
(
u�x� t0 + h�v�x� t0�$t0

�x�
)+ ��h� (5.15)
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with

���h�� ≤ C�h�1+�� (5.16)

where C depends on the a priori data and on ���H1/2���̃� and ���H1/2���̃�. By inserting
estimates (5.15) and (5.16) into (5.8) we obtain

R�h� = �2
N∑
j=1

qj

∫
T
�t0�
j

div
(
u�x� t0 + h�v�x� t0�$j�t0

�x�
)
dx + O�h��	 (5.17)

Applying usual energy estimates, we find that

�u�·� t0 + h� − u�·� t0��H1��� ≤ C�2�q�t0+h� − q�t0��L2������H1/2���̃� (5.18)

and, hence,

lim
h→0

R�h� = �2
N∑
j=1

qj

∫
T
�t0�
j

div
(
u�x� t0�v�x� t0�$j�t0

�x�
)
dx	

This implies that � �t� �� �� is differentiable and that

d

dt
��̃t���� ��t=t0

= �2
N∑
j=1

qj

∫
T
�t0�
j

div
(
u�x� t0�v�x� t0�$j�t0

�x�
)
dx	 (5.19)

Using the divergence theorem, we obtain

d

dt
��t���� ��t=t0

= �2
N∑
j=1

qj

∫
�T

�t0�
j

u�x� t0�v�x� t0�
(
$j�t0

�x� · �j
)
d!x� (5.20)

where �j is the exterior normal to �T
�t0�
j and d!x is the surface measure.

5.2. Second Step: Behavior of d
dt
� �t� �� �� with Respect to t

In this subsection, we estimate, for any fixed t ∈ �0� 1�, the quantity

J̃ = d

dt
� �t� �� �� − d

dt
� �t� �� ���t=0	

By (5.19), we can write

J̃ = �2
N∑
j=1

qjJj (5.21)

where

Jj =
∫
T
�t�
j

div
(
u�x� t�v�x� t�$j�t�x�

)
dx −

∫
T
�0�
j

div
(
u�x� 0�v�x� 0�$j�0�x�

)
dx	
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We write

Vj =
4∑
i=1

∣∣vj�i∣∣ 	 (5.22)

Since, here, we focus on each tetrahedron separately, we drop the index j from Jj ,
T
�t�
j , T�0�

j , $j�t, $j�0, and Vj , again, for simplicity of notation. We use the change of
variable Ft�x� = Fj�t as defined in (5.6), and get

J =
∫
T�0�

(
divy �u�y� t�v�y� t�$t�y��y=Ft�x�

�detDFt�x�� − divx �u�x� 0�v�x� 0�$0�x��
)
dx

We introduce the quantity

G�y� t� = divy �u�y� t�v�y� t�$t�y�� �

and estimate J ,

J =
∣∣∣∫

T�0�
�G�Ft�x�� t� �detDFt�x�� − G�x� 0�� dx

∣∣∣
≤
∫
T�0�

�G�Ft�x�� t� − G�x� 0�� �detDFt�x��dx +
∫
T�0�

�G�x� 0�� �detDFt�x� − 1�dx
= J�1� + J�2��

in which

J�1� ≤ C

{∫
T�0�

∣∣∣�y �u�y� t�v�y� t���y=Ft �x�
− � �u�x� 0�v�x� 0��

∣∣∣ �$0�x��dx

+
∫
T�0�

∣∣∣u�Ft�x�� t�v�Ft�x�� t� �div$t�y���y=Ft �x�
− u�x� 0�v�x� 0� �div$0�x��

∣∣∣dx} �
using that $t�Ft�x�� = $0�x�. A straightforward calculation gives

�div$t�y�� �y=Ft�x�
= div$0�x� − t tr �D$t�Ft�x��D$0�x�� 	

Hence, writing

w�y� t� = u�y� t�v�y� t�

we obtain the estimate

J�1� ≤ C

{∫
T�0�

��w�Ft�x�� t� − �w�x� 0�� �$0�x��dx

+
∫
T�0�

�w�Ft�x�� t� − w�x� 0�� �div$0�x��dx

+t
∫
T�0�

�w�Ft�x�� t�� �tr �D$t�Ft�x��D$0�x���dx
}
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Using (5.5) and (5.22), we find that

�$t�x�� + �D$t�x�� ≤ CV (5.23)

and, hence,

J�1� ≤ CV

{∫
T�0�

��w�Ft�x�� t� − �w�x� 0�� + �w�Ft�x�� t� − w�x� 0��dx
}

+CV 2���H1/2���̃����H1/2���̃�	

We analyze the term containing �w. By combining (5.10), (5.11) and (5.18) and
using the fact that �Ft�x� − x� = t �$t�x�� ≤ CV , we obtain∫

T�0�
��w�Ft�x�� t� − �w�x� 0��dx

≤
∫
T�0�

���w�Ft�x�� t� − �w�x� t�� + ��w�x� t� − �w�x� 0��� dx
≤ C���H1/2���̃����H1/2���̃�

(
V� + �2�q�t� − q�0��L2���

)
	

Then, by (2.13), (2.6) and (4.6),

�2�q�t� − q�0��L2��� ≤ C
N∑
j=1

Vj

and, so,

∫
T�0�

��w�Ft�x�� t� − �w�x� 0��dx ≤ C���H1/2���̃����H1/2���̃�

(
V� +

N∑
j=1

Vj

)
	

An analogous estimate holds for
∫
T�0� �w�Ft�x�� t� − �w�x� 0��dx. Finally, by

recalling (5.22), we obtain

J�1� ≤ C���H1/2���H1/2

(
N∑
j=1

Vj

)1+�

	 (5.24)

The integral, J�2�, can be estimated in a similar way by observing that, by (5.10),
(5.11) and (5.23),

�div �u�x� 0�v�x� 0�$0�x��� ≤ C���H1/2���̃����H1/2���̃�V (5.25)

and, by (5.6) and (5.23),

�detDFt�x� − 1� ≤ CV	 (5.26)
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By combining (5.21), (5.24), (5.25) and (5.26) and adding up the contributions from
all the tetrahedra, we get

J̃ ≤ L1���H1/2���̃����H1/2���̃�

(
N∑
j=1

Vj

)1+�

and, by (5.21), (2.13), (2.6) and (4.6), we finally arrive at estimate (5.1) and conclude
the proof of second step.

5.3. Third Step: Lower Bound of d
dt
� �t� �� ���t=0

With (5.20) the Gateaux derivative is given by

d

dt
� �t� �� ���t=0 = �2

N∑
j=1

qj

∫
�T

�0�
j

u�x�w�x�
(
$j�0�x� · �j

)
d!x�

where u and w solve problems{
�u + �2q�0�u = 0 in �̃�

u = � on ��̃	

and {
�w + �2q�0�w = 0 in �̃�

w = � on ��̃	
�

respectively. We introduce

ṽj�i = vj�i∑N
j=1 Vj

for j ∈ �1� 	 	 	 � N�� i = 1� 2� 3� 4� (5.27)

where Vj is defined as in (5.22), and note that

N∑
j=1

4∑
i=1

�ṽj�i� = 1 (5.28)

We also let

$̃j�x� = $j�0�x�∑N
l=1 Vl

� (5.29)

and consider the bilinear operator

���� �� =
N∑
j=1

qj

∫
�T

�0�
j

u�x�w�x��$̃j�x� · �j� (5.30)

in ��H1/2���̃��H−1/2���̃��. Now, for every � and � in H1/2���̃�, we have

����� ��� ≤ m0���H1/2���H1/2� (5.31)
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where

m0 = ����̃	 (5.32)

We choose boundary values corresponding to CGO solutions: Let � be any vector
in �3 and let � be a positive parameter to be chosen later, and let �0 and �1 as in
(3.3). We form

ũ0 = eix·�0�1 + �0�x�� (5.33)

and

w̃0 = eix·�1�1 + �1�x��� (5.34)

which are both solutions of the equation �u + �2q�0�u = 0 in �̃, such that

��k�L2��̃� ≤ C0�1
2Q0

�
�

(5.35)

���k�L2��̃� ≤ C0�1
2Q0�

and �0 + �1 = �. Substituting these functions into (5.31), by (2.13) and (5.23), we get∣∣∣∣∣ N∑
j=1

qj

∫
�T

�0�
j

eix·��$̃j�x��j�

∣∣∣∣∣ ≤ m0���H1/2���̃����H1/2���̃� (5.36)

+ C
N∑
j=1

∫
�T

�0�
j

���0� + ��1� + ��0���1�� 	

We now estimate last term in (5.36). We recall the interpolation estimate for
0 < % < 1

��k�H%��̃� ≤ C��k�1−%
L2��̃�

(��k�L2��̃� + ���k�L2��̃�

)%
for k = 0� 1� (5.37)

and the trace estimate, for 1/2 < % < 1,

��k�L2��T
�0�
j �

≤ ��k�H%−1/2��T
�0�
j �

≤ C%��k�H%��̃�� for k = 0� 1	 (5.38)

The estimates (5.37) and (5.38) combined with (5.35) give, for k = 0� 1,

��k�L2��T
�0�
j �

≤ C%�
%−1� (5.39)

and, hence, ∫
�T

�0�
j

���0� + ��1� + ��0���1�� ≤ C%�
2�%−1� (5.40)
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for any fixed % ∈ �1/2� 1�. By using (5.36), (3.7) and (5.40) we have the estimate∣∣∣∣∣ N∑
j=1

qj

∫
�T

�0�
j

eix·��$̃j�x��j�

∣∣∣∣∣ ≤ C
(
m0e

C����+�� + �−2�1−%�
)
	 (5.41)

We write the integral on the left-hand side of (5.41) in a slightly different form. We
denote by �Fk�

M1
k=1 the collection of facets of tetrahedra. We note that the set

⋃M1
k=1 Fk

contains special a priori information which is implied by the a priori information on
the mesh of tetrahedra.

Each facet Fk not contained on �� belongs to two tetrahedra and the outer
normal directions with respect to these two tetrahedra are opposite one to another.
We denote by �k one of these two directions and denote by q−

k the coefficient defined
in the tetrahedron where �k is pointing towards and q+

k the one defined in the other
tetrahedron. By assumption (2.18) and by (2.14) we have that

�q+
k − q−

k � ≥ c0	 (5.42)

For any k ∈ �1� 	 	 	 �M1� we let

fk�x� =
{

0 if Fk is contained in ��(
q+
k − q−

k

)
�$̃k�x� · �k� otherwise.

(5.43)

We know that the fk are affine functions on each facet, Fk, and that

M1∑
k=1

�fk�H1/2�Fk�
≤ E� (5.44)

where E depends on a priori information. We denote by H the measure,

H =
M1∑
k=1

hk 
=
M1∑
k=1

fkd!k�

where d!k is the surface element on Fk for k ∈ �1� 	 	 	 �M1�. More precisely, each hk
is defined as follows:

C0
0

(
�3
) � � → �hk� �� =

∫
fk� d!k ∈ �	

Estimate (5.41) implies that

�Ĥ���� ≤ C& ����� ��m0� � (5.45)

where

& �t� ��m0� = m0e
C�t+�� + �−2�1−%� for every t > 0� � > 0	 (5.46)

We estimate, for s > 1,(∫
�3

(
1 + ���2)−s/2 �Ĥ����2d�

)1/2

≤
M1∑
k=1

(∫
�3

(
1 + ���2)−s/2 �̂hk����2d�

)1/2

	 (5.47)
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For each k we write∫
�3

(
1 + ���2)−s/2 �̂hk����2d� =

∫
���≤1

(
1 + ���2)−s/2 �̂hk����2d�

+
�∑
j=1

∫
2j≤���≤2j+1

(
1 + ���2)−s/2 �̂hk����2d�

≤
∫
���≤1

�̂hk����2d� +
�∑
j=1

2−js
∫
���≤2j+1

�̂hk����2d�	(5.48)

Using [10, Theorem 7.1.26, p.173], estimate (5.48) gives

∫
�3

(
1 + ���2)−s/2 �̂hk����2d� ≤ C

(
1 + 2

�∑
j=1

2−�s−1�j

)∫
Fk

�fk�2d!k�

and, by (5.44) and (5.47),

(∫
�3

(
1 + ���2)−s/2 �Ĥ ��� �2d�

)1/2

≤ CE	 (5.49)

We consider a single facet, for instance, the facet F1. To simplify the notation,
we assume that F1 ⊂ �2 × �0� and that 0 is a point of F1 such that B′

2d �0� ⊂ F1

where d depends on the a priori information only. We let � ∈ C�
0

(
�2
)

such that
0 ≤ � ≤ 1 and � = 1 on B′

d �0�.
We choose a g1 ∈ H1

(
�3
)

such that

g1�x
′� 0� = ��f1� �x

′�, x′ ∈ �2�

suppg1 ∩ Fk = ∅, for k �= 1 (5.50)

and

�g1�H1��3� ≤ CE� (5.51)

where C depends on the a priori information only. Taking into account (5.50), we
obtain

∫
�3
Ĥ���ǧ1���d� =

∫
�3
d�ǧ1���

M1∑
k=1

∫
Fk

eix·�fk�x�d!k

=
M1∑
k=1

∫
Fk

fk�x�d!k

∫
�3
eix·�ǧ1���d�

=
M1∑
k=1

∫
Fk

fk�x�g1�x�d!k =
∫
F1

� �f1�2 d!1�
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that is, ∫
F1

� �f1�2 d!1 =
∫
�3
Ĥ���ǧ1���d�	 (5.52)

Moreover by (5.51) we have∫
�3

(
1 + ���2) �ǧ1����2 d� ≤ CE2	 (5.53)

We write∫
�3

∣∣∣Ĥ���ǧ1���
∣∣∣d� =

∫
���≤ 

∣∣∣Ĥ���ǧ1���
∣∣∣d� +

∫
���> 

∣∣∣Ĥ���ǧ1���
∣∣∣d� (5.54)

By (5.45) and (5.53) we have∫
���≤ 

∣∣∣Ĥ���ǧ1���
∣∣∣d� ≤ & � � ��m0�

∫
���≤ 

�ǧ1����d�

≤ C& � � ��m0�

(∫
���≤ 
�1 + ���2�−1d�

)1/2 (∫
���≤ 
�1 + ���2� �ǧ1����2 d�

)1/2

≤ C& � � ��m0�
√
 E (5.55)

Using the Cauchy-Schwarz inequality and (5.49) we have∫
���> 

∣∣∣Ĥ���ǧ1���
∣∣∣d� = ∫���> (1 + ���2)−s/4

∣∣∣Ĥ���
∣∣∣ (1 + ���2)s/4 �ǧ1����d�

≤
(∫

���> 
(
1 + ���2)−s/2

∣∣∣Ĥ���
∣∣∣2 d�)1/2 (∫

���> 
(
1 + ���2)s/2 �ǧ1����2 d�

)1/2

≤ CE
(∫

���> 
(
1 + ���2)s/2 �ǧ1����2 d�

)1/2
	 (5.56)

Then, using (5.53), we find that for 1 < s < 2,∫
���> 

(
1 + ���2)s/2 �ǧ1����2 d� (5.57)

=
∫
���> 

(
1 + ���2)− 2−s

2
(
1 + ���2) �ǧ1����2 d�

≤ (1 +  2
)− 2−s

2

∫
�3

(
1 + ���2) �ǧ1����2 d� ≤ CE2 −�2−s�

and with (5.56) and (5.57), ∫
���> 

∣∣∣Ĥ���ǧ1���
∣∣∣d� ≤ CE2 − 2−s

2 	 (5.58)

By (5.52), (5.54), (5.55) and (5.58) we have∫
F1

� �f1�2 d!1 ≤ CE
√
 
(
m0e

C eC� + �−2�1−%�
)+ CE2 − 2−s

2 	 (5.59)
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We choose � =  1/�1−%� and get, for every  ≥ 1,∫
F1

� �f1�2 d!1 ≤ CE
(
m0

√
 eC� + 1/�1−%�� +  −3/2 + E − 2−s

2

)
(5.60)

≤ C �E + m0 + 1�2
((

m0

E + m0 + 1

)
eC� 

1/�1−%� +  − 2−s
2

)
�

where C� depends on the a priori data only.
We then choose

 =
(

1
2C�

∣∣∣∣log
m0

E + m0 + 1

∣∣∣∣)1−%

so that

∫
B′
d

�f1�2d!1 ≤ C �E + m0 + 1�2

∣∣∣∣log
m0

E + m0 + 1

∣∣∣∣−
2−s

2

� (5.61)

where C depends on s and the a priori information only. Because f1 is an affine
function on F1 with a bounded gradient, and the size of B′

d is bounded from below
with a constant depending only on a priori information, we have

�f1�x�� ≤ C �E + m0 + 1�

∣∣∣∣log
m0

E + m0 + 1

∣∣∣∣−
2−s

4

for every x ∈ F1	 (5.62)

By repeating the same procedure on each facet, and recalling (5.42) and the fact that
$̃k�x� · �k = 0 if Fk ⊂ ��, we have∣∣$̃k�x� · �k

∣∣ ≤ C'1�m0� for x ∈ Fk� (5.63)

where

'1�m0� = �E + m0 + 1�

∣∣∣∣log
m0

E + m0 + 1

∣∣∣∣−
2−s

4

	

We fix a tetrahedron T
�0�
j and let P1, P2, P3, P4 be its vertices. We label the facets so

that Fk, for k = 1� 2� 3� 4 is the facet of T�0�
j that does not contain Pk. We let ��k� be

the unit outward normal to Fk. Each point on x ∈ Fk can be written as

x =
4∑
i=1

siPi�

where 0 ≤ si ≤ 1, sk = 0, and
∑4

i=1 si = 1. With this notation,

$̃k�x� · �k =
4∑
i=1

siṽi · ��k�
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and using (5.63) ∣∣∣∣∣ 4∑
i=1

siṽi · ��k�
∣∣∣∣∣ ≤ C'1�m0�	

This implies that ∣∣ṽi · ��k�∣∣ ≤ C'1�m0� for every i �= k	

In particular, this means that for every vector ṽj�i we have∣∣ṽj�i · ��k�∣∣ ≤ C'1�m0�

for every direction �
�k�
j orthogonal to the facet of T

�0�
j that contains Pi. By the

regularity of the partition, this implies that∣∣ṽj�i∣∣ ≤ C3'1�m0�� (5.64)

where C3 depends on the a priori information.
By adding together inequalities (5.64) and applying (5.28), we get

1 =
N∑
j=1

4∑
i=1

∣∣ṽj�i∣∣ ≤ 4C3'1�m0�

that yields

m0 ≥ '−1
1

(
1

4C3

)
	 (5.65)

From the definition of m0 (see (5.32)), there exist a pair of boundary values �0 and
�0 such that

����0� �0�� ≥ m0

2
��0���0�

and, hence, ∣∣∣∣ ddt� �t� �0� �0��t=0

∣∣∣∣ ≥ �2
N∑
j=1

Vj

m0

2
��0���0�

that, together with (4.6), gives (5.2) for

m1 = 1
2
�1A

−1
2 '−1

1

(
1

4C3

)
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