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Abstract

We present a construction of a multi-scale Gaussian beam parametrix for the Dirichlet boundary value 
problem associated with the wave equation, and study its convergence rate to the true solution in the 
highly oscillatory regime. The construction elaborates on the wave-atom parametrix of Bao, Qian, Ying, 
and Zhang and extends to a multi-scale setting the technique of Gaussian beam propagation from a bound-
ary of Katchalov, Kurylev and Lassas.
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1. Introduction

1.1. The parametrix

Gaussian beams (GB) are high-frequency asymptotic solutions for hyperbolic partial differ-
ential equations, in particular, for the homogeneous wave equation,

utt (t, x) − c(x)2�xu(t, x) = 0. (1.1)

Gaussian beams are initiated via an Ansatz. They follow the propagation of singularities, that is, 
the bicharacteristics associated with the principal symbol of the wave operator, while distinguish-
ing themselves from standard geometrical optics solutions by capturing the asymptotic behavior 
in caustics without precautions; see Fig. 2.3.

GB parametrices for the initial value problem (IVP) for the wave equation are based on rep-
resentations of the initial data as superimposition of certain Gaussian-like wavepackets:

u(0, x) =
∑
γ

aγ ϕγ (x), ut (0, x) =
∑
γ

bγ ϕγ (x). (1.2)

Each wavepacket ϕγ is then used to generate two GB: ϕγ (x) ≈ �±
γ (0, x), where the choice of 

sign ± corresponds to the two polarized modes of the wave-equation. Specifically, one con-
structs a frame of such wavepackets that initialize multi-scale Gaussian beams, and the resulting 
parametrix has the form

ũ(t, x) =
∑
γ

α+
γ �+

γ (t, x) +
∑
γ

α−
γ �−

γ (t, x), (1.3)

where the coefficients α±
γ are defined in terms of aγ and bγ . The precise form of the packet 

decomposition in (1.2) determines the effectiveness of the parametrix. A detailed study of the 
approximation error of such parametrices when the initial data is a finite sum of Gaussian packets 
is provided in [28]. Gaussian-beam parametrices and summation of Gaussian beams are naturally 
connected to Fourier integral operators with complex phase.

Several other parametrices for the wave equation are also based on wavepacket expansions. 
Indeed, Smith [43,44] introduced the use of a frame of wavepackets with parabolic scaling 
(curvelets) in the construction of a parametrix, which, for smooth wave speeds, can be identified 
as a Fourier integral operator. This representation is also underlying the analysis of wave propa-
gators of Candès and Demanet [7]. Further related constructions based on localized wavepackets 
can be found in the work of Tataru [48], Koch and Tataru [24], Geba and Tataru [18], and De 
Hoop, Uhlmann, Vasy and Wendt [14].

In [40,4] a GB parametrix was introduced where the beams are initialized following the wave-
atom tiling of phase space [15,16]. Thus, the frequency profile of the initial Gaussian packets is 
adapted to the cover depicted in Fig. 2.1. (See also [49].) The merit of using wave atoms is 
that they are both isotropic - as required in order to apply the GB method - and parabolic - in 
the sense that their frequency center ξ and the diameter of their essential frequency support �
satisfy �2 ≈ |ξ |. The resulting parametrix has order 1/2, performing similarly to the ones based 
on curvelets with second-order corrections [44,43,7,12].
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In this paper, we introduce a GB parametrix for the Dirichlet boundary value problem (BVP) 
associated with the wave equation and analyze its approximation properties. For simplicity, we 
assume that the boundary is flat and treat the model case of the half space Rd+ = {x ∈ Rd : x1 >

0}, ⎧⎪⎪⎨⎪⎪⎩
utt (t, x) − c(x)2�xu(t, x) = 0, t ∈ [0, T ], x ∈Rd+,

u(0, x) = ut (0, x) = 0, x ∈Rd+,

u(t,0, y) = h(t, y), t ∈ [0, T ], y ∈Rd−1,

(1.4)

with c being smooth and bounded below by a positive constant, and h being prescribed. In the ap-
plications to reverse-time continuation from the boundary, as it appears in imaging, for example, 
h represents boundary data on an acquisition manifold {0} ×Rd−1 with time interval [0, T ].

We consider a wave-atom like expansion of the boundary value,

h(t, y) =
∑
γ

hγ ϕγ (t, y), (1.5)

and construct adequate Gaussian beams �±
γ , so that they match the wavepackets along the bound-

ary:

�±
γ (t,0, y) ≈ ϕγ (t, y). (1.6)

As parametrix solution for the Dirichlet problem we then propose:

ũ(t, x) =
∑
γ

hγ �±
γ (t, x). (1.7)

Based on the effectiveness of the parametrix for the IVP, the expectation is that u be an approx-
imate solution for the homogeneous wave equation. The beams �γ have to be designed with 
the additional requirement that at initial time the parametrix and its time derivative be approx-
imately null: ũ(0, x), ũt (0, x) ≈ 0. With this provision, the energy estimates [27,26] imply that 
the parametrix solution is close to the true one.

A key application of the Gaussian beam method is imaging in reflection seismology [6,19] -
see also [37] for an analysis of imaging and its connection with solving boundary value prob-
lems. There is extensive work done on computations with Gaussian beams and wavepackets 
[47,34,2,41]. We expect these to be instrumental to the implementation of the parametrix that we 
introduce, thus facilitating accurate computations in the presence of caustics.

We now elaborate on the details of the program for the construction and analysis of the 
parametrix outlined above.

(i) Description of boundary restriction of beams. At an initial time, Gaussian beams have a 
prescribed Gaussian profile on x. The GB theory provides estimates for the evolution of this 
profile for subsequent times t . In contrast, the approximation in (1.6) requires describing the 
restriction of a GB to the boundary {x1 = 0} treating the remaining variables (t, x2, . . . , xd)

jointly as a spatial variable. Such an analysis is the first step of our construction: We consider a 
general Gaussian beam and approximately describe its restriction to the acquisition manifold as 
a Gaussian wavepacket in all remaining variables including time. This elaborates on a technique 
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of Katchalov, Kurylev and Lassas [22], who considered the boundary restriction of a Gaussian 
beam that intersects the boundary through a normal ray.

(ii) Packet-beam matching. Given a general (isotropic) Gaussian wavepacket, ϕγ , we use the 
analysis from (i) to construct an adequate beam satisfying (1.6). This defines a map S that assigns 
to every phase-space parameter γ indexing the packets in the expansion of the boundary value 
h (1.5) a set of initial conditions Sγ for the ordinary differential equations (ODE) that define a 
Gaussian beam.

(iii) Back-propagation. The packet-beam matching (ii) is carried out as follows: given a 
wavepacket ϕγ (t, y) with spatial center (tγ , yγ ), we construct the beam �γ (t, x) so that its spa-
tial center intersects the boundary precisely at time t = tγ . The profile of the beam is specified 
at time t = tγ and back-propagated to time t = 0 by means of the defining ODEs. Additionally, 
we specify the mode of �γ - that determines in which direction bicharacteristics are traveled 
- so that the beam moves into the half-space as time evolves. As a consequence the beam �γ

is mostly concentrated outside the right half-space at t = 0, and the parametrix approximately 
vanishes at initial time, as required in order to apply energy estimates.

(iv) Distortion of the phase-space tiling. Wavepacket expansions such as (1.2) and (1.5) follow 
certain tilings in phase space. For wave-atom expansions, the frequency variable is partitioned 
as shown in Fig. 2.1 and the space variable is resolved following the dual scaling. The IVP 
parametrix relies on this pattern: The technical results in [4] show that for subsequent times the 
beams �±(t, ·) in (1.3) are still adapted to a similar phase-space tiling, and thus enjoy similar 
spanning properties. While the expansion of the boundary value in (1.5) fits the framework of 
wave atoms, the phase-space tiling governing the profile of the beams in the proposed parametrix 
(1.7) is impacted by the packet-beam matching procedure (iii). The analysis of the approximation 
error of the parametrix involves a careful quantification of this effect.

1.2. Assumptions and results

We assume that the wave speed c is smooth, bounded below by a positive constant and has 
globally bounded derivatives of every order. (The smoothness assumptions could be relaxed at 
the cost of a more technical presentation.) The essential condition for the effectiveness of the 
parametrix that we introduce is that the rays of the associated Hamiltonian that take off from 
the boundary do not return to the boundary in the time interval in question, so that the back-
propagation step (iii) succeeds (see Section 4.1.1 for a precise quantitative formulation).

Besides the standard compatibility condition h(0, ·) = 0, we also assume that the wavefront 
set of the boundary value h does not contain grazing rays. While this assumption is not necessary 
for the Dirichlet problem to be well-posed, our parametrix is ultimately based on oscillatory inte-
grals and the theory of elliptic boundary value problems, and these techniques do require that the 
bicharacteristic be nowhere tangent to the boundary [36]. We enforce these assumptions by ex-
amining the wavepacket expansion of h (1.5) and by discarding (or down-weighting) those coeffi-
cients that correspond to the undesired wavefront components. In order to describe this operation 
in intrinsic terms (i.e., independently of the particular wavepacket expansion that the parametrix 
uses) we introduce a pseudodifferential cut-off σ that eliminates grazing rays and consider a mod-
ified Dirichlet problem with boundary condition u(t, 0, y) = hcut(t, y) := σ(t, y, Dt, Dy)h(t, y). 
Denoting by u the solution of the modified problem, we show that our parametrix solution ũ sat-
isfies:

‖ũ − u‖C0([0,T ],H 1(Rd+))∩C1([0,T ],L2(Rd+)) ≤ CT ‖h‖H 1/2(Rd ).
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In particular, in the highly oscillatory regime, ĥ(ξ) = 0 for |ξ | ≤ ξmin, the error can be estimated 
in terms of the scale content of the initial data, giving a bound ξ−1/2

min · ‖h‖H 1(Rd ).
We also note that the Dirichlet problem is related to a boundary source problem. Let ur be the 

solution to (1.4) and ul the solution to the analogous problem on the left-half space Rd− = {x ∈
Rd : x1 < 0}. Let

u(t, x) := ur(t, x)H(x1) + ul(t, x)H(−x1), (1.8)

where H denotes the Heaviside function. Then (1.8) is a microlocal solution to a boundary-source 
problem:

utt (t, x) − c(x)2�xu(t, x) = (Bh)(t, x∗)δx1(x), (1.9)

where B is an adequate boundary operator [37,46]. Hence, our parametrix provides also a mi-
crolocal solution to (1.9).

1.3. Related work

The construction of Gaussian beams dates back to the 1960’s, that is, the work by Babič and 
Buldyrev [3].2 Later, Gaussian beams were used in the analysis of regularity and propagation 
of singularities in partial differential and pseudodifferential equations by Hörmander [20] and 
Ralston [42]. Without any attempt to give a comprehensive list of references, we refer to the 
foundational work of Popov [38,39] and Katchalov and Popov [21], and the applications to seis-
mic wave propagation by Červenỳ, Popov and Pšenčík [8]. Furthermore, we mention connections 
with complex rays in the work of Keller and Streifer [23], and Deschamps [17] in the early 1970s, 
and the work of Weston [50], who studied the wave splitting in a flat boundary, which is part of 
the parametrix construction for boundary value problems.

Our study of the Dirichlet problem builds fundamentally on the work of Katchalov, Kurylev 
and Lassas [22], who describe the boundary restriction of a single normally incident Gaussian 
beam. We extend this analysis to a collection of multi-scale Gaussian beams with varying inci-
dence angles.

Wave parametrices based on Gaussian wavepacket expansions go back to Córdoba and Feffer-
man [10], and related techniques can be found, for example, in the work of Smith [43,44], Candès 
and Demanet [7], Tataru [48], Koch and Tataru [24], and Geba and Tataru [18]. In the context 
of Gaussian beams, Liu, Runborg and Tanushev studied convergence rates of parametrices for 
initial data consisting of a finite sum of Gaussian wavepackets [28]. Our construction elaborates 
particularly on the work of Bao, Qian, Ying, and Zhang [41,4] who treat the decomposition of 
general (multi-scale) initial data. Indeed, much of the technical work in this article is devoted to 
show that the packet-beam matching procedure described above yields a family of beams that 
approximately resemble at an initial time the wavepackets used in [4] as a starting point for the 
IVP. This task leads us to introduce the notion of well-spread family of Gaussian beams, that 
abstracts the properties that make a multi-scale GB parametrix effective. We also mention a link 
of our analysis with the work of Laptev and Sigal [25] who constructed a parametrix for the 
time-dependent Schrödinger equation.

2 The book of Babič and Buldyrev was translated; it contains work that Babich and his colleagues published in the 
Proceedings of the Steklov Institute in 1968.
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While the no-grazing ray assumption is standard in the literature, we note that the existence 
and uniqueness theorems for initial-boundary value problems do not involve these transversality 
conditions, and, indeed, Melrose [31] introduced a class of operators to treat glancing points, and 
used them in a parametrix construction [32]; see also [33].

In relation to Gaussian beam expansions, we also mention the related notion of frozen Gaus-
sian beams [30,29], where the Gaussian packets that approximate the solution to the wave 
equation may themselves not be asymptotic solutions.

1.4. Organization

In Section 2 we introduce multi-scale Gaussian beams and a frame of wave-atom like Gaus-
sian wavepackets. We also discuss how to parametrize GB by their initial conditions, introduce 
the relevant notation, and collect some facts about the defining ODEs. The notion of well-spread 
family of Gaussian beams is introduced in Section 3. We show that such families enjoy suitable 
uniformity properties, satisfy Bessel bounds and are approximate solutions to the homogeneous 
wave equation. In Section 4 we introduce the Dirichlet BVP and the corresponding assump-
tions. In Section 5 we analyze a family of beams at times where their spatial centers intersect 
the acquisition manifold. This is then used as a guide in Section 6 to introduce the beam-packet 
matching procedure. The most technical proofs are postponed to Section 8. The performance of 
the parametrix is finally analyzed in Section 7. In some cases, we skip or only sketch the proof 
of certain technical lemmas. The reader can consult our technical report [5] for full details. More 
notation is introduced throughout the paper; a reference table can be found in Appendix 9.

1.5. Notation

We write x = (x1, x∗) ∈ R ×Rd−1, |x| = |x|2 denotes the Euclidean norm, Rd+ = (0, +∞) ×
Rd−1, and Rd

T = [−T , T ] ×Rd−1. We use the notation Br(x) for the Euclidean ball of center x
and radius r . 	(z) and 
(z) denote respectively the real and imaginary part of z ∈ C. This nota-
tion extends to vectors and matrices componentwise. Generic constants are denoted by C, C′, C0
and their meaning may change from line to line. Specific constants are given more descriptive 
notation.

For two non negative functions f, g, f � g means that there exists a constant C > 0 such that 
f (x) ≤ Cg(x), for all x. We write f � g if f � g and g � f . Given a domain � ⊆ Rd , we let 
C∞

b (�) be the class of C∞(�) functions f such that for every multi-index α, ∂α
x f ∈ L∞(�).

The identity matrix is denoted as Id ∈ Rd×d . For a matrix A ∈ Cd×d , A � Id means that 
there exists a constant C > 0 such that A − C · Id is a positive matrix (i.e. Hermitian and with 
non-negative spectrum). For a constant C ≥ 0, we sometimes write A ≥ C instead of A ≥ CId . 
The Fourier transform is normalized as: f̂ (ξ) = ∫

Rd f (x)e−2πixξ dx. The phase-space metric is 
the function d :Rd × (

Rd \ {0}) → [0, +∞),

d((x, ξ), (x′, ξ ′)) = |ξ ||ξ ′||x − x′|2 + ∣∣ξ − ξ ′∣∣2 (x, ξ), (x′, ξ ′) ∈R2d .

The Hamiltonians are defined as H+(x, p) = c(x) |p|, H−(x, p) = −c(x) |p| and H denotes 
generically either H+ or H−. Sometimes we denote time derivatives with a dot, e.g. ẋ(t) =
∂tx(t).

Throughout the article, c denotes a fixed function c ∈ C∞
b (called velocity) that is assumed to 

be bounded below away from 0; i.e.,
954
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4j 4j+1

ξj,k

.2j

Fig. 2.1. Frequency-space tiling for the frame.

Cvel := inf
x∈Rd

c(x) > 0, (1.10)

and ∂α
x c ∈ L∞(Rd) for every multi-index α.

2. Gaussian wavepackets and Gaussian beams

2.1. The frame

We construct a frame of wave-atom-like Gaussian packets with Gaussians as basic waveforms. 
We start by introducing a frequency cover. For j ≥ 1 we let 

{
ξj,k : k = 1, . . . , nj

} ⊆ Rd be a set 
of points such that:

• The family 
{
B2j (ξj,k), k = 1, . . . , nj

}
is disjoint and each member is contained in the corona 

Cj = B4j+1(0) \ B4j (0).
• Cj ⊆ ⋃nj

k=1 B2j+1(ξj,k).

Hence {B2j+1(ξj,k) : k = 1, . . . , nj , j ≥ 1} is a cover of {ξ ∈ Rd : |ξ | ≥ 4}; see Fig. 2.1.
Note that 

∣∣ξj,k

∣∣ � 4j . In addition, comparing the volumes of Cj to those of the unions of the 
balls B2j (ξj,k) and B2j+1(ξj,k), it follows that nj � 2jd . For convenience, we also introduce the 
rescaled vector

ξ̃j,k = 2π
ξj,k

4j
. (2.1)

Hence, ξ̃j,k is approximately normalized: |ξ̃j,k| � 1.
We let ϕ(x) be the Gaussian function

ϕ(x) = 2
d
4 e−π |x|2, x ∈Rd , (2.2)

and define modulated and scaled waveforms adapted to the frequency cover
955
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Fig. 2.2. On the left, the space profile and contour plot of a frame element with j = 2. On the right, the same plot with a 
Gaussian window contracted by a factor of 2π ln(16), which is better adapted for certain numerical examples.

ϕj,k(x) = 2j d
2 e2πiξj,kxϕ(2j x), j ≥ 1, k = 0, . . . , nj ,

so that ϕ̂j,k is essentially concentrated on B2j (ξj,k). We let � ⊆ Rd be a (full rank) lattice and 
define

� = {
(j, k, λ) : j ≥ 1, k = 0, . . . , nj , λ ∈ �

}
, (2.3)

and

ϕγ (x) = ϕj,k,λ(x) = ϕj,k(x − 2−j λ), γ = (j, k, λ) ∈ �.

Explicitly,

ϕj,k,λ(x) = 2j d
2 e2πiξj,k(x−2−j λ)ϕ(2j x − λ), (j, k, λ) ∈ �.

See Fig. 2.2 for a plot. For an index γ ∈ �, we often refer implicitly to the notation γ = (j, k, λ).

Although we are mainly interested in high frequency expansions: 
∑

γ∈� fγ ϕγ , in order to 
expand an arbitrary function we need to provide wavepackets adapted to the zeroth-scale. To 
keep the notation concise, we let ϕ0,0 := ϕ, augment the index set � by

�∗ := � ∪ {(0,0, λ) : λ ∈ �}, (2.4)

and define zeroth-scale wavepackets as: ϕ0,0,λ := ϕ(x −λ). The complete set of wavepackets can 
be written as:

F = {
ϕγ : γ ∈ �∗

}
.

We now show that the system thus constructed is indeed rich enough to represent any function.

Theorem 2.1. For an adequate lattice � ⊆ Rd , the system F is a frame for the inhomoge-
neous Sobolev spaces Hs(Rd), with −1 ≤ s ≤ 1. More precisely, the frame operator SFf =
956
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∑
γ∈�∗

〈
f,ϕγ

〉
ϕγ is invertible on Hs(Rd) for −1 ≤ s ≤ 1. As a consequence, every f ∈ Hs(Rd)

can be represented by an Hs-convergent series

f =
∑
γ∈�∗

fγ ϕγ , fγ :=
〈
f,SF

−1ϕγ

〉
, (2.5)

and the following norm equivalences hold

‖f ‖2
Hs �

∑
γ∈�∗

42js
∣∣〈f,ϕγ

〉∣∣2 �
∑
γ∈�∗

42js
∣∣fγ

∣∣2 .

We remark that in Theorem 2.1, the symbol 
〈
f,ϕγ

〉
denotes the standard L2 inner product. 

The theorem is proved using a variant of Daubechies’s criterion for wavelets. Details can be 
found in our technical report [5] - see also [1,35,11] for related estimates. Let us mention that the 
construction provides a concrete criterion to choose the lattice � and A‖f ‖Hs ≤ ‖SFf ‖Hs ≤
B‖f ‖Hs can be satisfied with B/A reasonably small. Hence, the numerical inversion of SF is 
well-conditioned.

From now on we fix a lattice � such that the conclusion of Theorem 2.1 holds.

2.2. Operating on the frame expansion

We will be mostly interested in the higher scales j ≥ 1. We can truncate the representation in 
(2.5),

f̃ =
∑
γ∈�

fγ ϕγ , (2.6)

and it is easy to see that the error can be bounded as ‖f − f̃ ‖H 1 � ‖f ‖H−1 . Hence, in the highly 
oscillatory regime, we only need to consider expansions of the form (2.6).

More generally, we use pseudodifferential cut-offs to operate microlocally on a function f
and we wish to approximately implement those operations by acting directly on the expansion 
in (2.6). We recall that a symbol σ : Rd × Rd → C belongs to the Hörmander class S0

1,0(R
d ×

Rd) if 
∣∣∣∂β

x ∂α
ξ σ (x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ |)−|α|, for all multi-indices α, β . The next lemma will be 
an important technical tool. See [5, Appendix C] for a proof, and [13, Lemma 3.1] and [12, 
Lemma 17] for related results for curvelets.

Theorem 2.2. Let σ ∈ S0
1,0(R

d ×Rd). Then, for s ∈ [1/2, 1] and f ∈ Hs(Rd),

‖σ(x,D)f −
∑
γ∈�

σ(2−j λ, ξj,k)fγ ϕγ ‖Hs � ‖f ‖Hs−1/2 .

(Here, σ(x, D) is the Kohn-Nirenberg quantization of σ , and fγ := 〈
f,SF−1ϕγ

〉
are the high-

scale frame coefficients of f .)
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2.3. Gaussian beams

We summarize the construction of Gaussian beams, following the treatment of Katchalov, 
Kurylev and Lassas [22]. We seek formal asymptotic solutions to the wave equation 1.1 (in a 
“moving” frame of reference) of the form

�(t, x) = A(t)eiωθ(t,x),

where the phase function θ and amplitude function A are smooth and complex-valued, and ω
is the frequency parameter. Asymptotic analysis of the eikonal and transport equations leads a 
second order phase-function

θ(t, x) = p(t) · (x − x(t)) + 1
2 (x − x(t))T M(t)(x − x(t)),

with the following ingredients. First, the analysis of propagation of singularities dictates that 
x±(t), p±(t) be described by bicharacteristics, satisfying the Hamilton system

ẋ±(t) = ∂pH±, ṗ±(t) = −∂xH
±, (2.7)

supplemented with initial conditions, x±(0) = x0, p±(0) = p0. Here,

H±(x,p) = ±c(x)|p| (2.8)

are the signed Hamiltonians. For the sake of simplicity, we drop the superscript ±. In particular, 
H denotes either H+ or H−.

Second, the matrix M satisfies the Riccati equation,

Ṁ(t) + D(t) + B(t)M(t) + M(t)B(t)t + M(t)X(t)M(t) = 0, (2.9)

where B(t), X(t), D(t) are d × d matrices with elements given by the second-order derivatives 
of the Hamiltonian,

Dij (t) = ∂xi
∂xj

H, Bij (t) = ∂xi
∂pj

H, Xij (t) = ∂pi
∂pj

H,

evaluated along the bicharacteristic (x, p) = (x(t), p(t)). The Riccati equation is supplemented 
with an initial condition M(0) = M0. The symplectic structure of the Hamilton system implies 
that M(t) is symmetric and has a positive definite imaginary part provided that it initially does 
(see Lemma 2.6 and [22, Lemma 2.56]).

Third, the amplitude function A satisfies the transport equation

Ȧ(t) + A(t)

2H

(
c2 Tr(M(t)) − ∂pH · ∂xH − (∂pH)T M(t) ∂pH

)
= 0, (2.10)

where H and its derivatives are evaluated along the bicharacteristic (x, p) = (x(t), p(t)). This 
equation is supplemented with an initial condition A(0) = A0.

In what follows, we discuss families of Gaussian beams, with the goal of describing superim-
positions and time evolution. See Figs. 2.3 and 2.4 for plots of a front of Gaussian beams going 
through a caustic.
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Fig. 2.3. The projected characteristics corresponding to the velocity c(x1, x2) = 2 − 0.4 ∗ exp (−(x2
1 + (x2 − 5)2)/3), 

and a detail of the evolution of a front of Gaussian packets, from t = 0 to t = 8.40. Initially localized on the boundary, 
the front goes through a caustic at time t ≈ 5.60.

2.4. Sets of initial conditions for Gaussian beams

We consider families of Gaussian beams associated with sets of parameters described as fol-
lows. We let �0 be a subset of � and S be a map

Sγ = (ωγ , aγ , ξγ ,Aγ ,Mγ ) ∈R+ ×Rd × (Rd \ {0})× (R \ {0})×Cd×d , γ ∈ �0, (2.11)

such that Mγ is symmetric and 
Mγ > 0 for all γ ∈ �0. We associate two functions �+
γ , �−

γ :
R ×Rd → C that we now describe. To simplify the notation we drop the superscript +, −. Let 
xγ (t), pγ (t), Mγ (t), Aγ (t) be the solutions to the set of ODEs defined in (2.7), (2.9) and (2.10), 
supplemented with initial conditions:⎧⎪⎨⎪⎩

x|t=0 = aγ , p|t=0 = 2π
ξγ

ωγ

,

M|t=0 = 2πMγ , A|t=0 = Aγ ωγ

d
4 .

(2.12)

We now define the beams by

�γ (t, x) = Aγ (t)eiωγ θγ (t,x), (2.13)

with

θγ (t, x) = pγ (t) · (x − xγ (t)) + 1
2 (x − xγ (t)) · Mγ (t)(x − xγ (t)). (2.14)

The ODEs in (2.7), (2.9) and (2.10) have globally defined unique solutions for the initial con-
ditions given by (2.12). Indeed, the system of ODEs in (2.7) is the flow associated with the 
Hamiltonian H and, due to the homogeneity of H(x, p) in p, it is solvable as long as the initial 
condition p|t=0 is non-zero. That is why we require that ξγ �= 0. Once the Hamiltonian flow 
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Fig. 2.4. Detailed evolution of the wavefront corresponding to Fig. 2.3. A tolerance of 
(M(t)) > 0.005 was set, sup-
pressing the beam if the condition was not satisfied.

(x, p) is defined, (2.9) has a globally defined unique solution because the initial datum is sym-
metric and has a positive imaginary part [22, Lemma 2.56]. Finally, (2.10) has also a unique 
global solution, since it is a linear ODEs with continuous coefficients.

Remark 2.3. When we need to emphasize the dependence on the choice of sign for H we write: 
�±, x±(t), p±(t), M±(t), A±(t). We stress that these functions depend not only on the index 
γ γ γ γ γ
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γ , but also on the underlying map from (2.11), that describes how to associate with γ initial 
conditions for the ODEs defining the beam. When we need to stress this dependence we use 
further superscripts.

Remark 2.4. By abuse of language, we often refer to a set of GB parameters ϒ = {
Sγ : γ ∈ �0

}
, 

although it is not the set ϒ, but the underlying map S that matters. Hence, ϒ should be considered 
as an indexed set, that is formally equivalent to the map S .

2.5. Standard initial conditions

We now describe the canonical set of GB parameters, defined so that the corresponding Gaus-
sian beams at time t = 0 coincide with the higher-scale part of the frame F . We define the 

standard set of Gaussian beam parameters as the set ϒst =
{
Sst

γ : γ ∈ �
}

given by

Sst
γ = (4j ,2−j λ, ξj,k,2

d
4 , iId), γ = (j, k, λ) ∈ �. (2.15)

The corresponding beams are denoted {�st,±
γ : γ ∈ �}.

Observation 2.5. For the standard set of parameters ϒst :

�st,±
γ (0, x) = ϕj,k,λ(x), γ = (j, k, λ) ∈ �.

This follows by substituting (2.15) into (2.12) and (2.13)-(2.14).

2.6. Properties of the defining ODEs

We now show that certain uniformity properties of a family of Gaussian beams parameters 
imply corresponding uniformity properties for the ODEs defining the beams.

Lemma 2.6. Let {Sγ : γ ∈ �0} be a set of GB parameters. Assume that there exist 0 < C0 ≤ C1
such that C0

∣∣ξγ

∣∣ ≤ ωγ ≤ C1
∣∣ξγ

∣∣. Let T > 0. Then the following estimates hold for γ, γ ′ ∈ �0
and t ∈ [−T , T ]:

|aγ − aγ ′ |2 ≤ |xγ (t) − xγ ′(t)|2 + CT , |xγ (t) − xγ ′(t)|2 ≤ |aγ − aγ ′ |2 + CT , (2.16)

|pγ (t)| � |pγ (0)| � 1, |ẋγ (t)|, |ṗγ (t)| � 1, (2.17)

d
((

xγ (t),ωγ pγ (t)
)
,
(
xγ ′(t),ωγ ′pγ ′(t)

)) � d
((

aγ , ξγ

)
,
(
aγ ′ , ξγ ′

))
, (2.18)

where the constant CT and the implied constants depend on T , C0 and C1 but not on the partic-
ular pair of parameters γ, γ ′.

If, in addition, ‖Mγ ‖ ≤ C1, and 
Mγ ≥ C0 · Id , then

‖Mγ (t)‖ � 1, 
Mγ (t) � Id,

∣∣∣∣Aγ ω
d
4
γ

∣∣∣∣ � ∣∣Aγ (t)
∣∣ . (2.19)
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Proof. The bounds (2.16) and (2.17) follow from the assumptions on the velocity and Gronwall’s 
lemma; see the proofs of [4, Lemmas 3.1 and 3.3]. Using the equations for the Hamiltonian flow, 
the assumptions on c, and (2.16) we get∣∣ẋγ (t)

∣∣ = |c(x(t))| ≤ C,∣∣ṗγ (t)
∣∣ = |∇c(x(t))| |p(t)| � C,

where C is a constant that depends only on the velocity c. This gives (2.17). Finally, the estimate 
in (2.18) is proved in [4, Lemma 3.2].

For the “in addition” part, consider the matrix-valued ODE in (2.9). The derivatives of the 
Hamiltonian H(x, p) are bounded on any set where |p| is bounded above and below. Since ∣∣pγ (t)

∣∣ is bounded above and below on [−T , T ] by Lemma 2.6, it follows that the coefficients 
in (2.9) are bounded. Second, the norm of the initial condition Mγ (0) = Mγ is bounded by as-
sumption - cf. (2.12). Therefore, the first part of (2.19) follows by Gronwall’s lemma. The second 
part in (2.19) now follows from [4, Lemma 3.1] (which requires ‖M(t)‖ to be bounded). Finally, 
the third part of (2.19) is proved in [22, Lemma 2.56]. The statement there is non-quantitative, 
but the argument gives the desired conclusion. See also [4, Lemma 3.4]. �
Remark 2.7. In Lemma 2.6, the conclusion 

∣∣pγ (t)
∣∣ � 1 holds because the initial condition asso-

ciated with γ in (2.12) ensures that 
∣∣pγ (0)

∣∣ � 1, with the assumption that 
∣∣ξγ

∣∣ � ωγ . In general, 
if (x, p) is the flow associated with H+ or H− with arbitrary initial conditions, it follows from 
our assumptions in the velocity that |p(t)| � |p(0)| with constants that are uniform on any 
bounded interval of time.

3. Well-spread families of Gaussian beam parameters

3.1. Definitions

We develop criteria under which a family of Gaussian beam parameters behaves qualitatively 
like the standard one, given by

Sst
γ = (ωst

γ , ast
γ , ξ st

γ ,Ast
γ ,Mst

γ ) = (4j ,2−j λ, ξj,k,2
d
4 , iId), γ = (j, k, λ).

Our main goal is to show that when an adequate family of parameters is used as initial values, 
then a linear combination of the corresponding Gaussian beams satisfies a suitable Bessel bound 
and provides an approximate solution to the wave equation.

Definition 3.1. A well-spread set of Gaussian beam parameters is an indexed set

ϒ ≡ {
Sγ : γ ∈ �0

} ⊆ R+ ×Rd × (Rd \ {0}) × (R \ {0}) ×Cd×d, γ ∈ �0

with �0 ⊆ �, such that

(i) |ast
γ − ast

γ ′ | � |aγ − aγ ′ | + 1, γ, γ ′ ∈ �0.

(ii) d((aγ , ξγ ), (aγ ′ , ξγ ′)) � d((ast
γ , ξ st

γ ), (ast
γ ′ , ξ st

γ ′ )), γ, γ ′ ∈ �0.

(iii) Mγ ∈ Cd×d is symmetric, ‖Mγ ‖ � 1 and 
(Mγ ) � Id , γ ∈ �0.
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(iv) ωγ � 4j and 
∣∣ξγ

∣∣ � ωγ , γ ∈ �0.
(v) |Aγ | � 1, γ ∈ �0.

In the last definition, the symbols �, � and � should be interpreted as asserting the existence 
of suitable constants that are uniform within the family ϒ.

Remark 3.2. For short, we say that {�+
γ : γ ∈ �0} and {�−

γ : γ ∈ �0} are well-spread families 
of Gaussian beams, implying the existence of a corresponding well-spread family of Gaussian 
beam parameters ϒ ≡ {

Sγ : γ ∈ �0
}

that defines the beams.
Similarly, when a certain family of GB parameters ϒ is discussed, we may denote the corre-

sponding beams by just �±
γ , without remarking their dependence on the map S .

Before proving the main estimates, we define an adequate notion of vanishing order along a 
family of Gaussian beams.

Definition 3.3. Given a well-spread set of GB parameters ϒ ≡ {
Sγ : γ ∈ �0

}
, an interval I ⊆ R, 

and m ∈N0, a family of functions F ≡ {
Fγ : γ ∈ �0

}
is said to be F = Om(I, ϒ) if

• Fγ (t, x) = ∑
|η|=m Gγ,η(t, x)(x − xγ (t))η , for some functions Gγ,η(t, ·) ∈ C∞

b (Rd), for all 
t ∈ I .

• supγ∈�0,t∈I‖∂kGγ,η(t, ·)‖L∞(Rd ) < +∞, for all multi-indices k and η, with |η| = m.

Thus, F = Om(I, ϒ) means that each Fγ (t, ·) = O(
∣∣x − xγ (t)

∣∣m , Rd) and the corresponding 
bounds are uniform for t ∈ I and γ ∈ �0.

We note that the definition of Om(I, ϒ) involves a vanishing condition at x = xγ (t) and also 
a growth condition for 

∣∣x − xγ (t)
∣∣ � 1. As a consequence, F = Om+1(I, ϒ) does not imply 

F = Om(I, ϒ). As a remedy, we introduce the following notion.

Definition 3.4. Given a well-spread set of GB parameters ϒ ≡ {
Sγ : γ ∈ �0

}
and an interval 

I ⊆ R, a family of functions F ≡ {
Fγ : γ ∈ �0

}
is said to be F = Om≥(I, ϒ) if there exists a 

finite family F 1 = Om1(I, ϒ), . . . , Fn = Omn(I, ϒ), with m1, . . . , mn ≥ m, such that Fγ (t, x) =
F 1

γ (t, x) + . . . + Fn
γ (t, x).

Note that F = Om+1≥ (I, ϒ) implies that F = Om≥(I, ϒ).

3.2. Bessel bounds and vanishing orders

The following Bessel bounds for the summation of Gaussian beams with factors vanishing at 
the spatial center of the beams extend those in [4, Sec. 3] from L2(Rd) to Sobolev spaces, and 
to more general sets of initial conditions.

Theorem 3.5. Let ϒ = {
Sγ : γ ∈ �0

}
be a well-spread set of Gaussian beam parameters and let 

F = Om≥(I, ϒ), with I ⊆ R a bounded interval and s ∈ [0, 1]. Then

sup
t∈I

∥∥∥ ∑
γ∈�0

2jmbγ �±
γ (t, ·)Fγ (t, ·)

∥∥∥2

Hs
� CI

∑
γ∈�0

42sj |bγ |2,
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with bγ ∈C such that the sum on the right-hand side is finite. (Here, the constant CI depends on 
the interval I and the family F .)

A proof of Theorem 3.5 can be given by showing that for fixed time well-spread Gaussian 
beams are qualitatively similar to wave-atoms, and by studying the action of families of pseu-
dodifferential operators on such systems. See [5, Appendix B and C] for full proofs.

Remark 3.6. The choice I = {0} is allowed in Theorem 3.5 and corresponds to time-independent 
functions Fγ (x) and frame elements: ‖ 

∑
γ∈� 2jmbγ ϕγ Fγ ‖2

Hs �
∑

γ∈� 42js |bγ |2.

3.3. Uniformity of errors for Taylor expansions

Most of our arguments rely on Taylor expansions for the functions x, p, A, M used in the 
definition of Gaussian beams. The following lemma is used to justify that, in such arguments, the 
error terms can be bounded uniformly within a given well-spread family of Gaussian beams.

Lemma 3.7. Let ϒ = {
Sγ : γ ∈ �0

}
be a well-spread set of Gaussian beam parameters, let T ≥ 0

and k ≥ 0 be an integer. Then the following quantity:

sup
γ∈�0

sup
t∈[−T ,T ]

∣∣∣∂k+1
t xγ (t)

∣∣∣ +
∣∣∣∂k

t pγ (t)

∣∣∣ +
∣∣∣∂k

t Mγ (t)

∣∣∣ ,
is bounded by a constant that depends on T , k and ϒ. In addition,

∂tAγ (t) = Aγ (t)Gγ (t), (3.1)

with sup
γ∈�0

sup
t∈[−T ,T ]

∣∣∣∂k
t Gγ

∣∣∣ bounded by a constant that depends on T , k and ϒ.

Proof. Since the derivatives of the velocity c are bounded, the derivatives of H(x, p) are 
bounded on any set where |p| is bounded above and below. By Lemma 2.6, 

∣∣pγ (t)
∣∣ � 1 and, 

therefore, we conclude that

sup
t∈[−T ,T ]

∣∣∣∂n
x ∂m

p H(xγ (t),pγ (t))

∣∣∣� Cn,m,T < ∞, (3.2)

for all multi-indices n, m. Inspecting the definition of the Hamiltonian field (xγ , pγ ) - cf. (2.7), 
the claim on x and p follows from (3.2).

For the matrix Mγ , we note that, due to (3.2), it satisfies a Riccati-type ODE where the co-
efficients are bounded and have all the derivatives bounded. Moreover, the corresponding initial 
condition is bounded, as part of Definition 3.1. Hence, the claim on Mγ follows from a Gronwall-
type argument for linear systems of ODEs - see for example [9] and [22, Lemma 2.56].

Finally, inspecting (2.10), we see that the claim for the amplitude follows from (3.2) and the 
previous bounds. �
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3.4. Asymptotic solutions

We now clarify how a linear combination of Gaussian beams with well-spread parameters 
approximately solves the wave equation. These results have been proved in [4] for standard 
Gaussian beam parameters, and here are extended to more general initial conditions.

Theorem 3.8. Let ϒ = {
Sγ : γ ∈ �0

}
be a well-spread set of Gaussian beam parameters. Then

sup
t∈[0,T ]

∥∥∥(∂2
t − c2(x)�x

) ∑
γ∈�0

bγ �±
γ (t, ·)

∥∥∥2

L2(Rd )
≤ CT

∑
γ∈�0

4j
∣∣bγ

∣∣2 ,

with bγ ∈ C such that the sum on the right-hand side is finite.

The proof of Theorem 3.8 is based on the following description of the time derivatives of 
beams, which will be helpful later:

∂t�
±
γ (t, x) =

(
F (0)

γ (t, x) + 4jF (1)(t, x) − iωγ H±(x±
γ (t),p±

γ (t))
)

�±
γ (t, x), (3.3)

with F (m) = Om≥([−T , T ], ϒ). We omit the proofs and refer the interested reader to [5].

4. The Dirichlet problem on the half space

4.1. Setting and assumptions

We are interested in the following problem. Suppose that u : [0, T ] × Rd+ → C is a (weak) 
solution to: ⎧⎪⎨⎪⎩

∂2
t u(t, x) − c(x)2�xu(t, x) = 0, t ∈ [0, T ], x ∈ Rd+,

u(0, x) = ut (0, x) = 0, x ∈ Rd+,

u(t,0, y) = h(t, y), t ∈ [0, T ], y ∈Rd−1,

where h ∈ H 1([0, T ] ×Rd−1) is called boundary value. We assume that we are able to measure 
the boundary value h and the goal is to approximate the corresponding solution u. We now 
introduce several assumptions.

4.1.1. Assumptions on the boundary value
In order for the Dirichlet problem to be well-posed we need to assume that h satisfies the 

standard compatibility condition h(0, ·) ≡ 0. In addition, the parametrix that we propose is ul-
timately based on oscillatory integrals and the theory of elliptic boundary value problems, and 
these techniques require that the bicharacteristic directions be nowhere tangent to the boundary 
[36]. That is why we exclude grazing rays from the wavefront set of h. Following [37], we for-
mulate quantitative versions of these assumptions by replacing the function h with a new function 
hcut that is the result of applying an adequate pseudodifferential cut-off to h. Recall that h is a 
function of (t, x∗) ∈ R × Rd−1. We denote the conjugate (Fourier) variables by (τ, ξ∗), and let 
hcut := η(t, x∗, Dt, Dx∗)h, where the symbol η(t, x∗, τ, ξ∗) := a(t, x∗)b(t, x∗, τ, ξ∗) satisfies the 
following.
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(i) a is smooth with compact support and there exist Ch,inf, Ch,sup ∈ (0, T ) such that supp(a) ⊆
[Ch,inf, Ch,sup] ×Rd−1.

(ii) b is a smooth symbol of order 0, and there is a constant C > 0 such that b vanishes on the 
set of all points (t, x∗, τ, ξ∗) ∈ R ×Rd−1 ×R ×Rd−1 such that |(τ, ξ∗)| ≥ 1 and

|τ |
c(0, x∗)

− |ξ∗| ≤ C |(τ, ξ∗)| . (4.2)

(This is possible because the condition in (4.2) is homogeneous of degree zero on (τ, ξ∗).) If 
such rays are not present in the wavefront set of the boundary value, the action of the cut-off 
is not needed.

We note that, as a result of the cut-off operation, hcut ∈ H 1([0, T ] × Rd−1), supp(hcut) ⊆
[Ch,inf, Ch,sup] × K , for some compact set K ⊂ Rd−1, and [Ch,inf, Ch,sup] ⊆ (0, T ).

Remark 4.1. The assumptions on the boundary value are quantitative versions of the compat-
ibility and no-grazing ray conditions. Indeed, we assume that the observation window [0, T ]
properly contains the time support of h, and that there is an absolute lower bound on the grazing 
angles.

4.1.2. Assumptions on the velocity
We recall that the velocity c is assumed to be smooth, positive, bounded from below and with 

bounded derivatives of all orders. This ensures that suitable energy estimates are available for 
the Dirichlet problem. We note that although we aim to provide a parametrix for the right half-
space, we assume that the velocity is defined on the whole Euclidean space. This is just a matter 
of convenience, since, as a consequence of Theorem 7.1, the values of the velocity on the left 
half-space impact the parametrix only up to the parametrix error. Indeed, two different choices 
for c that agree on the right half-space lead to approximate solutions that are suitably close to the 
exact one, and thus close to each other.

4.1.3. The cone condition
We assume that for every ε ∈ (0, 1], there exist δ > 0 such that if (x(t), p(t)) is a solution 

to the Hamiltonian flow with initial conditions at t0 ∈ [Ch,inf, Ch,sup] satisfying x1(t0) = 0 and 
|p1(t0)| ≥ ε|p(t0)| then:

|x1(t)| ≥ δ|t − t0|, t ∈ [−T ,T ]. (4.3)

Remark 4.2. The cone condition implies that for all take-off angles at the boundary the corre-
sponding rays do not return to the boundary in the time interval in question, and indeed it is a 
quantitative version of that statement. See Fig. 4.5.

Remark 4.3. Since

|ẋ1(t)| = c(x(t))
|p1(t)|
|p(t)| � |p1(t)|

|p(t)| ,

the cone condition holds automatically for t near t0. The content of (4.3) is the validity of the 
bound on the whole interval [−T , T ]. Moreover, since the Hamiltonian is time independent, this 
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Fig. 4.5. The cone condition.

condition can be stated at t0 = 0 and it is only about the size of the interval on which the cone 
condition holds. Fig. 2.3 shows an example of a velocity satisfying the hypothesis.

4.2. Frame expansion of the boundary value

The recovery method that we introduce in the next sections operates on the frame expansion 
of the boundary value

h(t, x∗) =
∑
γ∈�∗

hγ ϕγ (t, x∗).

Therefore, we need to show that the assumptions above are reflected by this expansion. Re-
call that hcut = η(t, x∗, Dt, Dx∗)h, where η is a zero-order pseudodifferential symbol. As 
shown in Section 2.2, this operator can be approximately implemented as a cut-off on the 
frame coefficients. More precisely, we first discard to zeroth-scale coefficients, then let h̃γ :=
η(2−j λ, ξj,k)hγ , �h := {γ ∈ � : h̃γ �= 0}, and set

h̃ =
∑
γ∈�h

h̃γ ϕγ .

By Theorem 2.2, we have the following approximation estimate:

‖hcut − h̃‖H 1 � ‖h‖H 1/2 . (4.4)

We now note some properties of the truncated frame parameters.

Proposition 4.4. The set �h satisfies the following.
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(i) (Time concentration and approximate compatibility). There exist Ch,inf, Ch,sup > 0 such that 
for every γ = (j, k, λ) ∈ �h,

0 < Ch,inf ≤ 2−j λ1 ≤ Ch,sup. (4.5)

(ii) (Quantitative grazing ray condition). There exists Cgraz ∈ (0, 1) such that for every γ =
(j, k, λ) ∈ �h:

|(ξ̃j,k)1|
c(0,2−j λ∗)

− |(ξ̃j,k)∗| ≥ Cgraz, (4.6)

where the point ξ̃j,k is defined by (2.1).

Proof. This follows directly from the properties of the symbol η. The constants Ch,inf, Ch,sup > 0
are the same as in Section 4.1.1. The constant Cgraz is related to the constant C from (4.2). These 
two numbers are not exactly the same because the points ξ̃j,k are not exactly normalized - recall 

that, however, ξ̃j,k is a multiple of ξj,k and 
∣∣∣ξ̃j,k

∣∣∣ � 1, so a suitable Cgraz can be found. �
Remark 4.5. The constants Ch,inf, Ch,sup, Cgraz are given individual notation for future reference. 
We remark that the estimates in the rest of the article depend on them, as well as on the constants 
in the cone condition.

4.2.1. Non-tangential propagation
Since the velocity c is assumed to be bounded from below, the grazing ray condition (4.6)

implies the following non-tangential propagation estimate:∣∣∣(ξ̃j,k)1

∣∣∣ ≥ C, γ = (j, k, λ) ∈ �h, (4.7)

where C = CgrazCvel > 0, and Cvel - cf. (1.10) - is the minimum value of the velocity c. In 
particular (ξ̃j,k)1 �= 0. In what follows, the sign of (ξ̃j,k)1 plays an important role, and it is 
convenient to define:

�+
h :=

{
γ ∈ �h : (ξ̃j,k)1 < 0

}
, �−

h :=
{
γ ∈ �h : (ξ̃j,k)1 > 0

}
. (4.8)

(The motivation for this notation will be clear later.)

5. Spatio-temporal analysis of the beams near the boundary

We consider a well-spread family of Gaussian beams {�+
γ : γ ∈ �0} or {�−

γ : γ ∈ �0}, and 
times t = tγ , γ ∈ �0, at which the centers of the corresponding beams intersect the boundary 
x1 = 0, i.e. xγ,1(tγ ) = 0 - for short, we say that the beams intersect the boundary at those times. 
We focus on the case in which tγ belongs to the interval [Ch,inf, Ch,sup], where the boundary 
value is active. We assume that every beam in the family does intersect the boundary at a suitable 
time; for a more general family of beams, the analysis of this section applies by considering a 
subset of �0.
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We analyze the restriction of the beams to x1 = 0, treating the remaining variables (t, x∗) as 
a joint spatial variable. We aim to approximately describe the restricted beam �±

γ (t, 0, x∗) as 
a Gaussian beam with a fixed evolution time. We first identify the spatial center of �±

γ (t, 0, x∗)
and then describe the resulting functions in two different regimes: near the center and away 
from it. The assumption that the family of beams under study is well-spread allows us to obtain a 
uniform control on the approximation errors. This is essential for the applications in the following 
sections.

To ease the notation we focus on one of the two modes (+/−) and remove this choice from 
the notation. Hence, most of the symbols below should be supplemented with a +/− superscript. 
(In particular, H stands for either H+ of H−.)

5.1. Local analysis of a beam when it intersects the boundary

Before stating the estimates, we introduce some auxiliary functions defined in terms of the 
functions in (2.7), (2.9) and (2.10).

Let γ ∈ �0 and consider the matrix M̃γ ∈ Cd×d defined by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M̃γ,11 = ẋγ (tγ ) · Mγ (tγ )ẋγ (tγ ) − ṗγ (tγ ) · ẋγ (tγ ),

M̃γ,1k = ṗγ,k(tγ ) −
d∑

n=1

(
Mγ (tγ )

)
kn

ẋγ,n(tγ ), k = 2, . . . , d,

M̃γ,kl = (
Mγ (tγ )

)
kl

, k, l = 2, . . . , d.

In more compact notation,

M̃γ =
[
M̃γ,11 M̃t

γ,1∗
M̃γ,1∗

(
Mγ (tγ )

)
∗∗

]
,

where

M̃γ,1∗ = (
ṗγ (tγ ) − Mγ (tγ )ẋγ (tγ )

)
∗ ∈C(d−1)×1,

and 
(
M(tγ )

)
∗∗ ∈ C(d−1)×(d−1) is the matrix obtained from M(tγ ) by eliminating the first row 

and column. Let us also consider the following constants and functions:

τγ = −H(xγ (tγ ),pγ (tγ )) = −pγ (tγ ) · ẋγ (tγ ), (5.1)

Lγ (t, x∗) = (
τγ ,pγ,∗(tγ )

) · ((t, x∗) − (tγ , xγ,∗(tγ ))), (5.2)

Qγ (t, x∗) = 1
2

(
(t, x∗) − (tγ , xγ,∗)

) · M̃(tγ )
(
(t, x∗) − (tγ , xγ,∗)

)
. (5.3)

We can now describe a Gaussian beam intersecting the boundary.

Lemma 5.1. Let ϒ ≡ {
Sγ : γ ∈ �0

}
be a well-spread set of GB parameters. For γ ∈ �0, let tγ ∈

[Ch,inf, Ch,sup] be such that xγ,1(tγ ) = 0 (i.e. the center of the corresponding beam �γ = �±
γ

intersects the boundary x1 = 0 at a time t = tγ when the boundary value is active). Let us write 
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xγ (tγ ) = (0, xγ,∗(tγ )). Then the restriction of �γ to x1 = 0 admits the following asymptotic 
expansion around (tγ , xγ,∗(tγ )):

�γ (t,0, x∗) = Aγ (tγ )
(
1 + Rγ (t)

)
eiωγ {Lγ (t,x∗)+Qγ (t,x∗)+�γ (t,x∗)}, (t, x∗) ∈Rd

T , (5.4)

with

Rγ (t) = rγ (t)(t − tγ ), �γ (t, x∗) =
∑

|μ|=3

gγ,μ(t)
(
(t, x∗) − (tγ , xγ,∗(tγ ))

)μ
and rγ , gγ,μ ∈ C∞

b ([−T , T ]), uniformly on γ . More precisely, for every k ≥ 0, the error factors 
satisfy:

sup
γ∈�0

sup
t∈[−T ,T ]

∣∣∣∂k
t gγ,μ(t)

∣∣∣ , sup
γ∈�0

sup
t∈[−T ,T ]

∣∣∣∂k
t rγ (t)

∣∣∣ < +∞. (5.5)

Proof. We analyze the Gaussian beam

�γ (t, x) = Aγ (t)eiωγ θγ (t,x),

by Taylor expanding the amplitude and phase.
Step 1. The amplitude. Using the bounds in Lemma 3.7 - specifically (3.1) - and Lemma 2.6 -
which is applicable uniformly for γ ∈ �0 - we see that the function Bγ (t) := Aγ (t)/Aγ (tγ ) is 
bounded and has bounded derivatives on [−T , T ], uniformly for γ ∈ �0. Since Bγ (tγ ) = 1, we 
can write: Bγ (t) = 1 + rγ (t)(t − tγ ), with rγ as in (5.5). Therefore,

Aγ (t) = Aγ (tγ )(1 + rγ (t))(t − tγ ).

In order to establish (5.4), it remains to inspect the exponential factor.
Step 2. Expansion of the characteristic flow. We first expand the characteristics as

xγ (t) = xγ (tγ ) + ẋγ (tγ )(t − tγ ) + 1
2 ẍγ (tγ )(t − tγ )2 + Rx,γ (t)(t − tγ )3, (5.6)

pγ (t) = pγ (tγ ) + ṗγ (tγ )(t − tγ ) + Rp,γ (t)(t − tγ )2, (5.7)

where Rx,γ , Rp,γ ∈ C∞
b ([−T , T ]), and the corresponding bounds are uniform for γ ∈ �0, as 

shown in Lemma 3.7.
We now focus on the phase function

θγ (x, t) = pγ (t) · (x − xγ (t)) + 1
2 (x − xγ (t)) · Mγ (t)(x − xγ (t)).

Step 3. The linear part of the phase. The linear part of θγ is

pγ (t) · (x − xγ (t)
) = pγ (tγ ) ·

(
x − xγ (tγ ) − ẋγ (tγ )(t − tγ ) − 1

2 ẍγ (tγ )(t − tγ )2
)

(5.8)

+ ṗγ (tγ )(t − tγ ) · (x − xγ (tγ ) − ẋγ (t − tγ )
) + �γ

= pγ (tγ ) · (x − xγ (tγ )
) − pγ (tγ )ẋγ (tγ )(t − tγ )
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− 1
2 (t − tγ )2 (

pγ (tγ ) · ẍγ (tγ ) + ṗγ (tγ ) · ẋγ (tγ )
)

(5.9)

− 1
2 (t − tγ )2 (

ṗγ (tγ ) · ẋγ (tγ )
)

+ (t − tγ )ṗγ (tγ ) · (x − xγ (tγ )
) + �γ ,

where �γ denotes a function of the form:

�γ =
∑

|μ|=3

R(x,p),γ,μ(t)
(
(t, x) − (tγ , xγ (tγ ))

)μ
, R(x,p),γ,μ ∈ C∞

b ([−T ,T ]).

Indeed, note that the error factors R(x,p),γ,μ(t) involve the error factors Rx,γ , Rp,γ from (5.6)
and (5.7) multiplied by ẋγ (tγ ), pγ (tγ ) and similar quantities involving higher order derivatives, 
which are uniformly bounded by Lemma 3.7.

Since

H(xγ (t),pγ (t)) = pγ (t) · ẋγ (t)

is constant on t , it follows that(
pγ (tγ ) · ẍγ (tγ ) + ṗγ (tγ ) · ẋγ (tγ )

) = ∂tH(xγ (t),pγ (t))|t=tγ = 0,

and the term in (5.9) vanishes. Thus, (5.8) reads

pγ (t) · (x − xγ (t)
) = pγ (tγ ) · (x − xγ (tγ )

) − pγ (tγ ) · ẋγ (tγ )(t − tγ )

− 1
2 (t − tγ )2 (

ṗγ (tγ ) · ẋγ (tγ )
) + (t − tγ )ṗγ (tγ ) · (x − xγ (tγ )

) + �γ .

Specializing on the boundary we obtain that for x1 = xγ,1(tγ ) = 0,

pγ (t) · (x − xγ (t)
) = Lγ (t, x∗) − 1

2

(
ṗγ (tγ ) · ẋγ (tγ )

)
(t − tγ )2

+ (t − tγ )ṗγ,∗(tγ ) · (x∗ − xγ,∗(tγ )
) + �γ |x1=0,

(5.10)

where L(t, x∗) is defined by (5.2).
Step 4. The quadratic part of the phase. We linearize the Riccati matrix Mγ as

Mγ (t) = Mγ (tγ ) + Nγ (t)(t − tγ ),

with Nγ ∈ C∞
b ([−T ,T ]) uniformly on γ , due to Lemma 3.7.

Using (5.6), we can expand the quadratic part of θγ as(
x − xγ (t)

) · Mγ (t)
(
x − xγ (t)

)
= (

x − xγ (t)
) · Mγ (tγ )

(
x − xγ (t)

) + �γ

= (
x − xγ (tγ ) − ẋγ (tγ )(t − tγ )

) · Mγ (tγ )
(
x − xγ (tγ ) − ẋγ (tγ )(t − tγ )

) + �γ ,

where, in each line, �γ denotes a function of the form:
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�γ =
∑

|μ|=3

R(x,M),γ,μ(t)
(
(t, x) − (tγ , xγ (tγ ))

)μ
, with R(x,M),γ,μ ∈ C∞

b ([−T ,T ]),

uniformly on γ .
Specializing on the boundary we obtain that for x1 = xγ,1(tγ ) = 0,

(
x − xγ (t)

) · Mγ (t)
(
x − xγ (t)

) = ẋγ (tγ ) · Mγ (tγ )ẋγ (tγ )(t − tγ )2

+ (
x∗ − xγ,∗(tγ )

) · Mγ (tγ )∗∗
(
x∗ − xγ,∗(tγ )

)
− 2

(
ẋγ (tγ ) · Mγ (tγ )

)
∗
(
x∗ − xγ,∗(tγ )

)
(t − tγ ) + �γ |x1=0.

(5.11)

Step 5. Collecting terms. Finally, we combine (5.10) and (5.11), noting that the quadratic terms 
add up precisely to Qγ (t, x∗), as defined by (5.3). �
5.2. Global analysis of a beam when it intersects the boundary

We now describe the global profile of the restriction of the beam to the boundary {x1 = 0}. We 
aim to show that the restricted beams �γ (t, 0, x∗) display a Gaussian profile in the (t, x∗) vari-
ables. To this end, we consider an additional assumption on the way in which the original beams 
intersect the boundary. We say that a family of beams {�γ : γ ∈ �0} intersects the boundary in 
a uniformly transversal fashion at times {tγ : γ ∈ �0} if: (i) xγ,1(tγ ) = 0, for all γ ∈ �0, and (ii) 
there exists a constant C1 ∈ (0, 1) such that∣∣pγ,1(tγ )

∣∣ ≥ C1
∣∣pγ (tγ )

∣∣ , γ ∈ �0. (5.12)

The following lemma provides the desired description.

Lemma 5.2. Let ϒ ≡ {
Sγ : γ ∈ �0

}
be a well-spread set of GB parameters. For γ ∈ �0, let tγ ∈

[Ch,inf, Ch,sup] be such that xγ,1(tγ ) = 0 (i.e. the center of the corresponding beam �γ = �±
γ

intersects the boundary x1 = 0 at a time t = tγ when the boundary value is active). Assume 
also that the beams intersect the boundary in a uniformly transversal fashion; i.e., there exists a
constant C1 ∈ (0, 1) such that (5.12) holds.

Let us write xγ (tγ ) = (0, xγ,∗(tγ )). Then the restriction of �γ to x1 = 0 admits the following 
description: for γ = (j, k, λ) ∈ �0,

�γ (t,0, x∗) = Aγ (tγ ) exp
(
i4j

[
Lγ (t, x∗) + i�

(
(t − tγ )2 + ∣∣x∗ − xγ,∗(tγ )

∣∣2)]) · Rγ (t, x∗),

where Lγ is given by (5.2), � > 0 is a constant - that depends only on the family ϒ and the 
constant C1 - and Rγ ∈ C∞

b ([−T , T ] × {x∗ : ∣∣x∗ − xγ,∗
∣∣ ≥ 1}), uniformly on γ . More precisely, 

for all multi-indices k, α, the error factor satisfies:

sup
γ∈�0

sup
t∈[−T ,T ]

sup∣∣x∗−xγ,∗
∣∣≥1

∣∣∣∂k
t ∂α

x∗Rγ (t, x∗)
∣∣∣ < +∞.

Proof. As before, all estimates in this proof are to be understood as being uniform for γ =
(j, k, λ) ∈ �0, and to be dependent on T .
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Step 1. Linearization of the centers. Using Lemma 3.7 we write

xγ (t) = xγ (tγ ) + (t − tγ )yγ (t),

where yγ,i ∈ C∞
b ([−T , T ]). Since xγ,i(tγ ) = 0, the transversality assumption and the cone con-

dition in (4.3), imply that ∣∣yγ,1(t)
∣∣ ≥ δ, t ∈ [−T ,T ], (5.13)

for some constant δ > 0.
Step 2. The linear part of the phase. We show that

pγ (t) · ((0, x∗) − xγ (t)
) = Lγ (t, x∗) + E1

γ (t, x∗) (5.14)

where E1
γ satisfies the following: given multi-indices k, α:

sup
t∈[−T ,T ]

∣∣∣∂k
t ∂α

x∗E
1(t, x∗)

∣∣∣ ≤ Ck,m

(
1 + ∣∣x∗ − xγ,∗(tγ )

∣∣) . (5.15)

(Recall that this estimate is understood to be also uniform on γ , but dependent on T .)
We expand the left-hand side of (5.14). We use E to denote a function satisfying a bound 

similar to (5.15). The meaning of E changes from line to line, and the assertions are verified 
using Step 1, Lemma 2.6 and 3.7. With this understanding:

pγ (t) · ((0, x∗) − xγ (t)
) = pγ (t) · ((0, x∗) − xγ (tγ )

) + E(t, x∗)

= pγ (tγ ) · ((0, x∗) − xγ (tγ )
) + E(t, x∗)

= pγ,∗(tγ ) · (x∗ − xγ,∗(tγ )
) + E(t, x∗)

= Lγ (t, x∗) − τγ (t − tγ ) + E(t, x∗)

= Lγ (t, x∗) + E(t, x∗),

as desired.
Step 3. The quadratic part of the phase. Consider the quadratic term:

Q(t, x∗) = 1
2

[
((0, x∗) − xγ (t)) · Mγ (t)((0, x∗) − xγ (t))

]
.

Let us show that Q(t, x∗) = Q1(t, x∗) +Q2(t, x∗) +Q3(t, x∗), with

Q1(t, x∗) = �
(
(t − tγ )2 + ∣∣x∗ − xγ,∗(tγ )

∣∣2) , (5.16)

Q2(t, x∗) = (
t − tγ , x∗ − xγ,∗(tγ )

) · N2
γ (t)

(
t − tγ , x∗ − xγ,∗(tγ )

)
, (5.17)

Q3(t, x∗) = (
(0, x∗) − xγ (t)

) · N3
γ (t)

(
(0, x∗) − xγ (t)

)
,

where � > 0, N2
γ (t), N3

γ (t) ∈ Cd×d are symmetric, 
N2
γ (t), 
N3

γ (t) ≥ �′Id , �′ > 0, and for each 
k ≥ 0, there is a constant Ck such that
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sup
t∈[−T ,T ]

∣∣∣∂k
t N2

γ (t)

∣∣∣ , sup
t∈[−T ,T ]

∣∣∣∂k
t N3

γ (t)

∣∣∣ ≤ Ck < +∞. (5.18)

By definition of well-spread set of GB parameters and Lemma 3.7, there exists a constant 
ε > 0 (independent of γ and t) such that 
(Mγ (t)) ≥ 2εId . We let N3

γ (t) = 1
2Mγ (t) − ε

2 iId . 
This defines Q3. Note that 
(N3

γ (t)) ≥ �′Id , with �′ = ε
2 and that Q(t, x∗) − Q3(t, x∗) =

ε
2 i

∣∣(0, x∗) − xγ (t)
∣∣2. Expanding that expression and using xγ,1(tγ ) = 0, we see that

2
εi

(Q(t, x∗) −Q3(t, x∗)) = ∣∣(0, x∗) − xγ (tγ ) − (t − tγ )yγ (t)
∣∣2

= ∣∣yγ (t)
∣∣2 (t − tγ )2 − 2(t − tγ )yγ,∗(t) · (x∗ − xγ,∗(tγ )) + ∣∣x∗ − xγ,∗(tγ )

∣∣2
= (t − tγ , x∗ − xγ,∗(tγ )) · Ñγ (t)(t − tγ , x∗ − xγ,∗(tγ )),

where: [
Ñγ,11(t) Ñγ,1∗(t)t

Ñγ,1∗(t) Ñγ,∗∗(t)

]
=

[ ∣∣yγ (t)
∣∣2 −yγ,∗(t)t

−yγ,∗(t) Id−1

]
.

Since 
∣∣yγ (t)

∣∣2 − ∣∣yγ,∗(t)
∣∣2 = ∣∣yγ,1(t)

∣∣2 is bounded below by (5.13), elementary linear algebra 
now shows that Ñγ (t) � Id , for t ∈ [−T , T ] - see [5, Lemma A.1] for details.

Hence, we can let N2(t) = ε
2 iÑγ (t) − �iId with � > 0 such that 
N2(t) ≥ �Id . We now 

let Q1(t, x∗) and Q2(t, x∗) be defined by (5.16) and (5.17), respectively. Hence, Q(t, x∗) =
Q1(t, x∗) + Q2(t, x∗) + Q3(t, x∗) as desired. Finally the bounds in (5.18) follow from 
Lemma 3.7.
Step 4. Bounds for the error factor. We write R(t, x∗) = R1(t, x∗) · R2(t, x∗), with

R1(t, x∗) = A(t)

A(tγ )
,

R2(t, x∗) = exp(i4j (E1(t, x∗) +Q2(t, x∗) +Q3(t, x∗)))

By Lemmas 2.6, and 3.7, it follows that R1 ∈ C∞
b (Rd

T ) - cf. Step 1 in the proof of Lemma 5.1. 
We focus now on R2. Let k, m be multi-indices. Using the bounds in Steps 2 and 3 (and the fact 
that E1

γ is real) we conclude that there exists a number n = n(k, m) and a constant Cn = Ck,m

such that for (t, x∗) ∈ Rd
T :∣∣∣∂k

t ∂m
x∗R

2(t, x∗)
∣∣∣ ≤ Cn4jn

(
1 + ∣∣x∗ − xγ,∗(tγ )

∣∣2)n ·

exp(−4j
[

(Q2(t, x∗)) + 
(Q3(t, x∗))

]
).

(5.19)

Using (5.15) and the fact that 
N2
γ , 
N3

γ ≥ �′Id we obtain:


(Q2(t, x∗)) + 
(Q3(t, x∗)) ≥ �′ (∣∣(t − tγ )
∣∣2 + ∣∣x∗ − xγ,∗(tγ )

∣∣2 + ∣∣(0, x∗) − xγ (t)
∣∣2)

≥ �′ ∣∣x∗ − xγ,∗(tγ )
∣∣2 .
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Fig. 6.6. A beam intersects the boundary x1 = 0 at t = tγ moving along the projected bicharacteristic xγ (t). The frame 
element - represented by a circle - is matched to a beam - represented by a filled ellipse - which has an approximate 
Gaussian profile in (t, x∗).

Combining this with (5.19) we obtain:∣∣∣∂k
t ∂m

x∗R
2(t, x∗)

∣∣∣� 4jn
(

1 + ∣∣x∗ − xγ,∗(tγ )
∣∣2)n

exp(−4j �′ ∣∣x∗ − xγ,∗(tγ )
∣∣2),

where the implied constant depends on k and m. Finally, for 
∣∣x∗ − xγ,∗(tγ )

∣∣ ≥ 1 we can estimate:∣∣∣∂k
t ∂m

x∗R
2(t, x∗)

∣∣∣� 4jn
∣∣x∗ − xγ,∗(tγ )

∣∣2n exp(−4j �′ ∣∣x∗ − xγ,∗(tγ )
∣∣2)

�
(

4j �′ ∣∣x∗ − xγ,∗(tγ )
∣∣2)n

exp(−4j �′ ∣∣x∗ − xγ,∗(tγ )
∣∣2) ≤ n!

This completes the proof. �
6. Packet-beam matching

The goal of this section is to select, for each index γ = (j, k, λ) ∈ �h, a corresponding tuple 
of initial conditions Sh

γ ∈ R+ ×Rd × (Rd \ {0}) × (R \ {0}) ×Cd×d and an adequate mode, +
or −, giving initial conditions for a Gaussian beam, in such a way that

�h
γ (t,0, x∗) ≈ ϕγ (t, x∗). (6.1)

We use the analysis of Section 5 as a guide. We first judiciously select a time instant tγ and 
construct the beam �h

γ in such a way that it intersects the boundary {x1 = 0} at that time. To this 
end, we design the beam �h

γ by matching the approximate description of �h
γ (t, 0, x∗), provided 

by Lemma 5.1, to the target frame element ϕγ (t, x∗). This approximate description is useful 
for t near the boundary meeting time tγ . Hence, the construction involves back-propagating the 
profile of the beam under construction by means of the ODEs in (2.7), (2.9), (2.10), from time 
t = tγ to time t = 0. The matching procedure is depicted in Fig. 6.6.

Afterwards, we analyze the family of parameters that results from this procedure, and prove 
that they are well-spread in the sense of Section 3, and that they intersect the boundary at the 
prescribed times in a uniformly transversal fashion - cf. Section 5. With this information, the 
approximate description of Section 5, that was initially used as a guide, is rigorously justified 
and can be used to quantify (6.1).
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6.1. Back-propagating beams

Given a frame element ϕγ , with γ ∈ �h, we look for a mode, + or −, and a tuple of Gaussian 
beam parameters

Sh
γ = (ωh

γ , ah
γ , ξh

γ ,Ah
γ ,Mh

γ ),

such that (6.1) holds. We write explicitly

ϕγ (t, x∗) = 2(j+1/2)d/2 · exp
[
i4j

(
ξ̃j,k

(
t − 2−j λ1, x∗ − 2−j λ∗

)
+ iπ

(
(t − 2−j λ1)

2 +
∣∣∣x∗ − 2−j λ∗

∣∣∣2))]
and compare this expression to (5.4). We want to construct a beam such that:

Aγ (tγ ) = 2(j+1/2)d/2, (6.2)

ωγ Lγ (t, x∗) = 4j ξ̃j,k

(
t − 2−j λ1, x∗ − 2−j λ∗

)
, (6.3)

ωγ Qγ (t, x∗) = iπ4j

(
(t − 2−j λ1)

2 +
∣∣∣x∗ − 2−j λ∗

∣∣∣2) . (6.4)

Step 1. Choice of mode and scale. Recall that by the non-tangential propagation estimate - cf. 
(4.7) - (ξj,k)1 �= 0. Let ς := sign((ξj,k)1) ∈ {−1, 1}. Note that in the asymptotic expansion in 
(5.4), the first component of the linear part of the phase is given by (5.1), which is negative for 
a + beam and positive for a − one. Motivated by this fact, if ς = −1 we construct a + mode, 
while if ς = 1 we construct a − mode. Second, we choose the scale parameter as ω±,h

γ = 4j . 
Having made these choices, we ease the notation dropping the superscripts h, ±.
Step 2. Definition of the boundary intersection time. We first define the time instant

tγ = 2−j λ1. (6.5)

The center of the Gaussian beam under construction is to intersect the boundary {x1 = 0} at time 
tγ . Note that, due to (4.5), tγ ∈ [Ch,inf, Ch,sup], and the constants Ch,inf, Ch,sup depend only on 
the boundary value h, but not on γ .

In the following steps, we define functions (x(t), p(t), M(t), A(t)) as solutions of the ODEs 
in (2.7), (2.9) and (2.10) by specifying adequate initial conditions at time t = tγ . Later we define 
Sh

γ by inspecting (x(t), p(t), M(t), A(t)) at time t = 0. To this end, we use the description of a 
beam given in Lemma 5.1. We first aim to match the function Lγ (t, x∗) in (5.2) to the linear part 
of the phase in (2.14).
Step 3. Definition of (x(t), p(t)). Let (x, p) : R → R2d be the solution of the Hamiltonian flow, 
cf. (2.7), with initial condition at t = tγ described as follows. For x we simply set:

x|t=tγ = (0,2−j λ∗). (6.6)

This agrees with our intention that the Gaussian beam under construction �γ intersects the
boundary at time tγ .
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With these choices,

(tγ , x∗(tγ )) = 2−j λ. (6.7)

For p we need to specify:

p|t=tγ = ((p|t=tγ )1, (p|t=tγ )∗).

We first define (p|t=tγ )∗ by

(p|t=tγ )∗ = (ξ̃j,k)∗, (6.8)

where ξ̃j,k is given by (2.1). Second, we define (p|t=tγ )1 as

(p|t=tγ )1 = (−ς) ·
√

(ξ̃j,k)
2
1

c(x|t=tγ )2 −
∣∣∣(ξ̃j,k)∗

∣∣∣2. (6.9)

Note that (p|t=tγ )1 is well-defined because of the grazing ray condition. Indeed, by (4.6),

∣∣∣(ξ̃j,k)1

∣∣∣2
c(x(tγ ))2 ≥

(
Cgraz +

∣∣∣(ξ̃j,k)∗
∣∣∣)2 ≥ C2

graz +
∣∣∣(ξ̃j,k)∗

∣∣∣2 . (6.10)

In addition,

∣∣p|t=tγ

∣∣2 = ∣∣(p|t=tγ )1
∣∣2 + ∣∣(p|t=tγ )∗

∣∣2 = (ξ̃j,k)
2
1

c(x|t=tγ )2 . (6.11)

With these choices, since ς has a sign opposite to the mode of the beam under construction,

τγ = −H(x|t=tγ , p|t=tγ ) = ς · c(x(tγ ))
∣∣p|t=tγ

∣∣ = ς ·
∣∣∣(ξ̃j,k)1

∣∣∣ = (ξ̃j,k)1. (6.12)

Consequently

(τγ , (p|t=tγ )∗) = ξ̃j,k, (6.13)

and therefore the linear part of the phase of the boundary restriction of the beam under con-
struction - as a function of (t, x∗) and according to the approximate description in Lemma 5.1 -
coincides with the linear part of the phase of ϕγ (t, x∗). Moreover, we note the following.

Claim 6.1. The flow (x(t), p(t)) = (xγ (t), pγ (t)) defined in Step 3 satisfies:

ẋγ,1(tγ ) > 0, and ẋγ,1(tγ ) � 1, (6.14)∣∣pγ,1(tγ )
∣∣� ∣∣pγ (tγ )

∣∣ , (6.15)

where the implied constants are uniform for γ ∈ �h.
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Proof. From (6.11) we see that 
∣∣pγ (tγ )

∣∣ � 1. In addition, (6.9) and (6.10) imply that ∣∣pγ,1(tγ )
∣∣� 1, so the claim in (6.15) follows. For (6.14), we use one of Hamilton’s equations

ẋγ,1(tγ ) = ∂p1H(tγ ) = (−ς) · c (
xγ (tγ )

) pγ,1(tγ )

|pγ (tγ )| .

Inspecting the sign of (6.9) we see that ẋγ,1(tγ ) > 0. In addition, by the assumptions on the 
velocity (1.10) and (6.15),

∣∣ẋγ,1(tγ )
∣∣ ≥ Cvel

∣∣pγ,1(tγ )
∣∣

|pγ (tγ )| � 1. �
Step 4. Definition of M(tγ ). Let

M̃γ = 2πiId,

and let M(tγ ) ∈ Cd×d be the unique symmetric matrix that solves the following system of equa-
tions: ⎧⎪⎪⎨⎪⎪⎩

M̃γ,11 = ẋγ (tγ ) · M(tγ )ẋγ (tγ ) − ṗγ (tγ ) · ẋγ (tγ ),

M̃γ,1k = ṗγ,k(tγ ) − ∑d
n=1

(
M(tγ )

)
kn

ẋγ,n(tγ ), k = 2, . . . d,

M̃γ,kl = (
M(tγ )

)
kl

, k, l = 2, . . . d.

(6.16)

We now check that M(tγ ) is indeed well-defined.

Claim 6.2. The system (6.16) has a unique symmetric solution M(tγ ). Moreover, there exist con-
stants C1, C2 > 0 - independent of γ - such that ‖M(tγ )‖ ≤ C1 and 
M(tγ ) ≥ C2 · Id .

We postpone the proof of the claim to Section 8.1, so as not to interrupt the flow of the 
construction.
Step 5. Definition of M(t). We let M(t) be the solution of (2.9) with initial condition at time 
t = tγ given by the matrix M(tγ ) from Step 4. Due to Claim 6.2, this is a valid initial condition -
cf. Section 2.4.
Step 6. Definition of A(t). Let A(t) be the solution to (2.10) with initial condition:

A(tγ ) = 2(j+1/2) d
2 . (6.17)

Step 7. Definition of Sh,+
γ and Sh,−

γ . We recall the decomposition �h = �+
h ∪ �−

h in (4.8) and 
define two sets of GB parameters{

Sh,+
γ : γ ∈ �+

h

}
,

{
Sh,−

γ : γ ∈ �−
h

}
,

with Sh,± = (ω±,h, a±,h, ξ±,h, A±,h, M±,h) in the following way:
γ γ γ γ γ γ
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⎧⎪⎪⎨⎪⎪⎩
ω±,h

γ = 4j , a±,h
γ = x±(0), ξ±,h

γ = 1

2π
4jp±(0),

A±,h
γ = 4−j d

4 A±(0), M±,h
γ = 1

2π
M±(0).

(6.18)

The values for Sh,±
γ are chosen so that if we define the functions (x±(t), p±(t), M±(t), A±(t))

by imposing initial conditions at time t = 0 as described in Section 2.4, they will satisfy (6.6), 
(6.7), (6.13) and (6.17) at time t = tγ . As a result of the construction, (6.2), (6.3), (6.4) are 
satisfied.

Remark 6.3. The function Sh,+
γ is defined only on �+

h . According to the conventions in Sec-
tion 2.4, it would be possible to associate with such map both a family of + beams and a family 
of − beams. However, we are only interested in the corresponding family of + beams, because, 
as we show below, these satisfy the approximation property in (6.1). A similar remark applies to 
Sh,−

γ .

Remark 6.4. The choice of sign in (6.9) is instrumental to construct a parametrix for the Dirichlet 
problem on the right-half space (see Theorem 6.7 below). For the left-half space, the opposite 
sign should be used in (6.9), leading to a different sign in Claim 6.1.

6.2. Analysis of the back-propagated parameters

We now analyze the properties of the previous construction. We first state the following fun-
damental property.

Theorem 6.5 (Well-spreadness). Each of the two families of back-propagated parameters con-

structed in Section 6.1, ϒh,+ =
{
Sh,+

γ : γ ∈ �+
h

}
, ϒh,− =

{
Sh,−

γ : γ ∈ �−
h

}
is a well-spread set 

of Gaussian beam parameters.

The proof of Theorem 6.5 is quite technical and we postpone it to Section 8. We now analyze 
the fine properties of the matching procedure.

Theorem 6.6 (Transversal boundary intersection). Each family of beams {�h,±
γ : γ ∈ �±

h } inter-

sects the boundary {x1 = 0} at times {tγ : γ ∈ �±
h } - given by (6.5) - in a uniformly transversal 

fashion.

Proof. By (6.6), xh
γ,1(tγ ) = 0. The uniform transversality at the boundary intersection is proved 

in Claim 6.1 - see (6.15). �
Theorem 6.7 (Rightwards propagation). The spatial centers of the beams {�h,±

γ : γ ∈ �±
h } are 

uniformly away from the right-half plane Rd+ at time t = 0. More precisely, there exists a constant 
ε > 0 such that, for all γ ∈ �±

h ,

x
h,±
γ,1 (0) ≤ −ε. (6.19)

Proof. By Theorem 6.6, xγ,1(tγ ) = 0 and 
∣∣pγ,1(tγ )

∣∣ � ∣∣pγ (tγ )
∣∣. In addition, tγ = 2−j λ1 ∈

[Ch,inf,Ch,sup] ⊆ [0, T ] by the approximate compatibility condition (4.5). Let us write
979



M. Berra, M.V. de Hoop and J.L. Romero Journal of Differential Equations 309 (2022) 949–993
xh,±
γ (t) = xh,±

γ (tγ ) + (t − tγ )b(t),

with b smooth. The cone condition (4.3) implies that |b1(t)| � 1, for t ∈ [0, T ]. In addition, 
b1(tγ ) = ẋ

h,±
γ,1 (tγ ) > 0 by Claim 6.1. Hence, b1 > 0 on [0, T ] and, moreover, b1(t) � 1 for all 

t ∈ [0, T ]. Second, the approximate compatibility condition (4.5) implies that tγ = 2−j λ1 � 1. 
Therefore,

−x
h,±
γ,1 (0) = tγ · b1(0) � 1,

as claimed. �
Theorem 6.8 (Beams match frame elements on the boundary). When restricted to the boundary 
{x1 = 0}, the beams {�h,±

γ : γ ∈ �±
h } match the frame elements in the following sense. Let η1 ∈

C∞(R) be compactly supported. Let η2 ∈ C∞(Rd−1) be a smooth function supported on B2(0)

that is ≡ 1 on B1(0), and let η2
γ (x∗) = η(x∗ − xγ,∗(tγ )).

• Local description:(
�h,±

γ (t,0, x∗) − ϕγ (t, x∗)
)

· η1(t) · η2
γ (x∗) =

(
4j · R1

γ (t, x∗) + R2
γ (t, x∗)

)
· ϕγ (t, x∗),

with γ = (j, k, λ) ∈ �±
h , R1 = O3≥({0} , ϒh,±) and R2 = O1≥({0} , ϒh,±).

• Global description:(
�h,±

γ (t,0, x∗) − ϕγ (t, x∗)
)

· η1(t) · (1 − η2
γ (x∗)) = �̃±

γ (t,0, x∗) · R3
γ (t, x∗),

with ϒ̃± ≡ {S̃γ : γ ∈ �±
h } well-spread sets of GB parameters, �̃±

γ the corresponding beams and 

R3 = O1≥({0} , ϒ̃±).

Remark 6.9. We stress that here the time variable t is not considered as an evolution variable; 
rather (t, x∗) functions as a spatial variable. In accordance, {0} is the time-evolution set in the 
O≥ notation.

Proof of Theorem 6.8. We invoke Lemmas 5.1 and 5.2. The corresponding hypothesis is sat-
isfied, thanks to Theorems 6.5 and 6.6. We use the notation Sh,±

γ = (ω±,h
γ , a±,h

γ , ξ±,h
γ , A±,h

γ ,

M±,h
γ ).
For the local description, due to Theorem 6.5, we can invoke Lemma 5.1. We substitute the 

values of the beam parameters defined in Section 6.1 into (5.4) - cf. (6.2), (6.3), (6.4) and obtain:

�h,±
γ (t,0, x∗) = ϕγ (t, x∗)

(
1 + Rγ (t)

)
ei·4j ·�γ (t,x∗), (t, x∗) ∈ Rd

T ,

with Rγ and �γ as in Lemma 5.1. Second, we note that

ei·4j ·�γ (t,x∗) · η1(t) · η2
γ (x∗) = 1 + 4j · R′

γ (t, x∗),

with R′ = O3 ({0} , ϒh,±), and the conclusion follows.
≥
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For the global description, with the notation of Lemma 5.2,

�h,±
γ (t,0, x∗) = Aγ (tγ ) exp

[
i4j (Lγ (t, x∗) + i�

(
(t − tγ )2 + ∣∣x∗ − xγ,∗(tγ )

∣∣2))
]
· Rγ (t, x∗).

Substituting the values of the parameters defined in Section 6 - cf. (6.7) and (6.13) - we obtain

�h,±
γ (t,0, x∗) = 2(j+1/2) d

2 e2πi
(
(t,x∗)−2−j λ

)
ξj,k−�4j

∣∣(t,x∗)−2−j λ
∣∣2 · Rγ (t, x∗).

We let R3
γ (t, x∗) := η1(t)(1 − η2

γ (x∗))Rγ (t, x∗) and

S̃±
γ = (4j ,2−j λ, ξj,k,2

d
4 , i �

π
Id), γ = (j, k, λ) ∈ �±

h .

It is straightforward to verify that this defines a well-spread set of GB parameters. Indeed, for 
γ ∈ �±

h , the tuple S̃±
γ is very similar to the standard one Sst

γ , defined in (2.15): the only difference 
is that, in the new set, the standard matrix element Mγ = iId is replaced by i �

π
Id , with � > 0 a 

constant. �
7. Parametrix estimates for the Dirichlet problem

Finally, we derive the parametrix for the boundary Dirichlet problem and give suitable esti-
mates.

Theorem 7.1. With the assumptions and notation from Section 4, let u : [0, T ] ×Rd+ →C be the 
(weak) solution to the problem:⎧⎪⎪⎨⎪⎪⎩

∂2
t u(t, x) − c(x)2�xu(t, x) = 0, t ∈ [0, T ], x ∈Rd+,

u(0, x) = ut (0, x) = 0, x ∈Rd+,

u(t,0, y) = hcut(t, y), t ∈ [0, T ], y ∈Rd−1.

(7.1)

Let h̃ = ∑
γ∈�h

h̃γ ϕγ be the truncated frame expansion of h defined in Section 4.2 and consider 
the GB parameters Sh,±

γ constructed in Section 6. Let ũ be defined as

ũ =
∑

γ∈�+
h

h̃γ �h,+
γ +

∑
γ∈�−

h

h̃γ �h,−
γ . (7.2)

Then

‖ũ − u‖C0([0,T ],H 1(Rd+))∩C1([0,T ],L2(Rd+)) ≤ CT ‖h‖H 1/2(Rd ).

In particular, in the highly oscillatory regime: ĥ(ξ) = 0 for |ξ | ≤ ξmin, we obtain

‖ũ − u‖C0([0,T ],H 1(Rd+))∩C1([0,T ],L2(Rd+)) ≤ CT · ξ−1/2
min · ‖h‖H 1(Rd ).

(Here, ĥ denotes the Fourier transform of h in the full (t, y) variable.)
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Remark 7.2. The problem in (7.1) is well-posed because hcut satisfies the compatibility condition 
hcut(0, ·) ≡ 0, cf. Section 4.

To prove Theorem 7.1, we show that the proposed GB solution approximately solves the 
boundary-value problem and then conclude, by means of energy estimates, that it must suitably 
approximate the true solution. The results from Section 3, together with the analysis of the back-
propagated parameters in Section 6, imply that the wave operator approximately annihilates the 
GB solution. In the next section, we show that the other conditions of the boundary-value problem 
are also approximately satisfied.

7.1. Preliminary steps

As a first step towards the proof of Theorem 7.1, we show that the approximate solution in 
(7.2) satisfies zero boundary conditions, up to the error of the parametrix. More precisely, we 
have the following lemma.

Lemma 7.3 (Asymptotic vanishing of the initial conditions). Under the hypothesis of Theo-
rem 7.1, consider the approximate solution defined in (7.2). Then

‖ũ|t=0‖H 1(Rd+),‖∂t ũ|t=0‖L2(Rd+) � CT ‖h‖H 1/2(Rd ).

Proof. We use the short notation u = ∑
γ∈�h

h̃γ �h
γ , with the understanding that �h

γ is a + mode 
for γ ∈ �+

h and a − mode for γ ∈ �−
h . We drop the ± superscripts on solutions to the defining 

ODEs, with a similar convention. At time t = 0 we have

ũ|t=0 =
∑
γ∈�h

h̃γ �h
γ (0, ·), (7.3)

∂t ũ|t=0 =
∑
γ∈�h

h̃γ ∂t�
h
γ (0, ·). (7.4)

By Theorem 6.7, the centers of beams �h,±
γ are away from the boundary {x1 = 0} at initial 

time; we let ε > 0 be such that (6.19) holds.
Step 1. Localization. Intuitively, (6.19) means that, at time t = 0, the right-half space is away 
from the wave-front set of the solution, and the parametrix is micro-locally of lower order. To 
formalize this reasoning, let us consider a smooth cut-off function η :Rd → [0, 1], such that

η(x) =
{

0, x1 ≤ −ε,

1, x1 ≥ −ε/2.

We also define ηγ := η for all γ ∈ �h. By (6.19), η vanishes near xh
γ (0) and, therefore,

{ηγ : γ ∈ �±
h } = Ok≥

(
ϒh,±, {0}

)
, for all k ≥ 0. (7.5)

Step 2. The H 1 norm of (7.3). We use the fact that the back-propagated parameters are well-
spread - Theorem 6.5, the Bessel bounds - Theorem 3.5, and (7.5) with k = 1 to estimate
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∥∥∥ ∑
γ∈�h

h̃γ �h
γ (0, ·)

∥∥∥2

H 1(Rd+)
≤

∥∥∥ ∑
γ∈�h

h̃γ �h
γ (0, ·)η

∥∥∥2

H 1(Rd )

≤ CT

∑
γ∈�h

4j (2−1)|h̃γ |2 ≤ CT ‖h‖2
H 1/2 .

Step 3. The L2 norm of (7.4). Using (3.3) we see that

∂t�
h
γ (0, x) =

(
F 1

γ (x) + 4jF 2
γ (x)

)
�h,±

γ ,

with F 1, F 2 = O0≥(ϒh,±, {0}). Combining this with (7.5), we can proceed as in Step 2 to deduce 
that

∥∥ ∑
γ∈�h

h̃γ ∂t�
h
γ (0, ·)∥∥

L2(Rd+)
≤ ∥∥ ∑

γ∈�h

h̃γ ∂t�
h
γ (0, ·)η∥∥

L2(Rd )
≤ CT ‖h‖H 1/2 .

This completes the proof. �
Theorem 7.4 (Boundary conditions are asymptotically satisfied). Under the hypothesis of Theo-
rem 7.1, the Gaussian beam solution ũ satisfies:

‖ũ(·,0, ·) − hcut‖H 1([0,T ]×Rd−1) ≤ CT ‖h‖H 1/2(Rd ).

Proof. We use the same short-hand notation as in the proof of Lemma 7.3. According to the 
definitions,

h̃(t, x∗) =
∑
γ∈�h

h̃γ ϕγ (t, x∗),

ũ(t,0, x∗) =
∑
γ∈�h

h̃γ �h
γ (t,0, x∗), t ∈R, x∗ ∈Rd−1.

Therefore,

‖ũ(·,0, ·) − hcut‖H 1([0,T ]×Rd−1)

≤ ‖hcut − h̃‖H 1([0,T ]×Rd−1) +
∥∥∥ ∑

γ∈�h

h̃γ

(
ϕγ − �h

γ (·,0, ·))∥∥∥
H 1([0,T ]×Rd−1)

.

By (4.4), the first term in the last equation is suitably bounded. Let us focus on the second term.
We invoke Theorem 6.8. Let η1 ∈ C∞(R) be a smooth compactly-supported cut-off window 

such that η1 ≡ 1 on [0, T ] and η2 ∈ C∞(Rd−1) a smooth function supported on B2(0) that is 
≡ 1 on B1(0). We write η2 (x∗) = η2(x∗ − xγ,∗(tγ )). With the notation of Theorem 6.8,
γ
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∥∥∥ ∑
γ∈�h

h̃γ

(
ϕγ − �h

γ (·,0, ·))∥∥∥
H 1([0,T ]×Rd−1)

≤
∥∥∥ ∑

γ∈�h

h̃γ

(
ϕγ − �h

γ (·,0, ·))η1
∥∥∥

H 1(Rd )

≤
∥∥∥ ∑

γ∈�h

h̃γ

(
ϕγ − �h

γ (·,0, ·))η1
(

1 − η2
γ

)∥∥∥
H 1(Rd )

+
∥∥∥ ∑

γ∈�h

h̃γ

(
ϕγ − �h

γ (·,0, ·))η1η2
γ

∥∥∥
H 1(Rd )

≤
∥∥∥ ∑

γ∈�h

h̃γ ϕγ

(
4jR1

γ + R2
γ

)∥∥∥
H 1(Rd )

+
∥∥∥ ∑

γ∈�h

h̃γ �̃γ (·,0, ·)R3
γ

∥∥∥
H 1(Rd )

.

We use the information on the vanishing orders of Rk , k = 1, 2, 3, the fact that the beams {�̃γ }
are well-spread, and the Bessel bounds from Theorem 3.5 - with (t, x∗) as integration variable 
instead of x - to conclude see that the remaining terms are dominated by ‖h‖H 1/2(Rd ). This 
completes the proof. �
7.2. Proof of the main result

Proof of Theorem 7.1. The function v := ũ − u solves the problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
t v(t, x) − c(x)2�xv(t, x) = f (t, x), t ∈ [0, T ], x ∈Rd+,

v(0, x) = ũ(0, x), x ∈Rd+,

vt (0, x) = ũt (0, x), x ∈Rd+,

v(t,0, x∗) = ũ(t,0, x∗) − hcut(t, x∗), t ∈ [0, T ], x∗ ∈Rd−1,

where f (t, x) = ∂2
t ũ(t, x) − c(x)2�xũ(t, x). By the energy estimates for the wave equation [27,

26,45],

sup
t∈[0,T ]

‖v(t, ·)‖H 1(Rd+) + sup
t∈[0,T ]

‖∂tv(t, ·)‖L2(Rd+)

≤ CT

(
‖ũ(0, ·)‖H 1(Rd+) + ‖ũt (0, ·)‖L2(Rd+) + sup

t∈[0,T ]
‖f (t, ·)‖L2(Rd+)

+ ‖ũ(·,0, ·) − hcut‖H 1([0,T ]×Rd−1)

)
.

The term involving f can be estimated by Theorems 3.8 and 6.5 as

sup
t∈[0,T ]

‖f (t, ·)‖2
L2 ≤ CT

∑
γ∈�h

4j |h̃γ |2 ≤ CT ‖h‖2
H 1/2(Rd )

,

while the other three terms are similarly bounded, by Lemma 7.3 and Theorem 7.4. This com-
pletes the proof. �
8. Proofs related to the back-propagated parameters

This section is devoted to pending proofs related to Section 6.
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8.1. Proof of Claim 6.2

Proof. We use the notation of Section 6.1.
Step 1. Existence and uniqueness. In compact notation, we look for a symmetric matrix M(tγ ) ∈
Cd×d such that [

M̃γ,11 M̃t
γ,1∗

M̃γ,1∗
(
Mγ (tγ )

)
∗∗

]
=

[
2πi 0

0 2πiId−1

]
(8.1)

where

M̃γ,11 = ẋγ (tγ ) · M(tγ )ẋγ (tγ ) − ṗγ (tγ ) · ẋγ (tγ ), (8.2)

M̃γ,1∗ = (
ṗγ (tγ ) − M(tγ )ẋγ (tγ )

)
∗ . (8.3)

We first assume that we have such a matrix M(tγ ) and deduce the values of its entries. From 
(8.1) we see that

(M(tγ ))∗∗ = 2πiId−1. (8.4)

Using this together with (8.3) and (8.1) we see that(
M(tγ )

)
k1 ẋγ,1(tγ ) = ṗγ,k(tγ ) − 2π iẋγ,k(tγ ), k = 2, . . . d.

Since, by (6.14), ẋγ,1(tγ ) �= 0 and M(tγ ) is symmetric, we can solve(
M(tγ )

)
1∗ = (

ẋγ,1(tγ )
)−1 (

ṗγ,∗(tγ ) − 2π iẋγ,∗(tγ )
)
. (8.5)

We now compare the (1, 1) entries in (8.1) and use (8.4) and (8.5) together with (8.2) to obtain

2πi = ẋγ (tγ ) · M(tγ )ẋγ (tγ ) − ṗγ (tγ ) · ẋγ (tγ )

= ∣∣ẋγ,1(tγ )
∣∣2 (

M(tγ )
)

11 + 2ẋγ,1(tγ ) · (M(tγ )
)

1∗ ẋγ,∗(tγ )

+ ẋγ,∗(tγ ) · (M(tγ )
)
∗∗ ẋγ,∗(tγ ) − ṗγ (tγ ) · ẋγ (tγ )

= ∣∣ẋγ,1(tγ )
∣∣2 (

M(tγ )
)

11 + 2
(
ṗγ,∗(tγ ) − 2πiẋγ,∗(tγ )

) · ẋγ,∗(tγ )

+ 2πi
∣∣ẋγ,∗(tγ )

∣∣2 − ṗγ (tγ ) · ẋγ (tγ )

= ∣∣ẋγ,1(tγ )
∣∣2 (

M(tγ )
)

11 + 2ṗγ,∗(tγ ) · ẋγ,∗(tγ )

− 2πi
∣∣ẋγ,∗(tγ )

∣∣2 − ṗγ (tγ ) · ẋγ (tγ ).

Using again that, by (6.14), ẋγ,∗(tγ ) �= 0 and we conclude that(
M(tγ )

)
11 = ∣∣ẋγ,1(tγ )

∣∣−2
(

2πi
(

1 + ∣∣ẋγ,∗(tγ )
∣∣2) − 2ṗγ,∗(tγ ) · ẋγ,∗(tγ ) + ṗγ (tγ ) · ẋγ (tγ )

)
.

(8.6)
Hence, the matrix M(tγ ) is completely determined by the desired conditions. Let us define M(tγ )

by (8.4), (8.5) and (8.6) and the requirement of symmetry. We see that such matrix solves (6.16).
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Step 2. Positivity and bounds. Inspecting (8.4), (8.5) and (8.6) and using Claim 6.1 we see that 
‖M(tγ )‖ is bounded uniformly for γ ∈ �h. According to the definitions, the imaginary part of 
M(tγ ) is of the form

1
2π


M(tγ ) =

⎡⎢⎢⎢⎢⎣
a11 a12 a13 . . . a1d

a12 1 0 . . . 0
a13 0 1 . . . 0
. . . . . . . . . . . . 0
a1d 0 0 . . . 1

⎤⎥⎥⎥⎥⎦ ,

where

a11 = |ẋγ,1(tγ )|−2(1 + ∣∣x∗(tγ )
∣∣2),

a1k = −ẋγ,1(tγ ))−1ẋγ,k(tγ ), k = 2, . . . d.

Note that

a11 − a2
12 − . . . − a2

1d = |ẋγ,1(tγ )|−2 � 1,

by (6.14). A linear algebra argument now shows that 
(M(tγ )) is a positive matrix and 

(M(tγ )) � Id , as desired - see [5, Lemma A.1]. �
8.2. Proof of Theorem 6.5

The goal of this section is to show that both families of back-propagated GB parameters 
constructed in Section 6 are well-spread. This involves comparing the constructed maps

Sh,±
γ = (ω±,h

γ , a±,h
γ , ξ±,h

γ ,A±,h
γ ,M±,h

γ ), γ ∈ �±
h ,

to the standard one

Sst
γ = (4j ,2−j λ, ξj,k,2

d
4 , iId), γ = (j, k, λ) ∈ �.

We follow the notation of Section 6: when convenient, we drop the superscripts for the functions 
xh,±
γ (t), ph,±

γ (t), . . ., writing instead xγ (t), pγ (t), . . . We keep however the superscripts in the 
tuple of parameters Sh,±

γ to avoid confusion with the standard one.

Recall from Section 6 that for γ ∈ �h, tγ = 2−j λ1 and that xγ (tγ ) = (0, 2j λ∗).
As a preparation for the proof of Theorem 6.5, we show the following.

Lemma 8.1. For γ = (j, k, λ), γ ′ = (j ′, k′, λ′) ∈ �+
h :∣∣ξj,k − ξj ′,k′

∣∣2 � ∣∣∣4jph,+
γ (tγ ) − 4j ′

p
h,+
γ ′ (tγ ′)

∣∣∣2 + 4j+j ′ |2−j λ∗ − 2−j ′
λ′∗|2.

An analogous statement holds for �−
h .

Proof. We treat the family �+
h . To further simplify the notation, throughout this proof we write 

pγ = pγ (tγ ), pγ,1 = pγ,1(tγ ), pγ,∗ = pγ,∗(tγ ), and cγ = c(0, 2−j λ∗). Recall also that τγ =
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(ξ̃j,k)1 < 0 - cf. (6.12) and (6.13). Hence, by (6.8) and (6.9),

pγ,1 =
√

τ 2
γ

c2
γ

− p2
γ,∗ = |τγ |

cγ

√
1 − c2

γ

τ 2
γ
p2

γ,∗, (8.7)

and, by (2.1), (ξj,k)1 = 4j

2π
τγ , (ξj,k)∗ = 4j

2π
pγ,∗. With this notation, the estimate we want to prove 

is: ∣∣∣4j τγ − 4j ′
τγ ′

∣∣∣2 + |4jpγ,∗ − 4j ′
pγ ′,∗|2 � |4jpγ − 4j ′

pγ ′ |2 + 4j+j ′ |2−j λ∗ − 2−j ′
λ′∗|2.

Clearly, it suffices to show that∣∣∣4j τγ − 4j ′
τγ ′

∣∣∣2 � |4jpγ − 4j ′
pγ ′ |2 + 4j+j ′ |2−j λ∗ − 2−j ′

λ′∗|2. (8.8)

Step 1. We show that
∣∣∣4j τγ − 4j ′

τγ ′
∣∣∣2 � ∣∣∣4j τγ

cγ
− 4j ′ τγ ′

cγ ′

∣∣∣2 + 4j+j ′ |2−j λ∗ − 2−j ′
λ′∗|2. Using that ∣∣τγ

∣∣ ≤ C1 for some constant C1 - independent of γ - cf. (1.10) and (2.1), we estimate∣∣∣∣4j τγ

cγ

− 4j ′ τγ ′

cγ ′

∣∣∣∣ =
∣∣∣∣4j τγ

cγ

− 4j ′ τγ ′

cγ

+ 4j ′ τγ ′

cγ

− 4j ′ τγ ′

cγ ′

∣∣∣∣
≥

∣∣∣∣4j τγ

cγ

− 4j ′ τγ ′

cγ

∣∣∣∣ −
∣∣∣∣4j ′ τγ ′

cγ

− 4j ′ τγ ′

cγ ′

∣∣∣∣
≥ C−1

vel

∣∣∣4j τγ − 4j ′
τγ ′

∣∣∣ − 4j ′
C1

∣∣∣∣ 1

cγ

− 1

cγ ′

∣∣∣∣
= C−1

vel

∣∣∣4j τγ − 4j ′
τγ ′

∣∣∣ − 4j ′
C1

∣∣∣∣ 1

c(0,2−j λ∗)
− 1

c(0,2−j ′
λ′∗)

∣∣∣∣ .
Since the velocity c has (uniformly) bounded derivatives and is bounded below - cf. (1.10) - we 

conclude that 
∣∣∣ 1
c(0,2−j λ∗) − 1

c(0,2−j ′
λ′∗)

∣∣∣� ∣∣∣2−j λ∗ − 2−j ′
λ′∗

∣∣∣. Consequently,

∣∣∣4j τγ − 4j ′
τγ ′

∣∣∣2 � ∣∣∣∣4j τγ

cγ

− 4j ′ τγ ′

cγ ′

∣∣∣∣2 + 42j ′ ∣∣∣2−j λ∗ − 2−j ′
λ′∗

∣∣∣2 .

Similarly, 
∣∣∣4j τγ − 4j ′

τγ ′
∣∣∣2 � ∣∣∣4j τγ

cγ
− 4j ′ τγ ′

cγ ′

∣∣∣2 + 42j
∣∣∣2−j λ∗ − 2−j ′

λ′∗
∣∣∣2, and therefore

∣∣∣4j τγ − 4j ′
τγ ′

∣∣∣2 � ∣∣∣∣4j τγ

cγ

− 4j ′ τγ ′

cγ ′

∣∣∣∣2 + min{42j ,42j ′ }
∣∣∣2−j λ∗ − 2−j ′

λ′∗
∣∣∣2 ,

�
∣∣∣∣4j τγ

cγ

− 4j ′ τγ ′

cγ ′

∣∣∣∣2 + 4j+j ′ ∣∣∣2−j λ∗ − 2−j ′
λ′∗

∣∣∣2 ,

showing that the announced estimate indeed holds.
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Step 2. We show that L :=
∣∣∣4j τγ

cγ
− 4j ′ τγ ′

cγ ′

∣∣∣2 � |4jpγ − 4j ′
pγ ′ |2.

We denote εγ = cγ

∣∣pγ,∗
∣∣∣∣τγ

∣∣ . Hence, by (8.7), pγ,1 = |τγ |
cγ

√
1 − ε2

γ . By the grazing ray condition 

(4.6), 0 ≤ εγ < 1. We note that for γ, γ ′ ∈ �+
h , τγ < 0 and τγ ′ < 0, while pγ,1 > 0 and pγ ′,1 > 0. 

Keeping these facts in mind and using inequality: 0 ≤ (
1 − x2

) 1
2
(
1 − y2

) 1
2 + xy ≤ 1, for x, y ∈

[0, 1] × [0, 1], we estimate

L = 42j
τ 2
γ

c2
γ

+ 42j ′ τ
2
γ ′

c2
γ ′

− 2 · 4j+j ′
∣∣τγ

∣∣ ∣∣τγ ′
∣∣

cγ cγ ′

≤ 42j
τ 2
γ

c2
γ

+ 42j ′ τ
2
γ ′

c2
γ ′

− 2 · 4j+j ′
∣∣τγ

∣∣ ∣∣τγ ′
∣∣

cγ cγ ′

[(
1 − ε2

γ

) 1
2
(

1 − ε2
γ ′
) 1

2 + εγ εγ ′

]

= 42j
τ 2
γ

c2
γ

+ 42j ′ τ
2
γ ′

c2
γ ′

− 2 · 4j+j ′
∣∣τγ

∣∣ ∣∣τγ ′
∣∣

cγ cγ ′

(
1 − ε2

γ

) 1
2
(

1 − ε2
γ ′
) 1

2 − 2 · 4j+j ′ ∣∣pγ,∗
∣∣ ∣∣pγ ′,∗

∣∣
= 42j

τ 2
γ

c2
γ

+ 42j ′ τ
2
γ ′

c2
γ ′

− 2 · 4j+j ′( τ 2
γ

c2
γ

− ∣∣pγ,∗
∣∣2 ) 1

2
( τ 2

γ ′
c2
γ ′

− ∣∣pγ ′,∗
∣∣2 ) 1

2 − 2 · 4j+j ′ ∣∣pγ,∗
∣∣ ∣∣pγ ′,∗

∣∣ .
Using the arithmetic-geometric means inequality: 42j

∣∣pγ,∗
∣∣2 + 42j ′ ∣∣pγ ′,∗

∣∣2 ≤ 2 · 4j+j ′ ∣∣pγ,∗
∣∣×∣∣pγ ′,∗

∣∣ we conclude that

L ≤ 42j
( τ 2

γ

c2
γ

− ∣∣pγ,∗
∣∣2 ) + 42j ′( τ 2

γ ′
c2
γ ′

− ∣∣pγ ′,∗
∣∣2 ) − 2 · 4j+j ′( τ 2

γ

c2
γ

− ∣∣pγ,∗
∣∣2 ) 1

2
( τ 2

γ ′
c2
γ ′

− ∣∣pγ ′,∗
∣∣2 ) 1

2

= 42jp2
γ,1 + 42j ′

p2
γ ′,1 − 2 · 4j+j ′ · pγ,1 · pγ ′,1 =

(
4jpγ,1 − 4j ′

pγ ′,1
)2 ≤ |4jpγ − 4j ′

pγ ′ |2,

as claimed.
Step 3. Finally, we combine Steps 1 and 2 to deduce (8.8). The proof for �−

h is similar, with the 
difference that a minus signs is present in (8.7). �

We may now prove the announced result.

Proof of Theorem 6.5. We consider one of the families, ϒh,+ or ϒh,−, and drop the superscript 
+. We verify the conditions in Definition 3.1.
Step 1. Estimates for ωh

γ and ξh
γ .

By definition, ωh
γ = 4j - cf. (6.18). Moreover, using (6.11), the fact that c is bounded below, and 

the non-tangential propagation estimate in (4.7) we conclude that 
∣∣pγ (tγ )

∣∣ � 1. Using the fact 
that the Hamiltonian is constant on its flow, we can propagate this estimate to t = 0:

1 � ∣∣pγ (tγ )
∣∣ � ∣∣c(x(tγ )

∣∣ ∣∣pγ (tγ )
∣∣ = ∣∣H(x(tγ ),p(tγ ))

∣∣ = |H(x(0),p(0))| � ∣∣pγ (0)
∣∣ .

Hence 
∣∣∣ξh

γ

∣∣∣ = 4j

2π

∣∣pγ (0)
∣∣ � 4j = ωh

γ . This establishes one of the properties that we need in order 

to check the well-spreadness of �±
h , and, additionally, it allows us to invoke Lemma 2.6 for this 

family of parameters.
Since ωh = ωst = 4j , in what follows we write unambiguously ωγ .
γ γ
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Step 2. Some constants. Recall the assumption in (4.5). Let us Taylor expand:

xγ (t) = xγ (tγ ) + (t − tγ )yγ (t), (8.9)

where yγ,i ∈ C([−T , T ]) uniformly on γ by Lemma 2.6. Since xγ,1(tγ ) = 0, Claim 6.1 allows 
us to invoke the cone condition in (4.3) and deduce that∣∣yγ,1(t)

∣∣ ≥ δ > 0, t ∈ [−T ,T ],

for some constant δ > 0. In addition, by Lemma 2.6,

C1 := sup
γ∈�h

sup
t∈[0,T ]

max
{∣∣yγ (t)

∣∣ , ∣∣ṗγ (t)
∣∣} (8.10)

is finite. We let ε := 1
2 min{ 1

2
δ

C1
, δ} and note that∣∣yγ,1(t)
∣∣ ≥ ε

(∣∣yγ,∗(t)
∣∣ + 1

)
, t ∈ [−T ,T ]. (8.11)

Step 3. We show that |ast
γ − ast

γ ′ | � |ah
γ − ah

γ ′ | + 1.
According to the definitions,

|ah
γ − ah

γ ′ | = |xγ (0) − xγ ′(0)|,
|ast

γ − ast
γ ′ | = |2−j λ − 2−j ′

λ′|.

By Lemma 2.6

|xγ (tγ ) − xγ ′(tγ )|2 � |xγ (0) − xγ ′(0)|2 + 1.

Hence, it suffices to show that

|2−j λ − 2−j ′
λ′|2 � |xγ (tγ ) − xγ ′(tγ )|2. (8.12)

To this end, we use the linearization in (8.9),

xγ ′(tγ ) = xγ ′(tγ ′) + (tγ − tγ ′)yγ ′(t),

and write

|xγ (tγ ) − xγ ′(tγ )| = |xγ (tγ ) − xγ ′(tγ ′) − (tγ − tγ ′)yγ ′(tγ )|.

Recall that tγ = 2−j λ1 and xγ (tγ ) = (0, 2−j λ∗). We use (8.11) to estimate

|xγ (tγ ) − xγ ′(tγ )| = ∣∣(−(tγ − tγ ′)yγ ′,1(tγ ), xγ,∗(tγ ) − xγ ′,∗(tγ ′) − (tγ − tγ ′)yγ ′,∗(tγ )
∣∣

� ∣∣yγ ′,1(tγ )
∣∣ ∣∣∣2−j λ1 − 2−j ′

λ′
1

∣∣∣ +
∣∣∣2−j λ∗ − 2−j ′

λ′∗ + (2−j λ1 − 2−j ′
λ′

1)yγ ′,∗(tγ )

∣∣∣
� ∣∣yγ ′,1(tγ )

∣∣ ∣∣∣2−j λ1 − 2−j ′
λ′

1

∣∣∣ + ε

∣∣∣2−j λ∗ − 2−j ′
λ′∗ + yγ ′,∗(tγ )(2−j λ1 − 2−j ′

λ′
1)

∣∣∣
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≥ ε|2−j λ∗ − 2−j ′
λ′∗| +

( ∣∣yγ ′,1(tγ )
∣∣ − ε

∣∣yγ ′,∗(tγ )
∣∣ )|2−j λ1 − 2−j ′

λ′
1|

≥ ε|2−j λ∗ − 2−j ′
λ′∗| + ε|2−j λ1 − 2−j ′

λ′
1| � |2−j λ − 2−j ′

λ′|.

Hence, (8.12) follows.
Step 4. Estimates for Mh

γ .
By Claim 6.2, we know that Mγ (tγ ) is symmetric, ‖Mγ (tγ )‖ � 1 and 
(Mγ (tγ )) � Id . Those 
conclusions extend to Mγ (0), since propagation preserves these conditions with different time 
dependent constants. This is stated in Lemma 2.6 for forward propagation 0 �→ t , but the same 
conclusion is valid with an arbitrary initial time. (The general reference for this fact is [22, 
Lemma 2.56].) Since Mh

γ = (2π)−1Mγ (0), the conclusion follows.

Step 5. Estimates for Ah
γ .

By definition, Aγ (tγ ) = 2
d
4 4j d

4 - cf. (6.17). Since, by Step 4, ‖Mγ (0)‖ � 1 and 
∣∣tγ ∣∣ ≤ Ch,sup, 

by Lemma 2.6 we conclude that 
∣∣Aγ (0)

∣∣ � ∣∣Aγ (tγ )
∣∣ � 4j d

4 . Hence, the choice made in (6.18)

yields 
∣∣∣Ah

γ

∣∣∣ = 4−j d
4 Aγ (0) � 1, as desired.

Step 6. We show that

∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ ′)
∣∣2 � ∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ )

∣∣2 + ωγ ωγ ′ |2−j λ1 − 2−j ′
λ′

1|2. (8.13)

To see this, we assume without loss of generality that ωγ ≥ ωγ ′ and use the mean value theorem 
to find points tγ ′,i ∈ [0, Ch,sup] such that

∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ )
∣∣

≥ ∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ ′)
∣∣ − ωγ ′

(
d∑

i=1

∣∣ṗγ ′,i (tγ ′,i )
∣∣) ∣∣∣2−j λ1 − 2−j ′

λ′
1

∣∣∣
≥ ∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ ′)

∣∣ − C1 · √ωγ
√

ωγ ′ |2−j λ1 − 2−j ′
λ′

1|,

where C1 is given by (8.10). Therefore, (8.13) follows.
Step 7. We show that

∣∣ξj,k − ξj ′,k′
∣∣2 � ∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ ′)

∣∣2 + ωγ ωγ ′ |2−j λ∗ − 2−j ′
λ′∗|2.

Since ωγ = 4j - cf. (6.18), this is just the content of Lemma 8.1.
Step 8. We show that d((ah

γ , ξh
γ ), (ah

γ ′ , ξh
γ ′)) � d((ast

γ , ξ st
γ ), (ast

γ ′ , ξ st
γ ′ )), γ, γ ′ ∈ �±

h .
We combine the previous steps and Lemma 2.6 to obtain:

d((ast
γ , ξ st

γ ), (ast
γ ′ , ξ st

γ ′ )) � ωγ ωγ ′ |2−j λ − 2−j ′
λ′|2 + ∣∣ξj,k − ξj ′,k′

∣∣2
�

∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ ′)
∣∣2 + ωγ ωγ ′ |2−j λ − 2−j ′

λ′|2 by Step 7

�
∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ )

∣∣2 + ωγ ωγ ′ |2−j λ − 2−j ′
λ′|2 by Step 6

�
∣∣ωγ pγ (tγ ) − ωγ ′pγ ′(tγ )

∣∣2 + ωγ ωγ ′ |xγ (tγ ) − xγ ′(tγ )|2 by (8.12)
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� d
((

xγ (tγ ),ωγ pγ (tγ )
)
,
(
xγ ′(tγ ),ωγ ′pγ ′(tγ )

))
by (2.17)

� d((ah
γ , ξh

γ ), (ah
γ ′ , ξh

γ ′)). by (2.18)

This concludes the proof. �
9. Table of notation

Symbol Description Ref.

Rd+ Rd+ = (0, +∞) ×Rd−1. Sec. 1.5

Rd
T

Rd
T

= [−T , T ] ×Rd−1. Sec. 1.5

x∗ x = (x1, x∗) ∈Rd , with x1 ∈R and x∗ ∈Rd−1 Sec. 1.5

c = c(x) Velocity function.

h = h(t, x∗) Boundary data for the Dirichlet problem. Sec. 4.1.1

[Ch,inf,Ch,sup] Temporal support of the boundary data. Sec. 4.1.1

Cgraz Constant related to the no-grazing ray assumption. Sec. 4.1.1

H± = H±(x,p) Signed Hamiltonian functions. (2.8)

H = H(x,p) Denotes generically either H+ or H−.

σ(x,D) Kohn-Nirenberg quantization of a symbol σ Sec. 1.5

ξj,k Center for the frequency cover. Sec. 2.1

ξ̃j,k Approximately normalized version of ξj,k . (2.1)

� A lattice within Rd . Throughout most of the text, the choice of 
� is fixed by Theorem 2.1

� Basic scale-angle-position index set. (2.3)

�∗ Superset of � augmented with zero-scale. (2.4)

�0 A generic subset of �.

�h A subset of � related to the frame expansion of h. Sec. 4.2

�±
h

Two subsets �+
h

and �−
h

that partition �h. (4.8)

γ Generic element of (a subset of) �∗. We refer implicitly to the 
notation γ = (j, k, λ).

Sec. 2.1

S = Sγ A function that maps an index γ into a tuple of initial condi-
tions for a GB.

Sec. 2.4

Sst = Sst
γ The standard choice for such a map. Sec. 2.5

Sh,± = Sh,±
γ Two particular maps defined on �±

h
respectively, constructed 

in terms of the boundary value h.
Sec. 6

�±
γ GB associated with γ by means of an implicit map Sγ . Sec. 2.4

�γ Denotes generically either �+
γ or �+

γ .

�
st,±
γ The beams associated with Sst

γ . Sec. 2.5

�
h,±
γ The beam associated with Sh,±

γ . Here the mode is determined

by whether γ ∈ �+
h

or �−
h

.

Sec. 6.1

ϕ Normalized Gaussian function. (2.2)

ϕγ Frame element associated with γ ∈ �∗. Sec. 2.1

ϒ Generic set of GB parameters, indexed by a corresponding 
function S.

Remark 2.4

ϒst The standard choice for such a set. Sec. 2.5

ϒh,± Two particular such sets associated with h. Sec. 6.1

F =Om(I,ϒ) A family of functions Fγ that vanishes to oder m on the centers 
of the beams defined by ϒ, uniformly on the time interval I .

Definition 3.3

F =Om≥ (I,ϒ) Functions with vanishing order at least m. Definition 3.4
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