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Abstract

In this paper we show that in anisotropic elasticity, in the particular case of
transversely isotropic media, under appropriate convexity conditions, knowledge
of the qSH wave travel times determines the tilt of the axis of isotropy as well as
some of the elastic material parameters, and the knowledge of qP and qSV travel
times conditionally determines a subset of the remaining parameters, in the sense
that if some of the remaining parameters are known, the rest are determined, or if
the remaining parameters satisfy a suitable relation, they are all determined, under
certain non-degeneracy conditions. Furthermore, we give a precise description of
the additional issues, which are a subject of ongoing work, that need to be resolved
for a full treatment.

1. Introduction

In this paper we show that in anisotropic elasticity, in the particular case of
transversely isotropic media, under appropriate convexity conditions, knowledge
of the qSH wave travel times determines the tilt of the axis of isotropy as well as
some of the elastic material parameters, and the knowledge of qP and qSV travel
times conditionally determines a subset of the remaining parameters, in the sense
that if some of the remaining parameters are known, the rest are determined, or if
the remaining parameters satisfy a suitable relation, they are all determined, under
certain non-degeneracy conditions. Furthermore, we give a precise description of
the additional issues, which are a subject of ongoing work, that need to be resolved
for a full treatment.

The problem addressed in this paper has one of its primary applications in
seismic tomography. In Earth’s interior, the presence of anisotropy has been widely
recognized. In a classical (review) paper, Silver described the seismic anisotropy
beneath the continents [17].More recently,Romanowicz andWenk [14] described
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anisotropy in the deep interior. The assumption of transverse isotropy with tilted
symmetry axis has played a dominant role in many studies ranging from Earth’s
sedimentary basins, continental dynamics and subduction, deep mantle flow and
inner core.

The fundamental result of this paper is that the spatially varying symmetry axis
of a transversely isotropic elastic medium can be locally recovered, under certain
geometric conditions. However, in the present analysis, the full recovery of elastic
parameters requires some interrelationships between them. Such relationships may
be best motivated by considering models that effectively generate these parame-
ters; these then provide possible physically, mechanically or geologically based
reductions of independent parameters. We briefly mention a selection of exam-
ples of modeling procedures of this kind, omitting references to a vast literature
on the subject: (i) differential effective medium theories, for which we refer to
Norris et al. [12]; effective-medium-averaging techniques to estimate the effective
properties of a random sphere pack while considering contact laws for adhesive
contacts, rough contacts, and smooth contacts, which were developed byDigby [4]
and Walton [24], which later culminated in the modeling of elastic properties of
shales [9] in sedimentary basins; (ii) (sedimentary) layering-induced anisotropy in
a simple calculus formulated by Schoenberg and Muir [15], and more general
shape preferred orientation (SPO), considered by Garnero and Moore [7], in its
most basic form originating from the study of a deformable elastic ellipsoid in a
far-field loaded matrix with different properties by Eshelby [5,6]; and (iii) strain-
induced formation of lattice preferred orientation (LPO). Indeed in Earth’s upper
mantle it is generally accepted that seismic anisotropy results from LPO produced
by dislocation creep of olivine [25], while the mechanisms causing anisotropy in
the inner core are still under debate.

In order to state the results precisely, we work in an invariant setting based
on Riemannian geometry, since this enables a cleaner and conceptually clearer
statement. Thus, there is a given background metric g0, which is typically the
Euclidean metric; we denote the dual metric and the dual metric function by G0.
In general, anisotropic elasticity is described by a system whose principal symbol,
a tensor (matrix)-valued function on phase space, that is, the cotangent bundle, is
non-scalar, that is, is not a multiple of the identity map. Also, it can be diagonalized;
the eigenvalues are the speed of the various elastic waves. In isotropic elasticity,
there are two kinds of waves: P and Swaves, with S waves corresponding (in spatial
dimension 3) to a multiplicity 2 (and P waves a simple) eigenvalue. In anisotropic
elasticity, typically the S wave eigenspace is broken up, at least in most parts of
the cotangent bundle. In transversely isotropic elasticity there is a preferred axis,
with respect to which the principal symbol is rotationally symmetric relative to the
background metric G0 lifted to the cotangent bundle. There are three waves then,
the qP waves, as well as the qSV and qSH waves, with the latter corresponding
to the ‘breaking up’ of the S-waves. Of these, the qSH waves behave much like
in isotropic elasticity in the sense that they are given the dual metric function of a
Riemannian metric, while the qP and qSV waves have a very different character.

One common parameterization of transversely isotropic materials, see [1,22],
is via the material constants a11, a13, a33, a55 and a66, which are functions on the
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underlying manifold. In addition, there is an axis of isotropy, which can be encoded
by a vector field, or better yet a one form ω. The qSH ‘energy function’ (dual
metric function) then depends on a55, a66 > 0 and ω. Concretely, using orthogonal
coordinates relative to the metric g0 (with G0 the dual metric), and aligning the
axis of isotropy with the third coordinate axis, which is possible at any given point,
the wave speed of the qSH waves is given by a (squared!) Riemannian dual metric

G = GqSH = a66(x)|ξ ′|2 + a55(x)ξ
2
3 = a66(x)G0 + (a55(x) − a66(x))ξ

2
3 .

This corresponds to a Riemannian metric

g = gqSH = a66(x)
−1 |dx ′|2 + a55(x)

−1 dx23 = a66(x)
−1g0 + (a55(x)

−1

−a66(x)
−1) dx23 ,

again at the point in question. Thus, invariantly it has the form

g = αg0 + (β − α)ω ⊗ ω,

that is, the metric is a rank one perturbation of a conformal multiple of the back-
ground (say, Euclidean) metric, with α = a−1

66 , β = a−1
55 functions on the base

manifold. Note that here β − α could be incorporated into ω up to a sign; this
formulation keeps the sign unspecified, but then one should keep in mind that only
the direction of ω matters. There is another reason to keep this form, as will be
explained below. Note also that g determines the span of ω if β �= α, for the kernel
of ω is well-defined (at any point in the manifold) as the 2-dimensional subspace
of the tangent space restricted to which g is a constant multiple of g0.

Now, under appropriate assumptions, for example locally near the strictly con-
vex boundary, a Riemannian metric, g, can be recovered from its boundary distance
function up to diffeomorphisms, as shown by Stefanov, Uhlmann and Vasy, re-
called here in Section 2, see [20] for details. More precisely, see Section 2, the local
determination indeed only uses the boundary distance function, while the global
result uses the lens relation, which also keeps track of the direction of the geodesics
at the two points on the boundary at which they enter and exit the domain; in many
cases these are equivalent. Thus, if we know the qSH wave travel times, then in fact
we know g above up to diffeomorphisms (which are the identity at the boundary).
A natural question is whether this arbitrary diffeomorphism freedom is present in
our problem for the qSH wave travel times.

Formal dimension counting indicates that the space of Riemannian metrics is
6 dimensional at each point, that of vector fields (or one forms) is 3 dimensional at
each point, so formally the space of Riemannian metrics modulo diffeomorphisms
is 3 dimensional. Now, above, α, β are arbitrary functions, and ω is arbitrary but
only its direction matters, which means that the parameter space at each point is 4
dimensional. This indicates that it is unlikely that one can recover these four param-
eters from knowing the corresponding Riemannian metric up to diffeomorphisms.

On the other hand, if one assumes that ω satisfies additional conditions, this
pointwise parameter space can be cut down, and the problemmay become formally
determined. For instance, if ω always lies in the dx1–dx3 plane, this would be the
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case. (Note that this includes the case when ω = dx3, in which case the pointwise
above form holds at least locally.)

An important property of a one-form, such as ω, is its integrability, or more
precisely whether its kernel is an integrable hyperplane distribution, which means
that Ker ω is the tangent space of a smooth family of submanifolds, which are thus
locally level sets of a function f , so ω is a smooth multiple of d f . In this case,

g = αg0 + γ d f ⊗ d f.

In geological terms, this corresponds to a layered material with layers given by the
level sets of f . The integrability condition is natural though not globally (that is,
on planetary scale). LPO is one mechanism that is consistent with this assump-
tion while sedimentary processes, compaction and deformation would yield the
condition to also hold true.

Our first theorem is

Theorem 1.1. Consider the class of elastic problems in which Ker ω = Ker d f is
an integrable hyperplane distribution on a manifold with boundary M, with ω not
conormal to ∂M (so level sets of f locally intersect ∂M non-degenerately) and not
orthogonal to N∗∂M relative to G0. Then, under the local, resp. global, convexity
conditions for Riemannian determination (up to diffeomorphisms), stated here in
Theorems 2.1 and 2.2 of Section 2, f, α, β are locally, resp. globally, determined
by the qSH travel times, resp. qSH lens relations, and the labelling of the level sets
of f at the boundary.

Thus, there is no diffeomorphism freedom in this problem, unlike for the bound-
ary rigidity problem in Riemannian geometry.

Since the qSH-wave speed does not depend on the remaining material param-
eters, a11, a13, a33, in order to go further we need to consider qSV and qP waves.
Now, at a pointwith coordinates g0-orthogonal at the point and such that the isotropy
axis is aligned with the x̃3 axis the Hamiltonians for the other waves take the form
(with ± corresponding to the choice of qP vs. qSV, and G being twice what gives
the actual wave speeds)

GqP/qSV = (a11 + a55)|ξ̃ ′|2 + (a33 + a55)ξ̃
2
3

±
√(

(a11 − a55)|ξ̃ ′|2 + (a33 − a55)ξ̃23
)2 − 4E2|ξ̃ ′|2ξ̃23 ,

(1.1)

where

E2 = (a11 − a55)(a33 − a55) − (a13 + a55)
2,

see [16]. (We will make the physically natural assumption that max{a55, a66} <

min{a11, a33} throughout the paper.) If one uses another coordinate system, x j ,
often chosen orthogonal at the point in question, and corresponding dual variables
ξ j , the actual wave speed is given by the corresponding change of variables. Thus,
these wave speeds are no longer given by a quadratic polynomial in the fibers of the
cotangent bundle, and thus are not the wave speeds of a Riemannian metric unless
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E = 0, that is, E measures the departure from the Riemannian case (which is some-
times called the ‘elliptic case’ due to the quadratic polynomial nature). (One can
say that they are the wave speeds of a co-Finsler metric due to the homogeneity with
respect to dilations in the fibers of the cotangent bundle, cf. [3] for the terminology
and for a detailed discussion.) Correspondingly, the Riemannian result [20], is not
applicable. Nevertheless, the analysis of that paper is based on the study of a class
of transforms which are microlocally weighted X-ray transforms along curves, and
even these general wave speeds fall in this class, with the techniques introduced by
Uhlmann and Vasy [23] being applicable.

Following [23], in this paper we work with a function on M with strictly convex
level sets, and localize to super-level sets of this function.We show that themodified
and localized ‘normal operators’ that arise from the Stefanov–Uhlmann pseudo-
linearization formula,which is valid for all Hamiltonian flows and goes back to [18],
are scattering pseudodifferential operators in Melrose’s scattering pseudodifferen-
tial algebra [10], with the level set of the function at which we stop playing the
role of the boundary. (Thus, this artificial boundary is the only one with analytic
significance, while the original boundary of M simply constrains supports.) In this
algebra, whose properties are summarized in [20, Section 3.2], there are two dif-
ferent (and somewhat coupled) notions of ellipticity: that of the standard principal
symbol and that of the boundary principal symbol; the boundary principal symbol at
infinity in the fibers of the (scattering) cotangent bundle is the same as the standard
principal symbol at the boundary, explaining the coupling. The standard principal
symbol corresponds to differentiable regularity, the boundary principal symbol to
decay.

Now, there are three quantities we would still like to determine—a11, a33 and
E—and we have two different wave speeds, the qSV and the qP waves that we can
use. While ideally one would like to determine all of these at the same time, it is at
this point natural to formulate a theorem in which two of these three are regarded
as known, and the third as unknown. Due to multiple points in the cotangent space
potentially corresponding to the same tangent vector via the Hamilton map (a phe-
nomenon that causes ‘wave triplication’), we make an additional non-degeneracy
hypothesis for the material, for which we refer to Definition 3.1.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 hold, and that ∇ f is
neither parallel, nor orthogonal to the artificial boundary with respect to g0. (This
is automatic near ∂M if the convex function is a boundary defining function for ∂M,

or a sufficiently small perturbation of such.) Assume moreover that the transversely
isotropic material is non-degenerate relative to a convex foliation if qSV data are
used below, with convexity of the foliation always understood with respect to GqP,
resp. GqSV , if qP, resp. qSV data are used below.

Then themodifiedand localized ‘normal operators’ arising from theStefanov–
Uhlmann formula are inMelrose’s scattering pseudodifferential operator algebra.
Furthermore, the boundary principal symbol is elliptic at finite points of the scat-
tering cotangent bundle for any one of E2, a11, a33 from the qP travel data, and for
E2 (as well as a11 and a33 if E2 > 0) from the qSV travel data. Furthermore, for
a11 from the qP-travel time data standard principal symbol ellipticity also holds.
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Note that the assumption that d f is not conormal to the artificial boundary, that
is,∇ f is not orthogonal to it, means that the span of d f has a non-degenerate image
in the scattering cotangent bundle; if ρ defines the artificial boundary, this is that
of the scattering one-form ρ−1 d f .

An immediate corollary, using the methods of [19,23], is

Corollary 1.1. Suppose that we are given the qSH-travel time data so that ω, a55
and a66 are determined already, and assume that the hypotheses of Theorem 1.2
hold.Given E2 and a33, thematerial parameter a11 can be recovered fromqP-travel
time data.

Motivated by the discussion in the introduction on possible parameter set reduc-
tion, by elimination we may invoke a functional relationship where a11 determines
a33 and E2. This yields an alternative to the corollary above:

Corollary 1.2. Suppose that we are given the qSH-travel time data so that ω, a55
and a66 are determined already, and assume that the hypotheses of Theorem 1.2
hold for both the qP and qSV waves with the same convex foliation. Suppose also
that we are given C∞ functions F, H : R → R with F ′ � 0 such that a33 = F(a11)
and E2 = H(a11). Then a11 can be recovered from the qP- and qSV-travel time
data jointly.

Finally, we show the precise nature of the obstruction to full invertibility via
elliptic analysis as follows:

Theorem 1.3. For a33, E2 from the qP or qSV travel data, as well as for E2 and
one of a11 and a33 jointly from the qP and qSV data, the standard principal symbol
is not elliptic, rather vanishes in a non-degenerate quadratic manner along the
span of d f at fiber infinity in the scattering cotangent bundle.

The explanation of the lack of ellipticity is very simple: in general, for the
normal operator’s standard principal symbol computation at a point ζ ∈ T ∗

x M , one
takes a weighted average of certain quantities evaluated at covectors for which the
Hamiltonvector field for the relevantwave speed is annihilated by ζ .Now, if ζ = d f
is in the axis direction, the tangent vectors involved in the integration correspond
to covectors in the g0-orthogonal plane, that is with a vanishing ξ̃3 coordinate, and
there the qP and qSV wave speeds are insensitive to a33, E2 as these appear with a
prefactor ξ̃23 above. The quadratic non-degeneracy also corresponds to this; namely,
the relevant coefficient is a non-degenerate multiple of ξ̃23 .

This means that the analytic framework for this inverse problem involves dou-
ble characteristics, which were studied in the paper of Guillemin and Uhlmann
[8]. However, here these need to be analyzed in the context of scattering pseudod-
ifferential operators, and the analysis must be global on the manifold cut out by the
artificial boundary.

Of course, we would like to determine all three of the remaining parameters
ideally. One may set up a system by adding a third row and using different premul-
tipliers, as was done in [20] to treat the normal gauge, but one will certainly still
have the double characteristic phenomena at the minimum.
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2. Proof of Theorem 1.1

At the beginning of this section we recall the results of Stefanov, Uhlmann
andVasy [20]. The simplest result to formulate is the local boundary rigidity result
in Riemannian geometry.

Theorem 2.1. ([20, Theorem 1.1]) Suppose that (M, g) is an n-dimensional Rie-
mannian manifold with boundary, n � 3, and assume that ∂M is strictly convex (in
the second fundamental form sense) with respect to each of the two metrics g and
ĝ at some p ∈ ∂M. If dg|U×U = dĝ|U×U , for some neighborhood U of p in ∂M,
then there is a neighborhood O of p in M and a diffeomorphism ψ : O → ψ(O)

fixing ∂M ∩ O pointwise such that g|O = ψ∗ĝ|O.
Furthermore, if the boundary is compact and everywhere strictly convex with

respect to each of the two metrics g and ĝ and dg|∂M×∂M = dĝ|∂M×∂M, then there
is a neighborhood O of ∂M in M and a diffeomorphism ψ : O → ψ(O) fixing
∂M ∩ O pointwise such that g|O = ψ∗ĝ|O.

Paper [20] also proves a global consequence of the local results, assuming that
M is connected with non-trivial boundary. This global statement requires a globally
defined function x with level sets which are strictly concave from the superlevel
sets and which is � 0 at a subset of ∂M ; such functions necessarily exist near the
boundary but not necessarily globally. (One can take for instance the negative of
a boundary defining function as a local example near the boundary, though this
does not localize within ∂M . See [23] for more examples.) One also has the global
existence of such a function under appropriate curvature conditions; see [20] for
more details and references. (As an example, for domains in non-positively curved
simply connected manifolds, the distance to a point outside the domain satisfies the
concavity requirements.) This theorem uses the lens relation, which in addition to
the distance between boundary points keeps track of the directions at these points of
geodesics connecting them. For simplemanifolds (strictly convex boundary and the
geodesic exponential map around each point is a diffeomorphism), the knowledge
of the boundary distance function dg|∂M×∂M and of the lens relation is equivalent,
see [11].

Theorem 2.2. ([20, Theorem1.3]) Suppose that (M, g) is a compact n-dimensional
Riemannian manifold, n � 3, with strictly convex boundary, and x is a smooth
function with non-vanishing differential whose level sets are strictly concave from
the superlevel sets, and {x � 0} ∩ M ⊂ ∂M.

Suppose also that ĝ is a Riemannian metric on M and suppose that the lens
relations of g and ĝ are the same.

Then there exists a diffeomorphism ψ : M → M fixing ∂M such that g = ψ∗ĝ.

We start the proof of Theorem 1.1 by discussing some consequences of its
integrability hypothesis.

As we already mentioned, in general Ker ω, thus in this case Ker d f is well-
defined, and so is its g-orthocomplement, which is the same as the
g0-orthocomplement, since if a vector W is g0 orthogonal to an element V of
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Ker d f , then d f ⊗ d f (V,W ) = d f (V ) d f (W ) = 0 shows the g-orthogonality,
and conversely. Moreover, taking y3 = f , one can introduce local coordinates in
which ∂y1, ∂y2 are orthogonal to ∂y3 : one does this by defining y j on a level set of
f , and then extending them to be constant along integral curves of ∇g f . Indeed, in
this case ∂y1, ∂y2 are tangent to the level sets of f , for ∂y j y3 = 0, j = 1, 2, while
∂y3 is a multiple of ∇g f , which is orthogonal to the f level sets, hence to the ∂y j ,
j = 1, 2. Correspondingly, in these coordinates, the metric takes the form

g =
2∑

i, j=1

ai j dyi ⊗ dy j + a33

dy3 ⊗ dy3.

Notice that, by the above remark, one has the same result if ∇g0 f -integral curves
are used, since they are also orthogonal to the level sets of f , thus are simply
reparameterizations of the ∇g f -integral curves. Furthermore, one can take any
hypersurface transversal to ∇g0 f to define y1 and y2 originally. Thus, if ∇g0 f is
not tangent to the boundary, that is, ω is not G0-orthogonal to N∗∂M , as we have
assumed, one can use the boundary for this purpose.

Now suppose that two metrics g and g̃ of this form are the same up to a diffeo-
morphism � fixing the boundary, that is

α̃g0 + γ̃ d f̃ ⊗ d f̃ = �∗(αg0 + γ d f ⊗ d f ).

Since Ker d f is determined by g, and Ker d f̃ is determined by g̃, � preserving the
metrics implies that the differential of � then will take Ker d f and its g, thus g0-
orthocomplement toKer d f̃ and its g̃, thus g̃0-orthocomplement. Using coordinates
y j and ỹ j as above this means that D� is block-diagonal, with the (12) and (3)
blocks being non-trivial. This says that ∂ j�3 = 0, j = 1, 2, and ∂3� j = 0,
j = 1, 2. Thus, �1 and �2 are independent of y3, while �3 is independent of y1
and y2, so if one can make the argument that (�1,�2) is the identity at some point
of each y3-curve, then it is so globally; moreover �3 simply relabels the level sets,
that is, ỹ3 = �3(y3). One can achieve this, however, by choosing y1 and y2 on
the boundary (locally), using that ∇g0 f,∇g0 f̃ are transversal to the boundary by
our assumption, and then choosing ỹ1 and ỹ2 to be the same as y1, y2 there—then
at the boundary, the (12) block of D� is the identity matrix. Moreover, as ∇ f is
not orthogonal to ∂M , that is, ω is not conormal to ∂M , by our assumption, the
labelling of the level sets of f is determined by their value at the boundary (since
they intersect the boundary, and they do so non-degenerately), and the same for f̃ .
Thus, in this case the diffeomorphism is the identity, and thus g is determined from
the boundary distance function (locally). Since g in turn determines α, γ = β −α,
this proves Theorem 1.1.

3. Proof of Theorems 1.2 and 1.3

3.1. The Pseudolinearization Formula and Its Basic Properties

To proceed, consider the Stefanov–Uhlmann pseudolinearization formula
which, as we recalled already, is valid for all Hamiltonian flows and goes back to
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[18]; recall that in the isotropic setting one uses the momentum, ∂ξ , component
of the Hamilton vector field to recover the unknown wave speed. This in turn
involves the position, x , derivative of the effective Hamiltonian. Concretely, see
[20, Section 7.2.2], the ξ -component of this formula for two Hamilton vector fields
Hp and Hp̃ corresponding to two effective Hamiltonians p and p̃, denoting their
flows by (X, �) (with corresponding integral curve γ , exit time τ = τ(x, ξ)), resp.
(X̃ , �̃), with f = p − p̃, takes the form

Ji f (γ ) =
∫

(A j
i (X (t),�(t))∂x j f (X (t),�(t))

+ Bi j (X (t),�(t))∂ξ j f (X (t),�(t))) dt = 0 (3.1)

with

A j
i (x, ξ) = −∂�̃i

∂ξ j
(τ (x, ξ), (x, ξ)),

Bi j (x, ξ) = ∂�̃i

∂x j
(τ (x, ξ), (x, ξ)).

Thus, at the boundary,

A j
i (x, ξ) = −δ

j
i , Bi j (x, ξ) = 0.

Now suppose there is a function P = P(x, ξ, ν1, . . . , νk) depending on param-
eters ν j , which are here the material parameters ai j , and corresponding to either
wave speed GqP/qSV , and suppose that

p(x, ξ) = P(x, ξ, ν1, . . . , νk), p̃(x, ξ) = P(x, ξ, ν̃1, . . . , ν̃k),

for two media with particular parameters ν1, . . . , νk , resp. ν̃1, . . . , ν̃k . Then

p(x, ξ) − p̃(x, ξ) =
k∑
j=1

(ν j (x) − ν̃ j (x))E
j (x, ξ),

with

E j (x, ξ) =
∫ 1

0

∂P

∂ν j
(sν1(x) + (1 − s)ν̃1(x), . . . , sνk(x) + (1 − s)ν̃k(x), x, ξ) ds.

Now, if these two media have the same lens relations (and thus locally if they
simply have the same travel times), the Stefanov–Uhlmann identity gives with
fl(x) = νl(x) − ν̃l(x), and now f = ( f1, . . . , fk),

Ji f (γ ) =
k∑

l=1

∫
( Â jl

i (X (t),�(t))∂x j fl(X (t)) + B̂l
i (X (t),�(t)) fl(X (t)) dt = 0

(3.2)
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with

Â jl
i (x, ξ) = −∂�̃i

∂ξ j
(τ (x, ξ), (x, ξ))El(x, ξ),

B̂l
i (x, ξ) =−∂�̃i

∂ξ j
(τ (x, ξ), (x, ξ))∂x j El(x, ξ)+ ∂�̃i

∂x j
(τ (x, ξ), (x, ξ))∂ξ j E

l(x, ξ).

Thus, at the boundary, where the νl and ν̃l are equal,

Â jl
i (x, ξ) = −δ

j
i
∂P

∂νl
(ν1(x), . . . , νk(x), x, ξ),

B̂l
i (x, ξ) = −δ

j
i ∂x j

∂P

∂νl
(ν1(x), . . . , νk(x), x, ξ).

Notice that now this is a linear transform in the fl .
A convex foliation, by level sets of a function x, often plays a role in this paper.

The level sets of a function x onM are concave, or concave from the superlevel sets,
or convex from the sublevel sets for a Hamiltonian p if along integral curves γ (t) =
(X (t),�(t))) of Hp, d

dt (x◦ X)(t) = 0 implies d2

dt2
(x◦ X)(t) > 0. This corresponds

to the assumptions in Section 3.2 of [23] above Equation (3.1). Convexity from the
superlevel sets is defined similarly, with the strict inequality reversed.

Instead of using the cotangent space for parameterizing the bicharacteristics,
one may want to use the tangent space instead. For this one considers the Hamilton
vector field map of the Hamiltonian function p: the tangent vector to a projected
bicharacteristic γ (t) = X (t) corresponding to the bicharacteristic (X (t),�(t)) is
γ̇ (t) = HX (t)(�(t)), where Hx is the push-forward of the Hamilton vector field to
the base

Hx (ξ) =
∑
j

∂p

∂ξ j
(x, ξ)∂x j ,

where the notation indicates that for each base point x we consider it as a map

ξ → Hx (ξ).

When p(x, ·) is a quadratic polynomial (that is p is a quadratic polynomial in ξ ),
thus for Riemannian geometry and the qSH transversely isotropic waves, this is
a linear map, but in general it is nonlinear. In order to parameterize the bichar-
acteristics, this should be a map with a smooth inverse, at least locally along the
bicharacteristics we wish to use. This holds if DHx is invertible. Explicitly, this

differential is the Hessian matrix with i j entry ∂2 p
∂ξi ∂ξ j

. If p(x, ·) is a positive defi-
nite quadratic polynomial, such as in Riemannian geometry and qSH waves, then
the Hessian matrix is positive definite, thus invertible. Positive definiteness of the
Hessian corresponds to strict convexity of the level sets of p from the side of the
sublevel sets. In general, for interesting examples of p arising from qSV waves
in transversely isotropic materials, such as for the Greenhorn shale, see for exam-
ple [16, Figure 2], the strict convexity may fail.
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Since the general method of [23] uses curves that are almost tangential to the
level sets of the convex foliation, and inmanyexamples (supportedbygeodynamical
considerations) the tangent space of the level sets of the convex foliation may lie
close to the orthogonal plane to the isotropy axis, we start by remarking that under
easy to formulate conditions the qSV (and qP) level sets are strictly convex there.
(This is guaranteed if E2 is not exceedingly negative, while in Earth materials,
typically, E2 ≥ 0 [21].) In the following lemma, the tilded coordinates correspond
to the transverse isotropy with the third coordinate corresponding to its axis, as in
the introduction; note that the Hamilton vector field being invariantly defined, it
makes no difference in what coordinates we consider the map Hx (we also recall
the standing assumption max{a55, a66} < min{a11, a33} here):
Lemma 3.1. Suppose that either p = p+ = GqP, or instead p = p− = GqSV

and

a33(a11 − a55) > (a13 + a55)
2.

Then the map ξ̃ → Hx̃ (ξ̃ ) = ∑
j

∂p
∂ξ̃ j

∂x̃ j has an invertible differential at ξ̃3 = 0,

and indeed the level sets of p are strictly convex (from the sublevel sets) nearby.

Remark 3.1. This lemma also plays an important role below in studying the precise
degeneracy in determining various material parameters from various waves.

Remark 3.2. Notice that if E2 � 0, the right-hand side is� (a11−a55)(a33−a55),
so the inequality in the statement of the lemma is automatically true.

Proof. We just need to compute the Hessian matrix 1
2

∂2 p±
∂ξ̃i ∂ξ̃ j

and show that it is

positive definite when ξ̃3 = 0. But this Hessian is diagonal, with a multiplicity 2
entry for the first 2 components. At ξ̃3 = 0 the multiplicity two entry is particularly
easy to evaluate as one may simply set ξ̃3 = 0 prior to differentiation to obtain

(a11 + a55) ± (a11 − a55),

which are positive. Thus it remains to evaluate the multiplicity one entry, namely
1
2

∂2 p±
∂ξ̃23

. Again, this simplifies as after the first differentiation we may set all terms

with a ξ̃23 factor to 0, that is, we just need to differentiate

(a33 + a55)ξ̃3 ± (a33 − a55)(a11 − a55)|ξ̃ ′|2 − 2E2|ξ̃ ′|2
(a11 − a55)|ξ̃ ′|2 ξ̃3,

which is

(a33 + a55) ± (a33 − a55)(a11 − a55) − 2E2

a11 − a55
.

As E2 = (a11 − a55)(a33 − a55) − (a13 + a55)2, this simplifies to

(a33 + a55) ± 2(a13 + a55)2 − (a11 − a55)(a33 − a55)

a11 − a55
,
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which is

2a55 + 2(a13 + a55)2

a11 − a55
,

thus always positive, for the + sign, and is

2a33 − 2(a13 + a55)2

a11 − a55
,

for the − sign, which is positive if

a33(a11 − a55) > (a13 + a55)
2.

This completes the proof. ��
In general, as already mentioned, we do not have strict convexity of the level

sets, and as the Hessian changes signature, Hx ceases to have an invertible differ-
ential along some submanifolds. Globally, this results in Hx not being injective,
giving rise to phenomena such as triplication (higher multiplicities cannot occur in
the case of transverse isotropy) where a given (normalized) tangent vector is the
image of multiple covectors. However, for qP waves strict convexity (from sublevel
sets) always holds [2, p. 168], [13], and in general this phenomenon motivates the
following definition:

Definition 3.1. A transversely isotropic material is non-degenerate relative to a
convex foliation (concave from the superlevel sets for GqSV ) if for each point x and
each vector v tangent to the convex foliation at the point x there is a covector ξ

in the cotangent space over x such that Hx (ξ) = v and the map Hx has invertible
differential at ξ , with Hx arising from GqSV . A transversely isotropic material is
non-degenerate provided the statement above holds for all v (and not just v tangent
to a particular convex foliation).

Lemma 3.1, under the assumed condition, thus shows that if the transverse
isotropy orthogonal planes are close to the tangent spaces to a convex foliation,
then the material is non-degenerate relative to the convex foliation.

In a non-degenerate, relative to a convex foliation, material, one may always
consider, at least locally, the bicharacteristics to be parameterized by tangent vec-
tors. This is useful both in order to localize to almost tangent to the convex foliation
vectors and also to analyze the transform: stationary phase computations, discussed
below, use the natural pairing between covectors at which principal symbols are
evaluated and tangent vectors to the projected bicharacteristics being used. This
approach also has the advantage of connecting better to the notation of [19,20,23].

Thus, from now on, we assume that the material is non-degenerate relative to
the fixed convex foliation.We then define a transform L̃ from the cotangent space,
which is a transform of the form

L̃ =
∑
i

�i Li�
−1
i φ̃i ,
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φ̃i a cutoff supported in a region on a neighborhood of which Hx is smoothly
invertible, and Li is a transform, discussed below, from the tangent space, where
the local identification �i is given by pull-back by the Hamilton vector field map
Hx , and �−1

i is the pull-back by the local inverse H−1
x . Concretely, we cover

a neighborhood of the tangent space of the convex foliation with open sets Oi

on each of which H−1
x exists as a smooth map with image Õi in the cotangent

space, and take a corresponding partition of unity φi (so
∑

i φi = 1 on a smaller
neighborhood of the tangent space of the convex foliation), and let φ̃i be defined
as H∗

x φi on Õi (with support in a compact subset of Õi ) and 0 outside.
In order to avoid overburdening the notation, since all arguments below are

local we drop the index i , and simply write L , and understand that H−1
x refers to

the localized inverse for Hx : Õi → Oi .
Following [23], we use coordinates (x1, x2, x3) = (y, x) = z in which x = x3

are the level sets are the convex foliation, and x3 = 0 is the artificial boundary, We
write tangent vectors asλ ∂x+ω ∂y , and the projected bicharacteristic corresponding
to such a tangent vector at z as γz,λ,ω = γx,y,λ,ω. One then considers an operator
of the form LJ, where L is a slightly modified version of J ∗, and where L cuts off
at the artificial boundary, (see [23]):

(Lv)(z) = x−2
∫

χ(λ/x)v(γz,λ,ω) dλ dω,

cf. [20], the displayed equation below (3.1) (this differs from [23] in normalization).
Here χ is a non-negative smooth compactly supported function, χ(0) > 0, which is
appropriately chosen as in [23], see also Lemma 3.7. The particular smoothmeasure
dλ dω is irrelevant; any other positive definite smooth measure will do. Note that
the measure has nothing to do with the Euclidean metric g0 (which plays a role in
the transverse isotropy!) in particular, and similarly the coordinates x j have nothing
to do with Euclidean metric.

The main terms in (3.2) are the Â jl
i (x, ξ) terms; the others can be absorbed into

these by Poincaré inequalities, at least if the Â jl
i (x, ξ) terms are non-degenerate,

see [19]. To leading order at the boundary these decouple due to the δ
j
i , so one

is essentially working on a microlocally weighted X-ray transform combining the
differences of the unknownmaterial parameters;more precisely one has a transform
for each derivative of the combinations of the differences of these unknownmaterial
parameters. (One of course has to deal with these transforms together as done in
[19] and follow-up papers.) Thus, one may consider the simplified transforms

J̃ f̃ (γ ) =
k∑

l=1

∫
( Ãl(X (t),�(t)) f̃l(X (t)) dt = 0 (3.3)

with

Ãl(x, ξ) = −∂�̃ j

∂ξ j
(τ (x, ξ), (x, ξ))El(x, ξ),

Ãl(x, ξ) = −∂P

∂νl
(ν1(x), . . . , νk(x), x, ξ) at ∂M,
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f̃l = ∂ j fl ,

with j fixed.
The following proposition is proved completely analogously to [19, Corol-

lary 3.1]:

Proposition 3.1. If the operator e−�/x L J̃ e�/x is elliptic when considered as a
map from a single component of f̃l (that is with the others set to 0), the ellipticity of
the full operator e−�/x L Je�/x follows as amap for the corresponding component,
provided the artificial boundary is sufficiently close to ∂M.

Roughly speaking, the hypothesis of this proposition says that ignoring cou-
pling one can recover the derivatives of fl (due to ellipticity, choosing the artificial
boundary sufficiently close to ∂M), which then, as the conclusion states, allows
one to recover fl , though due to the coupling in LJ , a Poincaré inequality based
argument is needed as in [19, Corollary 3.1]. Because of this proposition, in what
follows we concentrate on properties of L J̃ .

Now, with p± = GqP/qsV (with + for qP; notice that p± stands for P above),
and with tilded coordinates corresponding to the transversely isotropic structure,
not the convex foliation, we have from (1.1) that

∂p±
∂E2 = ∓ 2|ξ̃ ′|2ξ̃23√(

(a11 − a55)|ξ̃ ′|2 + (a33 − a55)ξ̃23
)2 − 4E2|ξ̃ ′|2ξ̃23

,

∂p±
∂a11

= |ξ̃ ′|2
⎛
⎝1 ± (a11 − a55)|ξ̃ ′|2 + (a33 − a55)ξ̃23√(

(a11 − a55)|ξ̃ ′|2 + (a33 − a55)ξ̃23
)2 − 4E2|ξ̃ ′|2ξ̃23

⎞
⎠ ,

∂p±
∂a33

= ξ̃23

⎛
⎝1 ± (a11 − a55)|ξ̃ ′|2 + (a33 − a55)ξ̃23√(

(a11 − a55)|ξ̃ ′|2 + (a33 − a55)ξ̃23
)2 − 4E2|ξ̃ ′|2ξ̃23

⎞
⎠ . (3.4)

We summarize some immediate definiteness properties (keep in mind the back-
ground assumption that max{a55, a66} < min{a11, a33}) of these material deriva-
tives in the following lemma:

Lemma 3.2. We have:
(1) ∂p+

∂a11
is a positive definite multiple of |ξ̃ ′|2, thus is in particular non-negative.

(2) ∂p+
∂a33

is a positive definite multiple of ξ̃23 , thus is in particular non-negative.

(3) ∂p±
∂E2 are positive definitemultiples of∓|ξ̃ ′|2ξ̃23 , thus is in particular non-positive/
non-negative.

(4) If E2 > 0, ∂p−
∂a11

is negative definite multiple of |ξ̃ ′|2 away from ξ̃3 = 0 and

from ξ̃ ′ = 0, and is everywhere non-positive; the analogous statement holds if
E2 < 0 with ‘positive’ and ‘negative’ reversed.

(5) If E2 > 0, ∂p−
∂a33

is a negative definite multiple of ξ̃23 away from ξ̃3 = 0 and

from ξ̃ ′ = 0, and is everywhere non-positive; the analogous statement holds if
E2 < 0 with ‘positive’ and ‘negative’ reversed.
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Remark 3.3. Notice that when E2 = 0, ∂p−
∂a11

= 0 and ∂p−
∂a33

= 0, that is, a11 and a33
affect only p+. (In isotropic elasticity, a11 = a33 = λ + 2μ in terms of the Lamé
parameters, while a55 = μ, and E2 = 0, a13 = λ, so this is the statement that the
S waves are insensitive to λ.)

As we recall below, the derivatives in (3.4) will be evaluated at the points in
the cotangent bundle on the support of the cutoff χ in L , which means that points
near the image of the tangent space of the level sets of the convex foliation under
the local inverses H−1

x . Furthermore, for the principal symbol computation for L J̃
at a point (x, ζ ), by stationary phase, one actually needs the base tangent vector to
the bicharacteristic, Hx (ξ) = λ ∂x + ω · ∂y , be annihilated by

∑
j ζ j dx j , though

this needs to be suitably interpreted at the artificial boundary since ζ is actually a
scattering covector.

3.2. Principal Symbols

Concretely, for the standard principal symbol computation one writes the pro-
jected bicharacteristics through x, y, with tangent vector λ∂x + ω · ∂y at that point,
in the form

γ (t) = γx,y,λ,ω(t) = (γ
(1)
x,y,λ,ω(t), γ (2)

x,y,λ,ω(t))

= (x + λt + αt2 + O(t3), y + ωt + O(t2)),

where the O’s are understood to mean the indicated prefactor times a smooth
function of all variables,

(x1, x2, x3) = ((x1, x2), x3) = (y, x) = z,

where α = α(x, y, λ, ω), see Section 4 of [20], including expanding all the O error
terms into smooth functions. Thus, to match the notation of this paper and [23], the
scalar function x stands for x3 in terms of the vector coordinates (x1, x2, x3), and
yet it is written as the first component of γ . (Technically, that section of [20] is in
the more complicated one form setting, so there are various slight simplifications
in the computations for the present purposes.) Then

(γ (t), γ̇ (t))=
(
x+λt+αt2+O(t3), y+ωt+O(t2), λ+2αt+O(t2), ω + O(t)

)
,

and scaling λ̂ = λ/x , t̂ = t/x , as relevant below for the oscillatory integral, gives

(γ (x t̂), γ̇ (x t̂)) =
(
x + x2(λ̂t̂ + αt̂2 + xO(t̂3)),

y + x(ωt̂ + xO(t̂2)), x(λ̂ + 2αt̂ + xO(t̂2)), ω + xO(t̂)
)

.

The weight Â jl
i is on the phase space due to the Hamiltonian dynamics used in the

Stefanov–Uhlmann formula, so the tangent vector γ̇ (t) needs to be converted
to a covector via the local inverse H−1

γ (t) of the Hamilton vector field map.
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The symbol whose left quantization is

Al,� = e−�/x L J̃ e�/x , (3.5)

considered restricted to functions with only non-vanishing lth components, is, cf.
[20, Equation (4.9)], combined with the weights discussed in [20, Equation (6.15)],

al,�(x, y, ζ ) =
∫

e−�/x e�/γ
(1)
x,y,λ,ω(t)ei(ζ3/x

2,ζ ′/x)·(γ (1)
x,y,λ,ω(t)−x,γ (2)

x,y,λ,ω(t)−y)

Ãl(γ (t), H−1
γ (t)(γ̇ (t)))χ(λ/x) dt dλ dω, (3.6)

where ζ is the scattering coordinate (so covectors are ζ3
dx
x2

+ζ ′ · dyx ). After rescaling
λ and t , this becomes a non-degenerate oscillatory integral with critical points at
the codimension 2 submanifold

t̂ = 0, ζ3λ̂ + ζ ′ · ω = 0. (3.7)

Note that if ζ ′ is large relative to ζ3, that is, if we stay away from a conic neighbor-
hood of ζ ′ = 0, one can use t̂ andω‖ as the variables in which the stationary phase is
performed, where ω is decomposed relative to ζ ′ into a parallel and a perpendicular
vector; then λ̂, ω⊥ parameterize the critical set. On the other hand, if ζ3 is large
relative to ζ ′, then one can use t̂ and λ̂ as the variables in which stationary phase is
performed; then ω parameterizes the critical set. Hence, substituting the above ex-
pressions for γ, γ̇ , we conclude that up to errors that are O(x〈ζ 〉−1) relative to the
a priori order, (− 1, 0), arising from the 0th order symbol in the oscillatory integral
and the 2-dimensional space in which the stationary phase lemma is applied,

al,�(x, y, ζ )

=
∫

ei(ζ3(λ̂t̂+αt̂2)+ζ ′·(ωt̂))e−�(λ̂t̂+αt̂2) Ãl(x, y, H−1
x,y(x λ̂, ω))χ(λ̂) dt̂ dλ̂ dω.

(3.8)

At this point we apply the stationary phase lemma. Up to an overall elliptic factor,
this results in an integral of

Ãl(x, y, H−1
x,y(x λ̂, ω))χ(λ̂)

over the critical set with a positive weight. In particular, if this has a fixed indefinite
sign, for example is non-negative at all points of, and is actually definite (positive
in the example) at one point of, the critical set, the resulting operator is elliptic.
Note that we are using χ � 0 with χ(0) > 0, so if Ãl has a fixed indefinite sign,
the key question is if there is a point on the critical set with λ̂ small at which Ãl has
a definite sign.

Notice (3.7) states that if ζ3 = 0, the tangent vector ω is annihilated by ζ ′ and λ̂

is arbitrary (with the localizing cutoff χ keeping it in a compact region); otherwise
ω is actually arbitrary, though if ζ3 is small relative to ζ ′, this requires a very large
λ̂, which may fall outside the support of the cutoff χ ; in any case as long as the
cutoff is non-trivial at zero, a neighborhood of those ω annihilated by ζ ′ is relevant.
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Notice that at x = 0, regardless of the value of λ̂, the corresponding tangent vector
is just (x λ̂)∂x + ω · ∂y = ω · ∂y , cf. the argument of Ãl .

Now, if one regards two of a11, a33, E2 as known, and thus the value of l is fixed
to be the remaining single unknown, then, corresponding to (3.2), at the artificial
boundary the standard principal symbol of Al,� = e−�/x L J̃ e�/x is, up to overall
elliptic factors, simply an integral with a weight given by the remaining unknown’s
derivative, so for instance ∂p±

∂E2 if E2 is not known. Namely, the principal symbol

of Al,� = e−�/x L J̃ e�/x is an integral over all ω (except in the special case when
ζ3 = 0, when only two values of ω enter) at covectors (z, ξ) where the covectors
ξ are the images of (0, ω) under the map H−1

z , which, as we recall, is the local
inverse of Hz . Thus, if these partials are either positive at all points or negative at all
points, or simply non-negative, resp. non-positive at all points with a strict sign at
one point, the principal symbol is elliptic, since it is an integral of these expressions
with respect to a smooth positive measure, up to an overall elliptic factor.

Now, for p+ all the partials are non-zero as long as ξ̃ ′ and ξ̃3 are non-zero,
with ∂p+

∂E2 negative, the others positive; for p− the analogous claim holds for the E2

partial, and in addition for the a11 and a33 partials provided that E2 > 0.
For principal symbol computations we only need to consider the tangent plane

to the artificial boundary (and nearby level sets in the interior); the question is
whether the potential degeneracy of the weights at ξ̃ ′ = 0 or ξ̃3 = 0 provides an
obstruction to a strict sign at least one point of relevance.

First consider the degeneracy of some of our weights, such as ∂p+
∂a11

, at ξ̃ ′ = 0.

Lemma 3.3. If the gradient ∇ f of the transverse isotropy foliation function is not
parallel to the artificial boundary, points with ξ̃ ′ = 0 cannot give rise to vectors
tangent to the artificial boundary under Hamiltonian map Hx .

Note that the hypothesis on ∇ f follows at least sufficiently close to the actual
boundary under the conditions we discussed for the qSH waves, which we are
assuming.

Proof. With an abuse of notation
∑

j
∂p±
∂ξ j

∂x j is
∑

j
∂p±
∂ξ̃ j

∂x̃ j , both being the base

component, that is pushforward to the base, of the Hamilton vector field, expressed
in different coordinates. But if ξ̃ ′ vanishes, this vector is a multiple of ∂x̃3 , so is
parallel to the axis of transverse isotropic elasticity. Correspondingly, if the gradient
∇ f of the transverse isotropy foliation function is not parallel to the artificial
boundary, which we are assuming, then ξ̃ ′ cannot vanish at the relevant points as
∂x̃3 cannot be both parallel to the axis and tangent to the level sets of the convex
foliation function. ��

Thus, if we have a weight which is non-negative and only vanishes if ξ̃ ′ = 0,
such as ∂p+

∂a11
, arising when we are attempting to recover a11 from p+ travel times,

we indeed have ellipticity at the standard principal symbol level, that is, Al,� is
elliptic in the standard sense when l corresponds to a11 and the wave speed used is
p+. Together with Lemma 3.7 below, this proves that the qP travel times determine
a11, in the sense of Theorem 1.2.
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Unfortunately, there are points in the tangent plane at the artificial boundary
with ξ̃3 = 0, however, which is an issue for the determination of E2 and a33. Indeed,
this is exactly the statement that there are points in the tangent plane annihilated
by the differential d f of the foliation function, that is orthogonal to ∇ f , which
happens even under the conditions we discussed for the qSH waves. Since we still
have a fixed though degenerate sign for our weight (so it can vanish, but is � 0
everywhere or� 0 everywhere), this is only an issue if the weight vanishes at every
point at which the weight is evaluated in the principal symbol.

Note the vanishing phenomenon for the weight occurs for all relevant covectors
even away from the artificial boundary.

Lemma 3.4. Away from the artificial boundary, in x > 0, the only points ζ for
which ξ̃3 = 0 at all points on the critical set near the tangent space of the foliation
giving the artificial boundary are those in the span of d f .

Proof. First, at covectors in the span of d f , we are integrating over integral curves
with tangent vectors annihilated by d f , but at all of these ξ̃3 = 0. On the other
hand, for any covector ζ not in the span of d f , the set of ‘bad vectors’ annihilated
by both ζ and d f is a line, so in any open set of vectors annihilated by ζ (which thus
form a 2-dimensional family), such as those in an arbitrarily small neighborhood
of the tangent space to the level set of the foliation, there will be vectors which are
not in the ‘bad set’, proving the lemma. ��

Thus, away from the boundary ellipticity can only fail at points in the span
of d f , where we have already seen that it does fail. That the failure is quadratic
follows simply from the fixed (degenerate) sign of the principal symbol.

We now turn to the non-degeneracy of the quadratic vanishing.

Lemma 3.5. Suppose that the hypothesis of Lemma 3.1 holds. For Al,� corre-
sponding to E2 and a33, the quadratic vanishing of the principal symbol at the
span of d f is non-degenerate in x > 0.

Proof. The lemma follows from showing that along any line transversal to the span
of d f the quadratic vanishing is non-degenerate, that is, the second derivative is
strictly positive (or strictly negative) since then the a priori positive (or negative)
indefinite nature of Hessian combined with this fact implies positive (or negative)
definiteness.

But this can be seen as follows: consider ν not in the span of d f and ζ = ζε =
G0(d f )−1 d f + εν, where one may assume that ν is G0-orthogonal to d f and of
unit length; the desired non-degeneracy follows if we find a vector annihilated by
ζ and close to the tangent space of the convex foliation which is the image, via the
Hamilton vector field map Hx̃ , of a covector ξ̃ = ξ̃ε that has |ξ̃3| � Cε, C > 0
(independent of ε), for then the fact that the relevant weights are non-degenerate
multiples of ξ̃23 proves the conclusion. Since the Hx̃ maps covectors with vanishing
third component to Ker d f , and Hx̃ has, by Lemma 3.1, invertible differential at
ξ̃3 = 0, we see that for a vector v′ there is a covector mapped to it by Hx̃ whose the
third (tilded) component is a non-degenerate multiple of the distance (with respect
to any positive definite inner product on the tangent space) of v′ from the kernel of
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d f . Hence, it suffices to show that Ker ζ contains a vector v′ which is� Cε,C > 0,
distance from Ker d f but is still near the tangent plane to the convex foliation (so
that it is within the support of the cutoff).

This final claim can be seen as follows: by linear independence, for ε �= 0,
Ker d f and Ker ζε intersect in a line in an angle ∼ ε (more precisely, the tangent of
the angle is ε), and in any compact ‘annulus’ (closed ball minus a smaller open ball)
centered at a point in Ker d f at a fixed distance from the intersection, the distance
between a point in Ker ζε and Ker d f is bounded below by Cε, C > 0 (and above
by a similar expression), so consider a non-zero vector v in the tangent space of
the convex foliation which is annihilated by d f ; the tangent space of the foliation
is 2-dimensional and d f is not conormal to the level sets of the convex foliation,
so the span of v is well-defined (that is, there is no freedom of choice as far as the
span of v is concerned); in any fixed ball around it there is then a vector vε in Ker ζε

which is distance bounded below by Cε (and above by a similar expression) from
Ker d f , proving the claim. ��

At the artificial boundary a bit more care is required, and it requires an explicit
discussion of scattering covectors and maps related to them. Since elsewhere in the
paper only the statement of the lemma is used, we do not recall the background
here in more detail, but see for instance [19,23]. The argument presented below
is a modification, keeping track of potential degeneracies in identifications, of the
arguments discussed above for the case of points away from the artificial boundary.

Lemma 3.6. Suppose that the hypothesis of Lemma3.1holds. For Al,� correspond-
ing to E2 and a33, the quadratic vanishing of the principal symbol is non-degenerate
near the artificial boundary as well.

Proof. Consider a scattering covector ζ = ζ3
dx
x2

+ ζ ′ · dy
x which is not in the span

of x−1
3 d f , x3 the convex level set function defining the boundary. If ζ3 �= 0, the

integral giving the principal symbol contains contributions corresponding to the
whole tangent space of the boundary, which cannot lie completely in the kernel
of d f since d f is not conormal to the artificial boundary, so there are points at
which the weight is evaluated but ξ̃3 �= 0. On the other hand, if ζ3 = 0, that is, we
are working with a scattering cotangent vector which is scattering cotangent to the
boundary, then as already discussed, there is a line, given by the kernel of ζ ′, within
the tangent space of the boundary within which the weights get evaluated; this line
needs to be in the kernel of d f to lose ellipticity. But the kernel of d f within the
tangent space to the boundary is also one dimensional (since d f is not conormal
to the boundary), and includes the kernel of the (non-zero!) projection of d f , so it
is exactly the latter. Thus, ellipticity fails exactly if these two are the same, that is
exactly if ζ is a multiple of the image of x−1

3 d f in the scattering cotangent bundle.
Again, the quadratic nature of the vanishing of the principal symbol follows

from the fixed, though degenerate, sign of the principal symbol.
Finally, the non-degeneracy of the quadratic vanishing can be seen by an argu-

ment broadly similar to the one given above away from the boundary. Although we
have scattering pseudodifferential operators to consider, so their standard principal
symbols are homogeneous functions on the scattering cotangent bundle with the
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zero section removed, it is beneficial to work on the b-cotangent bundle: the two are
related by a conformal rescaling by x3, so the cosphere bundles are exactly the same,
and utilizing the b-cotangent bundlewe spare ourselves fromexplicitlywriting x3 or
x−1
3 in many places: the relevant identification is the map π : T ∗M → bT ∗M which
is the adjoint of the smooth linear bundle map ι: bT M → T M which at ∂M regards
a vector tangent to ∂M as simply a vector in T∂MM , and thus is neither injective
(the kernel is the span of x3∂x3 ) nor surjective at the boundary. (The scattering ana-
logues, used in the first paragraph of the proof, are x−1

3 π and ιx−1
3 .) Now, at each

point q in ∂M , π(d f ) is an element of T ∗
q ∂M (a well-defined subspace of bT ∗

q M ,
unlike the case of T ∗

q M , within which the conormal bundle is well-defined!) thus
annihilates bNqM (a well-defined subspace of bTqM which is spanned by x3∂x3 ),
so the image under ι of Ker π(d f ) is a line in TqM contained in Tq∂M ; this is the
line spanned by any nonzero vector v in Ker(d f ) ∩ Tq∂M . We again consider a
family ζε = π(d f )+εν where ν ∈ bT ∗

q M , and wemay assume that ν is orthogonal
to π(d f ) with respect to an inner product (dual b-metric) on bT ∗

q M . Then Ker ζε

and Ker π(d f ) again meet in a line in an angle∼ ε (for ε �= 0, and the angle is with
respect to the aforementioned b-metric, though the ∼ ε statement is independent
of the choice of the b-metric), and the localization via the cutoff means that we
are working in a fixed small neighborhood of T ∗

q ∂M in bT ∗
q M , which in particular

includes a neighborhood of the aforementioned v, in which, completely similarly
to above, in any fixed annulus (with respect to the b-metric) there are points vε

in Ker ζε which are distance ∼ ε from Ker π(d f ). Since Ker π(d f ) contains the
kernel of ι, the image under ι of vε is still ∼ ε distance away from ι(Ker(π(d f ))).
But this then finally implies that ι(vε) is distance ∼ ε away from Ker d f itself,
since this is a plane intersecting Tq∂M the line ι(Ker(π(d f ))) in a fixed non-zero
angle. This shows that the ξ̃3 component of the covector corresponding to ι(vε)

is � Cε, C > 0, which proves the non-degeneracy as in the case away from the
boundary. ��

We also need to have an elliptic boundary principal symbol at finite points.

Lemma 3.7. Suppose that the gradient∇ f of the anisotropic layer function f = x̃3
is neither parallel nor orthogonal to the artificial boundary. The boundary principal
symbol for determining any one of a11, a33, E2 from p+, as well as for determining
E2 from p−, is elliptic at finite points. For determining one of a11, a33 from p− the
corresponding statement holds if E2 > 0.

Proof. For this we recall the computation from [23] in the form used in [19,
Proof of Lemma 3.5]. For this, one again writes the projected bicharacteristics
in the form

(x + λt + αt2 + O(t3), y + ωt + O(t2)),

where α = α(x, y, λ, ω). Further more, one computes the integral (3.8) at x = 0
with a Gaussian weight function in place of χ (which one eventually approximates
by a compactly supported χ ) with the parameter ν, which we choose to be ν =



Recovery of Material Parameters in Transversely Isotropic Media 161

�
−1α, � > 0 to be chosen sufficiently large. This gives, for example for E2,

(ζ 2
3 + �

2)−1/2
∫

S1
ν−1/2e−(Ŷ ·ζ ′)2/(2ν(ζ 23 +�2)) ∂p±

∂E2 (x, ξ) dŶ ,

where the covector ξ is the image of the tangent vector (λ, ω) = (0, Ŷ ) under
H−1
x , the local inverse of Hx . Unlike for the case of the standard principal symbol,

for which a stationary phase computation was used, here there is no critical set to
restrict to, that is, we are integrating with ∂p±

∂E2 evaluated at the images of all tangent
vectors to the artificial boundary. This expression is positive, resp. negative, if
∂p±
∂E2 (x, ξ) � 0, resp. � 0, for all relevant ξ , with the inequality definite for at least

one of them; the relevant ξ are the images of (0, ω) under H−1
x . But, taking into

account (3.4), this is the case for both p+ and p−, with the definiteness coming from
ξ̃ ′ and ξ̃3 both being non-zero at one such image, since the non-parallel nature of
∇ f to the artificial boundary means that ξ̃ ′ indeed never vanishes on the preimage,
while the vanishing of ξ̃3 at a point would mean that the corresponding tangent
vector is orthogonal to ∇ f , which in turn cannot happen everywhere as ∇ f is
not orthogonal to the artificial boundary. A completely analogous conclusion holds
for ∂p+

∂a11
(x, ξ) and ∂p+

∂a33
(x, ξ), and if in addition E2 > 0, also for ∂p−

∂a11
(x, ξ) and

∂p−
∂a33

(x, ξ). ��

The conclusion is that,with theothers takenas known, the operator e−�/x L J̃ e�/x

is elliptic at finite points for any one of E2, a11, a33 for the qP-travel time data, and
E2 (as well as a11, a33 if E2 > 0) from the qSV-travel time data,while the standard
principal symbol ellipticity holds for a11 from the qP-travel time data. Hence, tak-
ing into account Proposition 3.1, a11 can be recovered from the qP-travel time data
under the hypothesis that the anisotropic layers are not aligned with the convex
foliation. This proves Theorem 1.2.

Corollary 1.2 is a simple extension of this.

Proof of Corollary 1.2. We suppose that there is a functional relationship between
a11, a33, E2, concretely, a33 = F(a11) and E2 = H(a11), with F, H smooth, and
suppose that F ′ � 0. We claim that then the qP and qsV travel times determine a11
(and thus all the others).

To show this, we take the sum of the qP and qSV travel times. This cancels the
± in the equations (3.4), as we compute below. Namely, the effective coefficient in
the pseudolinearization for a11 becomes

∂p+
∂a11

+ ∂p+
∂a33

F ′(a11) + ∂p+
∂E2 H

′(a11)

+ ∂p−
∂a11

+ ∂p−
∂a33

F ′(a11) + ∂p−
∂E2 H

′(a11)

= 2|ξ̃ ′|2 + 2F ′(a11)ξ̃23 � 2|ξ̃ ′|2,
so the above argument for recovering a11 given the other parameters works equally
well. Indeed, if F ′ > 0 then the right-hand side can be replaced by 2|ξ̃ |2, so
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in fact the above argument for a11 can be shortened somewhat. Note that there
is no need for assuming anything about the derivative of H , only the existence
of such a functional relationship, since H cancels from the computation of the
pseudolinearization coefficient at the boundary. (Do note however that overall, H
enters into the pseudolinearization formula, so the existence of H is crucial.) ��

4. Determining More Than One Parameter at a Time

Of course, one would like to determine more than one of these ideally. Since
we have two linear transforms, given by p±, and since at some covectors the stan-
dard principal symbol behavior of these transforms only involves evaluation of the
material derivative of p± at two points with identical behavior (antipodal), even
with further modifications, as mentioned above in analogy with the tensor trans-
form, one cannot expect to recover all three in an elliptic manner. However, it is
reasonable to recover two of the three (or all three if two determine the third in a
suitable manner); for this one needs a linear independence statement for the princi-
pal symbols which now must be considered a 2 by 2 matrix, with the inputs being
the material parameters, the outputs the data for the different wave types p+ versus
p−. (One will need slightly more to implement this, again cf. the modifications of
the transform mentioned above.) For instance, ∂p±

∂E2 (x, ξ) (with + considered the

first row, − the second row of a column vector) and either ∂p±
∂a11

(x, ξ) or ∂p±
∂a33

(x, ξ)

are certainly linearly independent as long as ξ̃3 �= 0 and ξ̃ ′ �= 0 since the two
expressions ∂p±

∂E2 (x, ξ) are negatives of each other, which is not the case for the
other ones. In order to implement this, one defines L as

Lv(z) = x−2
∫

χ(λ/x)

(
C1+(z, λ, ω) C1−(z, λ, ω)

C2+(z, λ, ω) C2−(z, λ, ω)

) (
v+(γ +

z,λ,ω)

v−(γ −
z,λ,ω)

)
dλ dω,

where the first index ofCi± refers to the parameter being recovered (first vs. second)
and ± to the type of wave being used. Calling the parameters μ1 and μ2, we need
that the integral in ω of

(
C1+(z, 0, ω) C1−(z, 0, ω)

C2+(z, 0, ω) C2−(z, 0, ω)

)(
∂p+
∂μ1

(z, ξ)
∂p+
∂μ2

(z, ξ)
∂p−
∂μ1

(z, ξ)
∂p−
∂μ2

(z, ξ)

)

over the circle with a positive weight is elliptic; here ξ = ξ(z, ω) is determined
from (0, ω) as above. Nowwe can choose theC matrix to be simply the transpose of
the second, material sensitivity matrix, at the actual boundary (where it is known!),
and extend in a smooth manner into the interior. Then the integrand is positive
definite over the boundary except where ξ̃ ′ = 0 or ξ̃3 = 0 (where it vanishes), thus
has positive definite symmetric part even nearby in the interior, thus the integral
also has positive definite symmetric part. This proves the ellipticity of the boundary
principal symbol at finite points, provided

(
∂p+
∂μ1

(z, ξ)
∂p+
∂μ2

(z, ξ)
∂p−
∂μ1

(z, ξ)
∂p−
∂μ2

(z, ξ)

)
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is full-rank, which holds, as discussed already, for example if μ1 = E2, μ2 one
of the other parameters. We reiterate that if for example one assumes that a33 is a
function of a11 and E2 (rather than a priori known), very similar arguments work;
in this case, assuming for example a33 = φ(a11), for the sake of an example, one
simply needs that

(
∂p+
∂E2 (z, ξ)

∂p+
∂a11

(z, ξ) + ∂p+
∂a33

(z, ξ)φ′
∂p−
∂E2 (z, ξ)

∂p−
∂a11

(z, ξ) + ∂p−
∂a33

(z, ξ)φ′

)

is full rank, which is the case if φ′ > 0.
In summary, the problem of determining E2 and either one of a11 and a33 (or

both if there is an a priori known relationship between them) from the qP and
qSV data under the hypothesis that the anisotropic layers are not aligned with
the convex foliation is always elliptic at finite points, and ellipticity fails only at
scattering covectors aligned with the projection of the tilt axis to the boundary as
well as at span of the tilt axis interior.
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