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ABSTRACT
We analyze an inverse problem associated with the time-harmonic Rayleigh system on a flat elastic half-space concerning the recovery of
Lamé parameters in a slab beneath a traction-free surface. We employ the Markushevich substitution, while the data are captured in a Jost
function, and we point out parallels with a corresponding problem for the Schrödinger equation. The Jost function can be identified with
spectral data. We derive a Gel’fand-Levitan type equation and obtain uniqueness with two distinct frequencies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055827

I. INTRODUCTION
In this paper, we study an inverse problem associated with the Rayleigh system on a flat elastic half-space concerning the conditional

unique recovery of the Lamé parameters in a slab beneath a traction-free surface. In the process, we point out parallels with a corresponding
problem for the Schrödinger equation. The analysis involves the study of spectral properties of a matrix Sturm-Liouville operator on the
half-line with a Robin-type boundary condition associated with elastic surface waves of Rayleigh type. This operator is non-self-adjoint and
contains the spectral parameter in the boundary condition. It originates from the standard Rayleigh boundary value problem by means of the
so-called Markushevich substitution. In this boundary value problem, the Lamé parameters, λ and μ, and the density of mass, ρ, appear as
material parameters and are assumed to be functions of the boundary normal coordinate or “depth,” Z, say. In our analysis, however, ρ will
not play a role. In previous work,1 we analyzed the inverse problem associated with the Rayleigh system using the semiclassical spectrum as
the data. Essentially, this semiclassical inverse problem allows for the recovery of one of the Lamé parameters, namely, the shear modulus μ.

Using also an adjoint Markushevich substitution, we develop a spectral theory, which inherits many features of self-adjoint matrix-valued
Sturm-Liouville problems, as in Ref. 2. This follows from the fact that the original Rayleigh operator is self-adjoint. We construct a Gel’fand-
Levitan equation. As an aside, the approach presented here allows for a generalization from a traction-free surface to an isotropic solid-fluid
boundary, leading to Scholte-Gogoladze waves, assuming that the fluid is homogeneous and known. The Markushevich substitution was
introduced by Markushevich3–5 following the ideas of Pekeris6 and was recently revisited in Ref. 7.

The idea of applying the Markushevich substitution originates in the work of Beals, Henkin, and Novikova,8 where a spectral analysis
was performed in the context of exponentially increasing quantities, λ̂(Z) = ρ(Z)−1λ(Z), μ̂(Z) = ρ(Z)−1μ(Z) as Z → −∞, with Z ∈ (−∞, 0],
which differs considerably from the assumptions in Ref. 9 where λ̂(Z), μ̂(Z) are constant, with values λ̂0, μ̂0, respectively, beneath a certain
depth Z = −H while preserving the Rayleigh system as Z → −∞ and enabling application in seismology with the slab signifying Earth’s crust.
Our data are necessarily different from the data considered by Beals, Henkin, and Novikova. We consider the recovery of λ̂ and μ̂ in a slab with
known thickness, H, from the Jost function. We show that the Gel’fand-Levitan equation10 can be constructed in our case and has a unique
solution.
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In the inverse problem, boundary spectral data directly encode the Weyl matrix of the transformed problem and, equivalently, the
Neumann-to-Dirichlet (ND) map associated with the original Rayleigh system. Boundary spectral data are, however, insufficient to guarantee
unique recovery of both Lamé parameters in the slab. In fact, we require the Jost function as the spectral data. We let x denote the coordinate
tangential to the boundary with Fourier dual (wave vector) ξ. For fixed frequency, ω, we use the asymptotics as

√
ω2μ̂−1

0 − ξ2 →∞ of the Weyl
matrix and the Jost function. We do require two distinct frequencies. Although the dependencies of Lamé parameters and required data are
different from the inverse problem analyzed by Beals and Coifman,11,12 various steps in our proofs follow the logic of their proofs. To keep
the presentation self-contained, we will review certain aspects of the work of Beals, Henkin, and Novikova.

The main results of this paper are the following:

● We describe analytic properties of the Jost and Weyl solutions and functions for the Rayleigh Sturm–Liouville problem, in ξ, on the
Riemann surface and study their asymptotic behaviors on the physical sheet (Sec. V).

● Using the Wronskian for the solutions of the adjoint Sturm-Liouville problems, we derive a formula representing the Weyl matrix
in terms of the Jost function (Lemma V.2); we relate the Jost function to the boundary matrix for the original Rayleigh system
(Appendix C).

● Following Ref. 8, we derive a Gel’fand-Levitan type equation relating the Weyl matrix to the apparent potential of the Rayleigh Sturm-
Liouville equation (Proposition VII.2) and establish the uniqueness of its solution.

● We show the unique recovery of the Lamé parameters in two steps: Determining the Markushevich substitution at the bottom of the
slab (Subsection VII B) and then recovering the potential (Subsection VII A) and the Lamé parameters in the slab using two distinct
frequencies (Subsection VII C).

The Rayleigh system has been considered for many decades in seismology,23 in particular, with the aim to estimate Lamé parameters from
the observation of Rayleigh waves at a few frequencies.13 Empirically, seismologists have found that the eigenvalues corresponding to these
waves as the data are insufficient and have considered additional types of data in the absence of a mathematical understanding of this
inverse problem. The fixed-frequency Rayleigh system is an extraction from the time-harmonic elastic-wave system of equations. The inverse
boundary value problem for time-harmonic elastic waves on a bounded, Lipschitz subdomain of R3 has been studied before. Nakamura and
Uhlmann14,15 proved uniqueness, assuming that the Lamé parameters are C∞ and that the shear modulus is close to a positive constant. Eskin
and Ralston16 proved a related result. (In the context of the analyses of inverse boundary value problems for time-harmonic waves, we note
that complex geometrical optics solutions employed in these are multidimensional generalizations of Jost solutions.) Beretta et al.17 proved
uniqueness and Lipschitz stability of this inverse problem when the Lamé parameters and the density are assumed to be piecewise constant on
a given domain partition, with partial boundary data. Global uniqueness of the inverse problem in dimension three assuming general Lamé
parameters remains an open problem. We note again that, here, the Lamé parameters only depend on the boundary normal coordinate.

II. RAYLEIGH SYSTEM
We consider the Rayleigh operator associated with elastic surface Rayleigh waves in isotropic media,9

H0(x, ξ)
⎛
⎜
⎝
φ1

φ3

⎞
⎟
⎠
=
⎛
⎜⎜
⎝

− ∂

∂Z
(μ̂∂φ1

∂Z
) − i∣ξ∣( ∂

∂Z
(μ̂φ3) + λ̂

∂

∂Z
φ3) + (λ̂ + 2μ̂)∣ξ∣2φ1

− ∂

∂Z
((λ̂ + 2μ̂)∂φ3

∂Z
) − i∣ξ∣( ∂

∂Z
(λ̂φ1) + μ̂

∂

∂Z
φ1) + μ̂∣ξ∣2φ3

⎞
⎟⎟
⎠

. (1)

We will use the notation

w̃ =
⎛
⎜
⎝
φ1

φ3

⎞
⎟
⎠

.

We denote the eigenvalues of H0(x, ξ) by Λj = Λj(x, ξ). These follow from solving the following system (Z < 0):

− ∂

∂Z
μ̂
∂φ1

∂Z
− i∣ξ∣( ∂

∂Z
(μ̂φ3) + λ̂

∂

∂Z
φ3) + (λ̂ + 2μ̂)∣ξ∣2φ1 = Λφ1, (2)

− ∂

∂Z
(λ̂ + 2μ̂)∂φ3

∂Z
− i∣ξ∣( ∂

∂Z
(λ̂φ1) + μ̂

∂

∂Z
φ1) + μ̂∣ξ∣2φ3 = Λφ3, (3)

supplemented with the following Neumann boundary conditions:

a−(w̃) ∶= iλ̂∣ξ∣φ1(0−) + (λ̂ + 2μ̂)∂φ3

∂Z
(0−) = 0, (4)

b−(w̃) ∶= i∣ξ∣μ̂φ3(0−) + μ̂
∂φ1

∂Z
(0−) = 0. (5)
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The square roots of the eigenvalues can be identified with the phase velocities. We will set ρ ≡ 1 and simplify the notation

λ = λ̂, μ = μ̂ (ρ = 1).

Rayleigh problems (2)–(5) correspond to (1.1), (1.1′) of Ref. 8 upon identifying

x = −Z, w1 = −iφ1, w2 = φ3,

χ1 = b−(w) = ib−(w̃), χ2 = a−(w) = −a−(w̃), ξ = ∣ξ∣, ω2 = Λ. (6)

We proceed using this notation,5,8

d
dx
(μdw1

dx
− ξμw2) − ξλdw2

dx
+ (ω2 − ξ2(λ + 2μ))w1 = 0, (7)

d
dx
((λ + 2 μ)dw2

dx
+ ξλw1) + ξμdw1

dx
+ (ω2 − ξ2μ)w2 = 0, (8)

supplemented with the following boundary conditions:

(μdw1

dx
− ξμw2)∣

x=0+
= χ1(ξ) = b−(w), (9)

((λ + 2μ)dw2

dx
+ ξλw1)∣

x=0+
= χ2(ξ) = a−(w). (10)

We write χ = (χ1, χ2)T with χ = χ(ξ).18 From now on, to simplify notation, we will use ξ for both ∣ξ∣ ∈ R+ and its values in C following analytic
continuation.

We consider the case of an inhomogeneous isotropic elastic slab of thickness H bonded to a homogeneous isotropic elastic half space with
Lamé parameters λ0 and μ0. We assume that the layer’s Lamé parameters, λ and μ, are three times continuously differentiable and smoothly
matched to the half-space constants, λ0 and μ0, respectively. In earlier papers,9 we used the notations λI and μI for λ0 and μ0, respectively, and
∣ZI ∣ = H.

Assumption II.1. We let μ ≥ α0 > 0, 2μ + 3λ ≥ β0 > 0, and λ,μ ∈ C3(R+) and λ(x) = λ0, μ(x) = μ0 for x ≥ H.

Assumption II.1 can be weakened to letting λ ∈ C1(R+). It reflects the strong ellipticity condition19 as this appears in the existence and
uniqueness of solutions of the boundary value problem for time-harmonic elastic waves. The parameters λ and μ will be further restricted
through Assumption V.2.

III. MARKUSHEVICH TRANSFORM TO TWO ADJOINT MATRIX STURM-LIOUVILLE PROBLEMS
We perform an analog of the calibration transform on the Rayleigh system to obtain a matrix-valued (essentially non-diagonalizable)

Sturm-Liouville problem. We follow Ref. 7.
Based on the Pekeris substitution,6 it was shown by Markushevich3–5 that the boundary value problem (7)–(10) with χ1 = χ2 = 0 can

be reduced to two matrix Sturm-Liouville problems with mutually transposed potentials and boundary conditions. Here, we briefly outline
the transformations for arbitrary χ1 and χ2. For conciseness of notation while suppressing the coordinate dual to ξ, in the remainder of the
analysis, we use ′ to denote differentiation with respect to x.

Let G be a 2 × 2-matrix solving the Cauchy problem,

G′ = 1
2

LG, G(0) = I2, (11)

where I2 is the unit matrix and

L =
⎛
⎜
⎝

0 −d

−c 0

⎞
⎟
⎠

with c = 1
g0

μ(λ + μ)
(λ + 2 μ) , d = −2g0(

1
μ
)
′′

. (12)

We have det G(x) = 1; cf. Ref. 3. We adopt the notation of Markushevich,4 where g0 stands for an arbitrary positive constant. It is convenient
to put g0 = μ0, which we do from now onward.

By the substitution (x ∈ [0,∞))

M
−1(F) =

⎛
⎜
⎝

w1

w2

⎞
⎟
⎠

(13)
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with

M
−1 =
⎛
⎜
⎝

d
dx

1

−ξ 0

⎞
⎟
⎠

⎛
⎜⎜
⎝

μ0

μ
0

0
μ

λ + 2 μ

⎞
⎟⎟
⎠
(GT)−1

(14)

signifying the inverse Markushevich transform, problem (7)–(10) reduces to the following matrix Sturm-Liouville form:

F′′ − ξ2F = QF, x ∈ (0,∞), (15)

F′ +ΘF = (Da)−1χ, x = 0. (16)

Here, Θ = Θ(ξ) = (Da(ξ))−1Ca(ξ) with

Da(ξ) =
⎛
⎜⎜
⎝

−2μ0
μ′(0)
μ(0) μ(0)

−2μ0ξ 0

⎞
⎟⎟
⎠

,

Ca(ξ) =
⎛
⎜⎜⎜⎜
⎝

μ0(2ξ2 − ω2

μ(0) +
μ′′(0)
μ(0) ) − μ′(0)μ(0)

λ(0) + 2 μ(0)

2μ0ξ
μ′(0)
μ(0) −ξ μ2(0)

λ(0) + 2 μ(0)

⎞
⎟⎟⎟⎟
⎠

(17)

so that

(Da(ξ))−1 = 1
2μ0μξ

⎛
⎜⎜
⎝

0 −μ(0)

2μ0ξ −2μ0
μ′(0)
μ(0)

⎞
⎟⎟
⎠

(18)

and

Θ(ξ) =
⎛
⎜⎜⎜⎜
⎝

−μ
′(0)
μ(0)

1
2μ0

μ2(0)
(λ(0) + 2 μ(0))

μ0

μ(0)(2ξ2 − ω2

μ(0) − μ(0)(
1
μ
)
′′
(0)) 0

⎞
⎟⎟⎟⎟
⎠

=:
⎛
⎜⎜
⎝

−θ3 θ2

2
μ0

μ(0) ξ
2 − θ1 0

⎞
⎟⎟
⎠

. (19)

Furthermore, Q is the matrix-valued potential given by

Q = (G−1BG)T
, B = B1 + ω2B2, (20)

with

B1 =
⎛
⎜⎜⎜⎜
⎝

−1
2
( 1
μ
)
′′ μ(λ + μ)
λ + 2 μ

+ μ
′′

μ
μ0(2

μ′

μ
( 1
μ
)
′′
+ ( 1

μ
)
′′′
)

1
μ0
(λ
′μ2 + μ′λ(λ + μ)
(λ + 2 μ)2 − 1

2
(μ(λ + μ)
λ + 2 μ

)
′
) 1

2
( 1
μ
)
′′ (λ − μ)
λ + 2 μ

⎞
⎟⎟⎟⎟
⎠

, (21)

B2 =
⎛
⎜⎜⎜
⎝

− 1
μ

μ0(
1
μ2 )

′

0 − 1
λ + 2 μ

⎞
⎟⎟⎟
⎠

. (22)

We note that the potential is not a symmetric matrix, that is, Q ≠ QT.
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By the adjoint substitution

(Ma)−1(Fa) =
⎛
⎜
⎝

w1

w2

⎞
⎟
⎠

(23)

with

(Ma)−1 =
⎛
⎜
⎝

0 −ξ

1
d

dx

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

1 −2μ0(
1
μ
)
′

0
μ0

μ

⎞
⎟⎟⎟
⎠

G, (24)

problem (7)–(10) transforms to the following matrix Sturm-Liouville form:

(Fa)
′′
− ξ2Fa = QaFa, x ∈ (0,∞), (25)

(Fa)′ +ΘaFa = D−1χ, x = 0. (26)

Here,
Qa = QT, Θa = ΘT = ΘT(ξ) = D−1(ξ)C(ξ) (27)

is a 2 × 2-matrix with D(ξ) and C(ξ) being the matrices

D(ξ) =
⎛
⎜
⎝

0 −2ξμ0

μ(0) 0

⎞
⎟
⎠

,

C(ξ) =
⎛
⎜⎜⎜⎜
⎝

−ξ μ2(0)
(λ(0) + 2 μ(0)) 0

−μ′(0) μ0

μ(0)(2 μ(0)ξ2 − ω2 − 2
(μ′(0))2

μ(0) + μ′′(0))

⎞
⎟⎟⎟⎟
⎠

. (28)

A. Homogeneous half space, x ∈ (H,∞)
In components, (11) has the form

G′11 = −
d
2

G21, G′12 = −
d
2

G22, G′21 = −
c
2

G11, G′22 = −
c
2

G12, (29)

in which, in view of (12), the coefficient d is zero if μ is constant. We consider the (homogeneous) half space x ∈ (H,∞) and write

G11(H) = GH
11, G12(H) = GH

12, G21(H) = GH
21, G22(H) = GH

22. (30)

Then, the matrix function, G, inside x ∈ (H,∞) can be determined from the Cauchy problem,

G′ = − c0

2

⎛
⎜
⎝

0 0

G11 G12

⎞
⎟
⎠

, G(H) =
⎛
⎜
⎝

GH
11 GH

12

GH
21 GH

22

⎞
⎟
⎠

, (31)

in which
c0 =

λ0 + μ0

λ0 + 2μ0
. (32)

The solution is given as
G11(x) = GH

11, G12(x) = GH
12,

G21(x) = −
c0

2
GH

11(x −H) +GH
21, G22(x) = −

c0

2
GH

12(x −H) +GH
22.

(33)

As det G(x) = 1 (see Refs. 3–5), the inverse matrix follows to be

G−1 =
⎛
⎜
⎝

G22 −G12

−G21 G11

⎞
⎟
⎠

. (34)
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Thus, in the homogeneous elastic half space, x ∈ (H,∞), according to (20)–(22) and (34), we have

Q = ω2
⎛
⎜⎜⎜
⎝

G12G21

λ0 + 2μ0
− G11G22

μ0
G11G21

c0

μ0

−G12G22
c0

μ0

G12G21

μ0
− G11G22

λ0 + 2μ0

⎞
⎟⎟⎟
⎠

, (35)

where the components of the transformation matrix G are given by (33). It is of interest to observe that if GH
12 ≠ 0, then all components of the

potential matrix, Q, will have linear growth as x →∞.
From here onward, we denote Q(x) for x ≥ H by Q0(x). Using, again, that det G(x) = 1, we obtain

Q0(x) = ω2
⎛
⎜⎜⎜
⎝

− 1
μ0

0

0 − 1
λ0 + 2μ0

⎞
⎟⎟⎟
⎠
+ ω2 λ0 + μ0

μ0(λ0 + 2μ0)
⎛
⎜
⎝
−G12G21 G21G11

−G12G22 G12G21

⎞
⎟
⎠

= ω2
⎛
⎜⎜⎜
⎝

− 1
μ0

0

0 − 1
λ0 + 2μ0

⎞
⎟⎟⎟
⎠

+ ω2 c0

μ0

⎛
⎜⎜⎜
⎝

−GH
12[−

c0

2
GH

11(x −H) +GH
21] GH

11[−
c0

2
GH

11(x −H) +GH
21]

−GH
12[−

c0

2
GH

12(x −H) +GH
22] GH

12[−
c0

2
GH

11(x −H) +GH
21]

⎞
⎟⎟⎟
⎠

. (36)

We extend Q0 = Q0(x) to x ∈ (0, H] linear in x and refer to it as the background potential. Then, we introduce the perturbation potential

V(x) = Q(x) −Q0(x)

so that V(x) = 0 for x ≥ H.

Remark III.1. If H = 0, then GH
12 = GH

21 = 0, GH
11 = GH

22 = 1, and

Q0(x) = ω2
⎛
⎜⎜⎜
⎝

− 1
μ0

0

0 − 1
λ0 + 2μ0

⎞
⎟⎟⎟
⎠
+ ω2 c2

0

2μ0

⎛
⎜
⎝

0 1

0 0

⎞
⎟
⎠

x.

We write
ϖ = μ0

μ(0)

and introduce a class of potentials.

Definition III.1. A real matrix-valued potential, Q, is of Lamé type if it can be generated from Lamé parameters according to the
Markushevich transform, that is, of the form (20)–(22). According to Assumption II.1, Q ∈ C1(R+) ∩ L∞(R+).

In view of Assumption II.1, our matrix-valued potential, Q, of Lamé type attains the form Q0 on [H,∞), as in (36). Then, V = Q −Q0
∈ L1([0, H]).

The Lamé parameters at x = 0 and x ≥ H, that is, λ(0), μ(0) and μ′(0), μ′′(0) and λ0 and μ0, are encoded in and determine Θ (or θ1, θ2,
and θ3) independently of Q. In this paper, we will not consider the problem of boundary determination.

IV. JOST AND WEYL SOLUTIONS, JOST FUNCTION AND WEYL MATRIX
We introduced V in (15) and obtain

−F′′ +Q0F + VF = −ξ2F, x ∈ (0,∞), (37)

supplemented with (16),
F′ +ΘF = (Da)−1χ, x = 0, (38)

where Θ is given in (19).
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First, we construct solutions to the “background” equation

−F′′ +Q0F = −ξ2F (39)

of the form

F±P,0 =
⎛
⎜
⎝

F±P,0,1

F±P,0,2

⎞
⎟
⎠

e±ixqP , qP =
¿
ÁÁÀ ω2

λ0 + 2μ0
− ξ2,

F±S,0 =
⎛
⎜
⎝

F±S,0,1

F±S,0,2

⎞
⎟
⎠

e±ixqS , qS =
¿
ÁÁÀω2

μ0
− ξ2

so that their inverse Markushevich transforms [M−1(F±P,0), M−1(F±S,0); cf. (14)] are proportional to

⎛
⎜⎜
⎝

1

∓ i
ξ

qP

⎞
⎟⎟
⎠

e±ixqP ,
⎛
⎜⎜
⎝

∓ i
ξ

qS

1

⎞
⎟⎟
⎠

e±ixqS , (40)

respectively. We make this precise below. We refer to qP and qS as quasi-momenta. We note that (40) are solutions to Rayleigh system (7)-(8)
with λ = λ0, μ = μ0 constant for all x ≥ 0. We may construct similar solutions to the adjoint equation

−(Fa)′′ +QT
0 Fa = −ξ2Fa. (41)

We consider (15) and (25) on x ∈ (H,∞), where the potential Q is given by formulas (35) and (36) with the transformation matrix G
determined by (33). Using that

⎛
⎜
⎝

d
dx

1

−ξ 0

⎞
⎟
⎠

−1

=
⎛
⎜⎜
⎝

0 −1
ξ

1
1
ξ

d
dx

⎞
⎟⎟
⎠

,
⎛
⎜
⎝

0 −ξ

1
d

dx

⎞
⎟
⎠

−1

=
⎛
⎜⎜
⎝

1
ξ

d
dx

1

−1
ξ

0

⎞
⎟⎟
⎠

,

(14), for x ∈ (H,∞), implies that

F =M(w) = GT
⎛
⎜⎜
⎝

1 0

0
λ0 + 2μ0

μ0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1
ξ

1
1
ξ

d
dx

⎞
⎟⎟
⎠

w, (42)

while (24), for x ∈ (H,∞), implies that

Fa =Ma(w) = G−1
⎛
⎜⎜
⎝

1
ξ

d
dx

1

−1
ξ

0

⎞
⎟⎟
⎠

w, (43)

where w = (w1, w2)T solves the Rayleigh system (7)-(8). For x ∈ (H,∞), we have linearly independent solutions

w±P,0 = μ0
ξ2

ω2

⎛
⎜⎜
⎝

1

∓ i
ξ

qP

⎞
⎟⎟
⎠

e±ixqP , (44)

w±S,0 = μ0
ξ2

ω2

⎛
⎜⎜
⎝

∓ i
ξ

qS

1

⎞
⎟⎟
⎠

e±ixqS , (45)

which correspond to the solutions of the original Rayleigh system (2)-(3),

w̃∓P,0 = iμ0
ξ
ω2

⎛
⎜
⎝
ξ

∓qP

⎞
⎟
⎠

e∓iZqP =: iμ0
ξ
ω2 f ∓P,0, (46)
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w̃∓S,0 = −μ0
ξ
ω2

⎛
⎜
⎝
∓qS

−ξ

⎞
⎟
⎠

e∓iZqS =: −μ0
ξ
ω2 f ∓S,0. (47)

Using (33), substitution of (44) and (45) into (42) and (43) yields

F±P,0 =M(w±P,0) =
⎛
⎜
⎝

− c0

2
GH

11(x −H) +GH
21 ± iqP

μ0

ω2 GH
11

− c0

2
GH

12(x −H) +GH
22 ± iqP

μ0

ω2 GH
12

⎞
⎟
⎠

e±ixqP , (48)

F±S,0 =M(w±S,0) = −μ0
ξ
ω2

⎛
⎜
⎝

GH
11

GH
12

⎞
⎟
⎠

e±ixqS (49)

and

Fa,±
S,0 =M

a(w±S,0) =
⎛
⎜
⎝

− c0

2
GH

12(x −H) +GH
22 ∓ iqS

μ0

ω2 GH
12

c0

2
GH

11(x −H) −GH
21 ± iqS

μ0

ω2 GH
11

⎞
⎟
⎠

e±ixqS , (50)

Fa,±
P,0 =M

a(w±P,0) = μ0
ξ
ω2

⎛
⎜
⎝

GH
12

−GH
11

⎞
⎟
⎠

e±ixqP . (51)

Remark IV.1. If H = 0, substituting GH
12 = GH

21 = 0 and GH
11 = GH

22 = 1 into (48)-(49) and (50)-(51), respectively, yields

F±P,0 =
⎛
⎜
⎝

− c0

2
x ± iqP

μ0

ω2

1

⎞
⎟
⎠

e±ixqP , F±S,0 =
⎛
⎜
⎝
−μ0

ξ
ω2

0

⎞
⎟
⎠

e±ixqS

and

Fa,±
S,0 =

⎛
⎜
⎝

1
c0

2
x ± iqS

μ0

ω2

⎞
⎟
⎠

e±ixqS , Fa,±
P,0 =

⎛
⎜
⎝

0

−μ0
ξ
ω2

⎞
⎟
⎠

e±ixqP .

In view of the presence of square roots, qp and qS, we introduce the cut complex plane,

𝒦 = C/([− ω
√μ0

,
ω
√μ0
] ∪ iR).

In Appendix A, we introduce the corresponding Riemann surface and physical Riemann sheet, 𝒦+, by the condition Im qP(ξ) > 0, Im qS(ξ)
> 0.

The Jost solutions, F±P , F±S , of (37) are determined by the conditions

F±P = F±P,0, F±S = F±S,0 for x ≥ H.

We define the matrix Jost solutions, F = F(x, ξ) and F0 = F0(x, ξ) (emphasizing that, here, ξ is not the Fourier dual to x), as

F(x, ξ) = [F+P F+S ], F0(x, ξ) = [F+P,0 F+S,0], (52)

and we define the Jost function as [cf. (16)]
FΘ(ξ) = F′(0, ξ) +Θ(ξ)F(0, ξ),

where Θ(ξ) is given in (19).

Remark IV.2. By (C6), we have det FΘ(ξ) = cξΔR, whereΔR is the Rayleigh determinant (see Remark IV.3) and c is a constant. The Rayleigh
determinant originates from the reflection matrix that we will introduce later.
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The Jost solutions, Fa,±
P , Fa,±

S , of
−(Fa)′′ +QT

0 Fa + VTFa = −ξ2Fa, x ∈ (0,∞) (53)

[upon introducing V in (25)], are determined by the following conditions:

Fa,±
P = Fa,±

P,0 , Fa,±
S = Fa,±

S,0 for x > H.

We define the matrix Jost solutions, Fa = Fa(x, ξ) and Fa
0 = Fa

0(x, ξ), as

Fa(x, ξ) = [Fa,+
P Fa,+

S ], Fa
0(x, ξ) = [Fa,+

P,0 Fa,+
S,0 ], (54)

and we define the Jost function as [cf. (26)]
Fa
Θ(ξ) = (Fa)′(0, ξ) +Θa(ξ)Fa(0, ξ).

Using (C6) and (C7), we find that

Fa
Θ(ξ) =

⎛
⎜⎜⎜
⎝

−2
μ0

μ(0) ξ 0

μ′(0)
μ(0)

1
ξ
−μ(0)

2μ0

1
ξ

⎞
⎟⎟⎟
⎠

FΘ(ξ). (55)

We note that Fa = (F⋆)T, where F⋆ denotes the solution to the adjoint problem according to Ref. 2. The Wronskian of the Jost solutions
of the adjoint problems has the familiar property of being independent of x,

d
dx

W(Fa, F) = 0. (56)

We obtain the following.

Lemma IV.1. Let F, F0, Fa, and Fa
0 be given by (52) and (54), respectively. Then,

W(Fa(x,−ξ), F(x, ξ)) =W(Fa
0(x,−ξ), F0(x, ξ))

= ((Fa
0)′)T(x,−ξ)F0(x, ξ) − (Fa

0)T(x,−ξ)F′0(x, ξ) = −i 2μ0
ξ
ω2

⎛
⎜
⎝

qP 0

0 −qS

⎞
⎟
⎠

. (57)

Now, we define the Weyl solution, Φ, as
Φ(x, ξ) = F(x, ξ)[FΘ(ξ)]−1 (58)

and the Weyl matrix, M, as
M(ξ) = Φ(0, ξ) = F(0, ξ)[FΘ(ξ)]−1. (59)

This definition shows that M(ξ)FΘ(ξ) = F(0, ξ), whence M(ξ) can be identified with the Robin-to-Dirichlet map associated with the matrix
Sturm-Liouville problem (15). Clearly, also

Φ(x, ξ) = F(x, ξ)[F(0, ξ)]−1M(ξ). (60)

Remark IV.3. In a homogeneous half space, explicit calculations result in

M(ξ) = μ0ξ
ω2Δ0(ξ)

1
i

⎛
⎜⎜⎜
⎝

iqP
1
2
− μ0

ω2 ξ
2 − μ0

ω2 qPqS

ω2

μ0
− 2ξ2 iqS

⎞
⎟⎟⎟
⎠

, (61)

where Δ0 = det F0,Θ = − μ2
0

2ω4 ξΔR with [cf. (46) and (47)]

ΔR(ξ) =
⎛
⎝
(ω

2

μ0
− 2ξ2)

2

+ 4ξ2qPqS
⎞
⎠
= − 1

μ2
0

det
⎛
⎜
⎝

a−( f −P,0) a−( f −S,0)
b−( f −P,0) b−( f −S,0)

⎞
⎟
⎠

. (62)
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We have
Φ′(0, ξ) +Θ(ξ)Φ(0, ξ) = I2. (63)

In a similar fashion, we introduce
Φa(x, ξ) = Fa(x, ξ)[Fa

Θ(ξ)]−1 (64)

and the Weyl matrix, Ma =Ma(ξ), as
Ma(ξ) = Φa(0, ξ) = Fa(0, ξ)[Fa

Θ(ξ)]−1.

We have
(Φa)′(0, ξ) +Θa(ξ)Φ(0, ξ) = I2. (65)

We make the following observation. Using (70) and (75), we evaluate the Wronskian

W(Φa,Φ) = W(Φa,Φ)∣
x=0
=M − (Ma)T. (66)

As, using the expressions for F0 and Fa
0 and independence of the Wronskian of x,

lim
x→∞W(Φa,Φ) = 0 for ξ ∈𝒦+,

we conclude that
Ma =MT. (67)

A. Other solutions
Following Ref. 2, we introduce two other matrix-valued solutions, φ(x, ξ), S(x, ξ), of (15), that is, solutions to

−F′′ +QF = −ξ2F, (68)

satisfying
φ(0, ξ) = I2, φ′(0, ξ) = −Θ(ξ), S(0, ξ) = 0, S′(0, ξ) = I2.

Hence, φ satisfies the Robin-type boundary condition
F′ +ΘF = 0, x = 0. (69)

Then, the Weyl solution takes the form
Φ(x, ξ) = S(x, ξ) + φ(x, ξ)M(ξ). (70)

Furthermore, we introduce the Green’s function, G =G(x, y), 0 < x < y, satisfying

−G′′ +Q0G = −ξ2G, (71)

supplemented with

G(y, y) = 0,
∂

∂x
G(x, y)∣

x=y
= I2.

See Appendix B for explicit expressions for G. From the definition, it follows that the Green’s function is entire in ξ ∈ C (for any ω ∈ C fixed).
The matrix Jost solution F(x, ξ) then satisfies the Volterra-type integral equation,

F(x, ξ) = F0(x, ξ) − ∫
H

x
G(x, y)V(y)F(y, ξ) dy. (72)

In a similar fashion, we introduce two other matrix-valued solutions, φa(x, ξ), Sa(x, ξ), of (25), that is, solutions to

−(Fa)′′ +QaFa = −ξ2Fa, (73)

satisfying
φa(0, ξ) = I2, (φa)′(0, ξ) = −Θa(ξ), Sa(0, ξ) = 0, (Sa)′(0, ξ) = I2.

Hence, φa satisfies the Robin-type boundary condition,

(Fa)′ +ΘaFa = 0, x = 0. (74)
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Then, the Weyl solution takes the form
Φa(x, ξ) = Sa(x, ξ) + φa(x, ξ)Ma(ξ). (75)

Furthermore, we introduce the Green’s function, Ga =Ga(x, y), 0 < x < y, satisfying

−(Ga)′′ +QT
0G

a = −ξ2Ga, (76)

supplemented with

Ga(y, y) = 0,
∂

∂x
Ga(x, y)∣

x=y
= I2.

The matrix Jost solution Fa(x, ξ) then satisfies the Volterra-type integral equation,

Fa(x, ξ) = Fa
0(x, ξ) − ∫

H

x
Ga(x, y)[V(y)]TFa(y, ξ) dy. (77)

V. SPECTRAL DATA
Analytic continuation
We note that

qS(−ξ) = −qS(ξ), ξ ∈𝒦,

with an extension to the branch cuts,

([− ω
√μ0

,
ω
√μ0
] ∪ iR).

See Appendix A. We give conjugation properties of the matrix Jost solutions in the following.

Lemma V.1. For ξ ∈𝒦 = C/([− ω√μ0
, ω√μ0

] ∪ iR) (see Appendix A), the following holds true:

F(x, ξ) = F(x, ξ), Fa(x, ξ) = Fa(x, ξ), (78)

F(x,−ξ) = [F+P (x,−ξ) F+S (x,−ξ)] = [F−P (x, ξ) − F−S (x, ξ)], (79)

Fa(x,−ξ) = [Fa,+
P (x,−ξ) Fa,+

S (x,−ξ)] = [−Fa,−
P (x, ξ) Fa,−

S (x, ξ)]. (80)

Proof. These properties are satisfied by the reference Jost solutions F0 and Fa
0. Then, we use the Volterra-type integral equations (72),

(77) and the properties of the kernels (as even functions in both qS and qP) and identities (A3). ◻

The conjugation properties in Lemma V.1 also imply that

Φ(ξ) = Φ(ξ) (81)

and
M(ξ) =M(ξ) (82)

on 𝒦+.
We observe that M has a meromorphic continuation from the physical (“upper”) sheet 𝒦+ through the cuts to the unphysical (“lower”)

sheets and whole Riemann surface ℛ (see Appendix A), which still satisfies this conjugation property.
We will simplify the analysis in Subsection V A by introducing

𝒦+ → Π+, ξ → ζ = ξ2,

below, and note that this also defines the inverse Π+ ∋ ζ → ξ =
√
ζ ∈𝒦+.

A. Cauchy integral
From asymptotic expansion of the Weyl matrix that we develop in Lemma VI.1, specifically (109), it follows that

det M(ξ) = 1
ξ2
λ(0) + 2 μ(0)
λ(0) + μ(0) + O( 1

ξ3 ) as ∣ξ∣→∞, ξ ∈𝒦+,
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which implies that M has a finite number, N, say, of poles ξj ∈𝒦+. Here, N depends on ω. As qS(ξj) ∈ iR+, the poles are necessarily real.
Moreover, M has no other poles in 𝒦+. We order the set of poles of the Weyl matrix

ω
√μ0

< ξN < ξN−1 < ⋅ ⋅ ⋅ < ξ1

and invoke the following.

Assumption V.1. The poles of M in 𝒦+ are simple.

Remark V.1. The poles of M are among the zeros of the determinant of the Jost function det FΘ or Rayleigh determinant on the physical
sheet, 𝒦+, and correspond to the bound states or normal modes. Assumption V.1 is generically satisfied for all frequencies ω ∈ R+, that is, except
possibly for a finite number of frequencies. In the seismology literature, the Rayleigh system is usually considered on a finite slab with traction-free
boundary conditions when simplicity of the normal modes is well known.20 In view of our outgoing radiation boundary condition at one end
represented by (98), this result does not directly apply.

We associate “energies” with the mentioned poles, ζj = ξ2
j ∈ Π+ [cf. (A4)]. We may introduce M̂ = M̂(ζ) by

M̂(ζ(ξ)) =M(ξ),

which thus has simple poles ζ1, . . . , ζN . We write Λ′ = {ζj}N
j=1 and note that ζj > ω2

μ0
.

Lemma V.2. The matrix M̂ is analytic in Π+ outside Λ′. It admits the representation

M̂(ζ) = ∫
ω2

μ0

−∞
T̂(η)
ζ − η dη +

N

∑
j=1

αj

ζ − ζj
, ζ ∈ Π+/Λ′, (83)

where
αj = Res ζ=ζj M̂(ζ) = F(0, ξj)uj, uj = 2ξjRes ξ=ξj[FΘ(ξ)]

−1 (84)

or
αj = −[ua

j ]T∫
∞

0
[Fa(x, ξj)]TF(x, ξ)dx uj, ua

j = 2ξjRes ξ=ξj[F
a
Θ(ξ)]−1 (85)

or

αj = F(0, ξj)(F′Θ(ξj))
−1 = −i

μ0

ω2 [(F
a
Θ(−ξj))

T]
−1⎛
⎜
⎝

qP(ξj) 0

0 −qS(ξj)

⎞
⎟
⎠
(F′Θ(ξj))

−1 (86)

and T̂ = T̂(ζ), T̂(ζ(ξ)) = T(ξ) with

T(ξ) = − ξμ0

πω2 [(F
a
Θ)T(−ξ)]−1

⎛
⎜
⎝

qP(ξ) 0

0 −qS(ξ)

⎞
⎟
⎠
[FΘ(ξ)]−1, ζ ∈ (−∞,

ω2

μ0
], (87)

signifying the branch cut.

Proof. We fix a pole ζj = ξ2
j , use that

F(x, ξ)[FΘ(ξ)]−1 = S(x, ξ) + φ(x, ξ)M(ξ)

[cf. (58) and (70)], and evaluate the residue

F(x, ξj)Res ξ=ξj[FΘ(ξ)]
−1 = φ(x, ξj)Res ξ=ξj M(ξ).

As
Res ζ=ζj M̂(ζ) = 2ξjRes ξ=ξj M(ξ) =: αj,

we get
φ(x, ξj)αj = F(x, ξj)uj, uj = 2ξjRes ξ=ξj[FΘ(ξ)]

−1. (88)
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In a similar fashion, we get
φa(x, ξj)αj = [ua

j ]T[Fa(x, ξj)]T, ua
j = 2ξjRes ξ=ξj[F

a
Θ(ξ)]−1 (89)

[cf. (64), (75), and (67)]. Integrating the derivative of the relevant Wronskian, we obtain

lim
x→∞W(Fa(x, ξj), F(x, ξ)) −W(Fa(x, ξj), F(x, ξ))∣x=0 = (ξ2

j − ξ2)∫
∞

0
[Fa(x, ξj)]TF(x, ξ)dx (90)

for ξ ∈ ( ω√μ0
,∞). Using the asymptotics of F0(x, ξ) and Fa(x, ξj) as x →∞, we get

lim
ξ→ξj

1
ξ2

j − ξ2 lim
x→∞W(Fa(x, ξj), F(x, ξ)) = 0. (91)

Hence,
[ua

j ]T∫
∞

0
[Fa(x, ξj)]TF(x, ξ)dx uj = −αj, (92)

yielding a representation of αj in terms of the Jost solutions.
We now prove (86). As the pole ζj = ξ2

j is simple, we also have

αj = F(0, ξj)[ lim
ξ→ξj

(ξ2 − ξ2
j )−1FΘ(ξ)]

−1

= 1
2ξj

F(0, ξj)[F′Θ(ξj)]
−1. (93)

At ξ = ξj, we have
F′(0, ξj) = −Θ(ξj)F(0, ξj), Fa

Θ(ξ) = (Fa)′(0, ξ) +ΘT(ξ)Fa(0, ξj).

Then, using (57) at ξ = ξj, we get

W(Fa(0,−ξj)F(0, ξj)) = [((Fa)′)T(0,−ξj) + (Fa)T(0,−ξj)Θ(ξj)]F(0, ξj)

= (Fa
Θ(−ξj))TF(0, ξj) = −2iμ0

ξj

ω2

⎛
⎜
⎝

qP(ξj) 0

0 −qS(ξj)

⎞
⎟
⎠

,

and using (93), we obtain (86).
The jump across the branch cut is obtained through

M̂+(ζ) = M̂(ζ + i0) =M(ξ∗) = F(0, ξ∗)[FΘ(ξ∗)]
−1, ζ ∈ (−∞,

ω2

μ0
], (94)

where ξ∗ ∈ [− ω√μ0
, ω√μ0

] ∪ iR approached from 𝒦+, and similarly,

M̂−(ζ) = M̂(ζ − i0) = ([Fa
Θ(−ξ∗)]

T)
−1
[Fa(0,−ξ∗)]T, ζ ∈ (−∞,

ω2

μ0
]. (95)

Using the definitions of the Jost functions and writing ξ∗ = ξ, we then get

T̂(ζ(ξ)) = 1
2πi
(M̂+(ζ(ξ)) − M̂−(ζ(ξ))) = 1

2πi
([Fa

Θ]
T(−ξ))

−1
W(Fa(x,−ξ), F(x, ξ))[FΘ(ξ)]−1. (96)

With Lemma IV.1, we obtain (87). ◻
In (83), we distinguish, from a physics perspective, the following three contributions:

∫
0

−∞
T̂(η)
ζ − η dη

from the evanescent modes,

∫
ω2

μ0

0

T̂(η)
ζ − η dη
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from the radiating modes, and
N

∑
j=1

αj

ζ − ζj

from the guided modes.

Remark V.2. We note that through (86), (87) and using (55), αj and T can be expressed in terms of the Jost function only. Thus,
Lemma V.2 indicates that the Jost function encodes the boundary spectral data.

B. Even extension
In the original variable ξ, ξ2 = ζ, (83) reads

M(ξ) = ∫
ω2

μ0

−∞
T̂(η)
ξ2 − ηdη +

N

∑
j=1

αj

ξ2 − ξ2
j

(97)

= ∫
ω2

μ0

−∞
T̂(η)
ξ2 − ηdη +

N

∑
j=1

αj

2ξj

1
ξ − ξj

+
N

∑
j=1

αj

2ξj

(−1)
ξ + ξj

, ξ ∈𝒦+/{ξj}N
j=1.

Using this representation, M(ξ) has an artificial extension to

C/⋃{iR, [− ω
√μ0

,
ω
√μ0
], {±ξj}N

j=1} ≡𝒦 /{±ξj}N
j=1

as an even function
M(−ξ) =M(ξ),

which we will employ in the further analysis. We emphasize that this extension is fundamentally different from the above-mentioned
meromorphic continuation.

In the further analysis, we invoke the following.

Assumption V.2. The parameter functions, λ and μ, are such that there is no pole of M(ξ) with Im qS = 0 except, possibly, at ξ = ω√μ0
as a

one-sided limit in 𝒦+.

C. Data for the original Rayleigh system
1. Weyl matrix

In Appendix C, we develop a relation between the Neumann-to-Dirichlet map (ND) of the original Rayleigh system and the Weyl matrix
induced by the Markushevich substitutions. From

ND(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

i
μ0

μ(0) 0

0 0

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0
1
2

i

− μ0

μ(0) ξ 0

⎞
⎟⎟
⎠

M(ξ)

⎤⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

1
2μ0ξ

0

μ′(0)
μ2(0)

1
ξ

i
μ(0)

⎞
⎟⎟⎟
⎠

[cf. (C13)], it follows that ND and M have the same poles and their jumps across branch cuts are explicitly related; this relationship depends
on μ(0), μ′(0), and μ0.

2. Jost solution
In addition to the Weyl matrix, we need the Jost solution at x = 0 as the data. We let w = [wP wS] denote the Jost solution of the Rayleigh

system before the Markushevich transform, that is, both columns of w satisfy (7) and (8) and conditions

w = [w+P,0 w+S,0] for x ≥ H,

where the “reference” Jost solution comprised of wP,0+ and w+S,0 is given in (44) and (45). The Jost solution can be excited by imposing the
“outgoing radiation” conditions at the bottom of the slab,

w′(H, ⋅) − i w(H, ⋅)
⎛
⎜
⎝

qP 0

0 qS

⎞
⎟
⎠
= 0, (98)
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supplemented with a Dirichlet boundary value

w(H, ξ) = [wP(H, ξ) wS(H, ξ)] = [w+P,0(H, ξ) w+S,0(H, ξ)]

at the bottom of the slab, x = H, and observed at x = 0, giving w(0, ξ). Upon the Markushevich substitution, this yields F(0, ξ).

3. Jost function
The Jost functions FΘ(ξ) and Fa

Θ(ξ) can be considered as alternative data. By (C4) and (C5), these are directly related to the boundary
matrix of the original Rayleigh problem [cf. (C3)],

B(w) =
⎛
⎜
⎝

b−(wP) b−(wS)
a−(wP) a−(wS)

⎞
⎟
⎠

,

where
w = [wP wS] (99)

is the Jost solution discussed above. By (55), the Jost function determines the adjoint Jost function if μ(0), μ′(0), and μ0 are known.

D. Unique recovery of a potential of Lamé type
In the following lemma, proposition, and theorem, we assume that H, λ0, μ0, μ(0), and μ′(0) are known. We introduce the expansion of

the Jost solution at the boundary,

F(0, ξ) = ξG0(0, ξ) +G1(0) + R(ξ), R(ξ) = O( 1
∣ξ∣ ). (100)

In Theorem VI.1, we will construct explicit expressions for G0(0, ξ) and G1(0, ξ).

Lemma V.3. Given λ0 and μ0. The mapping from GH [cf. (30)] to [G0(0, ξ), G1(0, ξ)] for any pair of frequencies, ω1 ≠ ω2 ∈ R+, is an
injection.

The proof is given in Subsection VII B. Thus, [G0(0, ξ), G1(0, ξ)] for any two frequencies ω1 ≠ ω2 ∈ R+ determine GH . Moreover, GH

together with H, λ0, μ0, and ω determine Q0.

Proposition V.1. Given GH . For ω fixed, let V1, V2 be compactly supported on [0, H] and belong to L1([0, H]) with associated Weyl
matrices M1, M2. If H, λ0, μ0, μ(0), and μ′(0) are known and Assumptions V.1 and V.2 hold true, then M2(ξ) =M1(ξ) for all ξ ∈𝒦+ implies
that V2 = V1.

The proof is given in Subsection VII A. Thus, GH together with M(ξ) determine V . By implication, [G0(0, ξ), G1(0, ξ)] for any two
frequencies ω1 ≠ ω2 ∈ R+ and M(ξ) determine Q. Furthermore, from a Lamé-type Q for any pair of frequencies, ω1 ≠ ω2 ∈ R+, we recover λ
and μ, which is proved in Subsection VII C.

We need both the Weyl function, or ND map, and the Jost solution at the boundary for the unique recovery of Lamé parameters.
Alternatively, we may use the Jost function FΘ(ξ) as the data, as by Lemma V.2 and Remark V.2, assuming that λ0 and μ0 are known, FΘ(ξ)
determines the Weyl function M and, by (59), F(0, ξ). We recall that FΘ(ξ) also determines Fa

Θ(ξ). Thus, from the analysis above, replacing
the data in Proposition V.1, we obtain the following.

Theorem V.1. Let Q1, Q2 be of Lamé type with the associated Jost functions FΘ;1, FΘ;2. Assume that H, λ0, μ0, μ(0), and μ′(0) are known.
Then, FΘ;2(ξ) = FΘ;1(ξ) for all ξ ∈𝒦+ and any pair of frequencies, ω1 ≠ ω2 ∈ R+, subject to Assumptions V.1 and V.2, implies that Q2 = Q1.

VI. ASYMPTOTIC EXPANSIONS
A. Jost solutions

In this subsection, we establish fundamental properties of the Jost solutions. We refer to Appendix B for a representation of the Green’s
function G =G(x, y) introduced in (71).

Theorem VI.1. For any fixed x ≥ 0, the Jost solution, F, is analytic in ξ on 𝒦+, of exponential type, and satisfies

F(x, ξ) = F0(x, ξ)

F1(x,ξ)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−∫

H

x
G(x, y)V(y)F0(y, ξ)dy +

∞
∑
k=2

Fk(x, ξ),
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Fk(x, ξ) = ∣ξ∣
k!

O( 1
max{∣ξ∣, 1})

k

e−x Im qS(ξ).

As ∣ξ∣→∞, ξ ∈𝒦+,

F(x, ξ) = e−xξξ(G0(x, ξ) + 1
ξ

G1(x) + O( 1
∣ξ∣2 )), (101)

where

G0(x, ξ) = − μ0

ω2

⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠
+ 1
ξ

⎛
⎜⎜
⎝

c0

2
GH

11H +GH
21 −1

2
xGH

11

c0

2
GH

12H +GH
22 −1

2
xGH

12

⎞
⎟⎟
⎠

(102)

and

G1(x) = −
1
2
μ0

ω2∫
H

x
V(y)dy

⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

. (103)

Analogous properties and an expansion can be obtained for Fa.

Remark VI.1. The Proof of Theorem VI.1 is based on an iteration of Volterra-type equation (72) [and (77)] following a standard
argument.10 We note that the very reason to perform the Markushevich transform was to re-write the Rayleigh problem in the Schrödinger
form and then as a Volterra-type integral equation with a bounded kernel.

In the above theorem, G0 contains a contribution O( 1
∣ξ∣); this contribution is essential to ensure that G0(0, ξ) is invertible while G0 only

depends on Q0. We write

F(0, ξ) = ξG0(0, ξ) +G1(0) + R(ξ), R(ξ) = O( 1
∣ξ∣ ). (104)

Furthermore, the Jost function, FΘ, and det FΘ are analytic in ξ where Im qP > 0, Im qS > 0 (ξ ∈𝒦+; see Appendix A) and continuous in
ξ where Im qP ≥ 0, qP ≠ 0, Im qS ≥ 0, qS ≠ 0. We obtain the following.

Corollary VI.1. The Jost function admits the asymptotic expansion, as ∣ξ∣→∞, ξ ∈𝒦+,

FΘ(ξ) = −2ξ3 μ2
0

ω2μ(0)GH
11

⎛
⎜
⎝

0 0

1 1

⎞
⎟
⎠
+ ξ2
⎛
⎜
⎝
μ0

ω2

⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

+ 2
μ0

μ(0)(GH
11

1
2

c0H +GH
21)
⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠

− 1
2
μ0

ω2

⎛
⎜⎜
⎝

0 0

2
μ0

μ(0) 0

⎞
⎟⎟
⎠
∫

H

0
V(y)dy

⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

⎞
⎟⎟
⎠
+ o(∣ξ∣2). (105)

Corollary VI.2. Solutions S(x, ξ) and φ(x, ξ) [cf. (70) and above] are entire on C and even functions of ξ of exponential type. For the first
and second derivatives, the following estimate holds true:

∥φ(k)(x, ξ)∥ ≤ C∣ξ∣k+1e∣Re ξ∣x, ξ ∈𝒦+, k = 0, 1, (106)

uniformly in x ≥ 0.

B. Weyl matrix
Next, we study the Weyl matrix introduced in (59) and derive its asymptotic expansion as ∣ξ∣→∞, ξ ∈𝒦+. It appears that it is more

convenient to start the analysis with its inverse,
M−1(ξ) = F′(0, ξ)F−1(0, ξ) +Θ(ξ), (107)

where Θ is given in (19). The following result is an analog of Ref. 8, Proposition 2.
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Lemma VI.1. The Weyl matrix, M(ξ), and its inverse M(ξ)−1 have the following asymptotic expansions for ∣ξ∣→∞, ξ ∈𝒦+:

1. If Q ∈ C∞ and all its derivatives are integrable on R+, then M(ξ)−1 has an asymptotic expansion to all orders,

M(ξ)−1 = Θ(ξ) + ξ
∞
∑
k=0

ξ−kXk(0) (108)

X0 = −I2, X1 = 0, X2 = −
1
2

Q, X3 = −
1
4

Q′, 2Xk+1 = X′k +
k

∑
j=1

XjX4−j

[cf. (19)].
2. If Q ∈ C∞ and all its derivatives are integrable on R+, then M(ξ) has an asymptotic expansion to all orders, M(ξ) = ∑∞k=0ξ

−kYk.
Weakening the condition, if Q ∈ C3 and its first three derivatives are integrable on R+,

M(ξ) = Y0 + ξ−1Y1 + ξ−2Y2 + ξ−3(Y3 + α(ξ)), (109)

where α(ξ)→ 0 as ∣ξ∣→∞, ξ ∈𝒦+, with

Y0 =
1

1 − 2ϖθ2

⎛
⎜
⎝

0 0

y0;21 0

⎞
⎟
⎠

, (110)

Y1 =
1

1 − 2ϖθ2

⎛
⎜
⎝
−1 0

y1;21 −1

⎞
⎟
⎠

, (111)

Y2 =
1

1 − 2ϖθ2

⎛
⎜
⎝

y2;11 y2;12

y2;21 y2;22

⎞
⎟
⎠

, (112)

in which [cf. (19)] 1 − 2ϖθ2 = λ(0)+μ(0)
λ(0)+2 μ(0) and

y0;21 = −2ϖ,

y1;21 =
(1 − ϖ)Q12(0)
(1 − 2ϖθ2)θ2

+ 2ϖ(θ3 + ϖQ12(0))
1 − 2ϖθ2

,

y2;11 =
1
2

y1;21,

y2;12 = −θ2,

y2;21 =
Q′12(0) − y1;21Q12(0) +Q11(0) +Q22(0) − y1;21θ3 + θ1

1 − 2θ2
,

y2;22 =
ϖQ12(0) + 2ϖθ2θ3

1 − 2ϖθ2
.

Proof. We first prove (a). Where F(x, ξ) is invertible (ξ ≠ 0), (68) is equivalent to

d
dx
(F′(x, ξ)F(x, ξ)−1) + (F′(x, ξ)F(x, ξ)−1)2 = Q(x) + ξ2. (113)

Using analytic properties of the Jost solution, it follows that F0(x, ξ)−1F(x, ξ) [cf. (52)] admits an expansion to all orders of ξ−1 and that this
expansion can be differentiated term by term. Such an expansion also exists for F(x, ξ) and, hence, for F′(x, ξ). Thus, the following expansion
exists:

F′(x, ξ)F(x, ξ)−1 = ξ
∞
∑
k=0

ξ−kXk(x).

We insert this expansion into (113) and note that

M(ξ)−1 = Θ(ξ) + F′(x, ξ)F(x, ξ)−1∣x=0.

We prove (b) using (a) and M(ξ)M(ξ)−1 = I2 by explicit calculations. ◻
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Capturing the leading orders, we introduce

Ỹ(ξ) = Y0 +
1
ξ

Y1 =
1

ξ(1 − 2ϖθ2)
⎛
⎜
⎝

−1 0

2(b − ϖξ) −1

⎞
⎟
⎠

, b = 1
2

y1;21, (114)

with inverse

Ỹ(ξ)−1 = ξ2(1 − 2ϖθ2)
⎛
⎜
⎝

0 0

2ϖ 0

⎞
⎟
⎠
+ ξ(1 − 2ϖθ2)

⎛
⎜
⎝
−1 0

−2b −1

⎞
⎟
⎠

and the properties

Y0Ỹ(ξ)−1 = ξ
⎛
⎜
⎝

0 0

2ϖ 0

⎞
⎟
⎠

, (115)

Y1Ỹ(ξ)−1 = Ỹ(ξ)−1Y1 = ξ
⎛
⎜
⎝

1 0

−2ϖξ 1

⎞
⎟
⎠
= ξE(−ξ), (116)

where

E(ξ) =
⎛
⎜
⎝

1 0

2ϖξ 1

⎞
⎟
⎠

(117)

forms a group as E(ξ)−1 = E(−ξ) and

E(ξ1)E(ξ2)−1 =
⎛
⎜
⎝

1 0

2ϖ(ξ1 − ξ2) 1

⎞
⎟
⎠

.

Then,

M(ξ)Ỹ(ξ)−1 = T0 −
1
ξ

T1 + O( 1
∣ξ∣2 ), ξ ∈𝒦+, (118)

where

T0 =
⎛
⎜
⎝

1 − 2ϖθ1 0

2ϖ(b − θ3) 1

⎞
⎟
⎠

. (119)

From (109) and (96) with (94) and (95), it follows that

T(ζ) = 1
πiξ
(Y1 +

1
ξ2 Y3 + o( 1

∣ξ∣2 )), ζ ∈ (−∞,
ω2

μ0
] (120)

[cf. (87)], where ξ =
√
ζ is defined below (82), while on the branch cut, if ζ < 0, then ξ ∈ iR.

VII. GEL’FAND–LEVITAN TYPE EQUATION AND PROOF OF THEOREM V.1
Using the results from Sec. VI, we obtain an asymptotic expansion for F(x, ξ)[F(0, ξ)]−1 in the following.

Lemma VII.1. The following asymptotic expansion holds true:

F(x, ξ)[F(0, ξ)]−1 = e−xξ(I2 +
1
ξ

D(x) + o( 1
∣ξ∣ )), ξ ∈𝒦+,

where

D(x) = 1
2∫

x

0
V(y)dy

⎛
⎜⎜
⎝

−GH
11(

c0

2
GH

12H +GH
22) GH

11(
c0

2
GH

11H +GH
21)

−GH
12(

c0

2
GH

12H +GH
22) GH

12(
c0

2
GH

11H +GH
21)

⎞
⎟⎟
⎠

.

Proof. The statement follows from an explicit calculation using Theorem VI.1, that is, (101)–(103) and (100). ◻
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From (60) upon employing Lemma VI.1, that is, (109), and using

Φ(x,±ξ) = F(x,±ξ)[F(0,±ξ)]−1M(±ξ), ±ξ ∈𝒦+ (121)

(and extension to the branch cuts), we obtain the following.

Corollary VII.1. The following asymptotic expansion holds true:

Φ(x,±ξ) = e−ξx(Y0 ±
1
ξ
(Y1 + (D(x) ∓ ω2

2μ0
x)Y0) + o( 1

∣ξ∣ )), ±ξ ∈𝒦+.

This corollary immediately implies that

Φ′(x,±ξ) = −ξe−ξx(Y0 ±
1
ξ
(Y1 + (D(x) ∓ ω2

2μ0
x)Y0) + o( 1

∣ξ∣ )), ±ξ ∈𝒦+. (122)

A. Recovery of V assuming that GH is known
For the Proof of Theorem V.1, we change variables through the transformation (Appendix A)

ξ → k, k =
¿
ÁÁÀω2

μ0
− ξ2, ξ = −ik + O( 1

∣k∣ ), ξ ∈𝒦 (ω fixed). (123)

The choice of sign is determined by letting ξ ∈𝒦+ [where also Im qP(ξ) > 0] correspond to k ∈ C+ (Im k > 0). The inverse of the
transformation is defined on C+ and written as ξ(k). The branch cut in ξ ∈𝒦S corresponds with Im k = 0. We let

𝒦+ →𝒦− : ξ → −ξ correspond with C+ → C− : k→ −k,

where C+ (Im k < 0). First, we give some basic asymptotic expansions. To next order, we have

ik + ξ = ω2

2ξμ0
+ O( 1

∣ξ∣2 ), ξ ∈𝒦S,

so that

e∓(ik+ξ)x = 1 ∓ ω2

2ξμ0
x + O( 1

∣ξ∣2 ), e∓ikx = e±ξx(1 ∓ ω2

2ξμ0
x + O( 1

∣ξ∣2 )) as ∣ξ∣→∞.

We introduce
M±(k) =M(±ξ), ±ξ ∈𝒦+, ±Im k ≥ 0, (124)

and we introduce two more solutions [cf. (70)]

Φ±(x, k) = Φ(x,±ξ) = S̃(x, k) + φ̃(x, k)M±(k), ±ξ ∈𝒦+, ±Im k ≥ 0, (125)

where we identify
S̃(x, k) = S(x, ξ(k)), φ̃(x, k) = φ(x, ξ(k)) (126)

with
Θ̃(k) = Θ(ξ(k)). (127)

S̃(x, k), φ̃(x, k), and Θ̃(k) are entire and even in k as solutions and by the relevant boundary conditions. While M+ is defined for k ∈ C+
(Im k > 0), M− is defined for k ∈ C− (Im k < 0). It follows that for real-valued k,

Φ+(x, k) −Φ−(x, k) = φ̃(x, k)(M+(k) −M−(k)). (128)

Applying Lemma VI.1 and using (114), we find that

2
ξ(k)Y1 = Ỹ(ξ(k)) − Ỹ(−ξ(k)) =M(ξ(k)) −M(−ξ(k)) + O( 1

∣k∣3 ). (129)
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In the later analysis, for real-valued k, we will employ the notation Ỹ(−ik) and E(−ik), substituting −ik for ξ [or ξ(k)]. By abuse of notation,
in this subsection, we will omit ∼ in S̃, φ̃, and Θ̃.

Clearly, the matrix functions Φ± satisfy the following boundary conditions [cf. (63)]:

Φ±(0, k) =M±(k), Φ′±(0, k) +Θ(k)Φ±(0, k) = I2, ±Im k > 0.

Using Corollary VII.1 and (128), for real-valued k, we note that

Φ+(x, k) −Φ−(x, k) = φ(x, k)( 2
−ik

Y1 + O( 1
∣k∣3 )), (130)

and the expansions in Corollary VII.1 imply the following.

Lemma VII.2. For k ∈ R, the following asymptotic expansion holds true:

φ(x, k) = ϕ0(x, k) + (eikx + e−ikx)m1(x) + (eikx − e−ikx)O( 1
∣k∣ ), (131)

where
ϕ0(x, k) = −1

2
ik(eikx − e−ikx)Y0Y−1

1 , (132)

in which

1
2

Y0Y−1
1 = ϖ(1 − 2ϖθ2)

⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠

and m1(x) is independent of k.

The lemma above implies that for k ∈ R,
φ(x, k)M±(k) = O(1),

and we have
e−∣k∣xφ(x, k) = ik

1
2

Y0Y−1
1 + O(1). (133)

We introduce
φ̂(x, k) = φ(x, k) − ϕ0(x, k) (134)

[cf. (132)] for the later analysis.

Definition VII.1. We let

Ψ(x, k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ψ+(x, k) = eikx(Φ+(x, k) − 2i
k
φ(x, k)Y1)Ỹ−1(ik), k ∈ C+,

Ψ−(x, k) = eikxΦ−(x, k)Ỹ−1(ik), k ∈ C−.

[cf. (114)].

The matrix function Ψ is meromorphic and defined on C through the above-mentioned extension of Φ to branch cuts, which is impor-
tant for the later contour integration in the Proof of Proposition VII.2. However, as elucidated in Subsection V B, throughout we intrinsically
use functions defined on the physical sheet only.

From (121), it follows that Ψ inherits its poles from M (see Subsection V A).

Lemma VII.3. The matrix function Ψ has poles at ±kj with

kj =
¿
ÁÁÀω2

μ0
− ξ2

j .

The residues are given by

Res k=±kjΨ(x, k) = 1
2i

e±ikjxφ(x, kj)CjE(∓ikj), Cj = −2kjBjY−1
1 = αjY−1

1 . (135)
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Proof. We have [cf. (125)]

Ψ(x, k) = eikx(S(x, k)Y−1
1 + φ(x, k)M+(k)Y−1

1 −
2i
k
φ(x, k))Y1Ỹ(ik)−1

for Im k > 0, where S and φ are entire in k. As

αj = lim
ξ→ξj

(ξ2 − ξ2
j )M(ξ) = − lim

k→kj

(k2 − k2
j )M+(k)

= −2kj lim
k→kj

(k − kj)M+(k) = −2kjBj, Bj = Res k=kj M+(k), (136)

we obtain
Res k=kjΨ(x, k) = eikjxφ(x, kj)BjY−1

1 Y1Ỹ(ikj)−1,

which, with (116), implies the statement. Here, we use that the poles of M are simple. ◻

We define three new matrix functions in the following.

Definition VII.2. We let j(k), e(x, k), and ẽ(x, k) be given by

M+(k) − Ỹ(−ik) = −j(k)Y1, k ∈ C+, (137)

ẽ(x, k) = eikx

2ik
E(−ik) − e−ikx

2ik
E(ik) = 1

k

⎛
⎜
⎝

sin kx 0

−2ϖk cos kx sin kx

⎞
⎟
⎠

, k ∈ C, (138)

e(x, k) = ẽ′(x, k) = 1
2

eikxE(−ik) + 1
2

e−ikxE(ik) =
⎛
⎜
⎝

cos kx 0

2ϖk sin kx cos kx

⎞
⎟
⎠

, k ∈ C. (139)

Through the definition of M−, we obtain the extension of j(k) from C+ to C−. It follows that

j(k) =
⎧⎪⎪⎨⎪⎪⎩

j(k), k ∈ C+,

j(−k), k ∈ C−,
(140)

that is, for Im k ≠ 0, j(k) is an even function j(−k) = j(k) with discontinuity on the real line for Im k = 0 with jump

j(k) − j(−k), Im k = 0.

Using (116), we find that

j(k) = − 1
ik

E(−ik) −M+(k)Y−1
1 . (141)

Consequently, j(k) = O( 1
∣k∣2 ) and j(k) − j(−k) = O( 1

∣k∣3 ), k ∈ C+. The Weyl matrix directly determines j; this is because the two leading terms
in the asymptotic expansion of M determine E and Y1 [cf. (114)–(117)].

As T0Y0 = Y0, we note that
ϕ0(x, k) − T0e(x, k) = O(1) (142)

[cf. (132)].

Proposition VII.1. The function Ψ(x, k) has asymptotic expansion

Ψ(x, k) = T0 +
1
ik
{(D(x) + ω2

2μ0
x)T0 − T1} + o( 1

∣k∣ ), Im k ≤ 0, (143)

where D(x) is given in Lemma VII.1 and T0, T1 are defined by (118). It admits the representation

Ψ(x, k) = T0 −
1
π∫

∞

−∞
k′eik′xφ̂(x, k′)( j(k′) − j(−k′))E(−ik′)

k′ − k
dk′

+
N

∑
j=1
( eikjxφ(x, kj)CjE(−ikj)

2i(k − kj)
+ e−ikjxφ(x, kj)CjE(ikj)

2i(k + kj)
). (144)
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Moreover, the boundary values Ψ±(x, k) = Ψ(x, k ± i0), Im k = 0, determine φ in (70) by

2φ(x, k) = e−ikxΨ+(x, k)E(−ik)−1 + eikxΨ−(x,−k)E(ik)−1. (145)

Proof. Substituting (118) and (119) into Corollary VII.1 yields (143) for Im k < 0, and by taking a one-sided limit, we get (143) for
Im k = 0. For real-valued k, Im k = 0, an explicit calculation gives

Ψ(x, k + i 0) −Ψ(x, k − i0) = −ikeikxφ(x, k)( j(k) − j(−k))E(−ik). (146)

Hence,

Ψ(x, k + i 0) + ikeikxϕ0(x, k)( j(k) − j(−k))E(−ik) −Ψ(x, k − i 0)

= −ikeikxφ̂(x, k)( j(k) − j(−k))E(−ik) = O( 1
∣k∣ ) (147)

[cf. (134)]. This implies that the leading order in asymptotics (143) is the same for Ψ(x, k − i0) and Ψ(x, k + i0) + ikϕ0(x, k)( j(k)
− j(−k))E(−ik) in the full complex k-plane and also (as Ψ is bounded on C) that Ψ can be recovered from the Cauchy integral formula
and its residues.

Now, we prove representation (144). We let R > 0 and denote by γ±R the closed half-circle contour in C± with positive orientation
containing all the poles ±kj inside. We denote by Γ±R only the arc parts of these contours with negative orientation. We have

1
2πi∫

R

−R

Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) −Ψ−(x, k′)
k − k′

dk′

= ErR(x, k) −Ψ(x, k) +D0(x)T0 +
N

∑
j=1

Res k′=kj(Ψ(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′))
k − kj

+
N

∑
j=1

Res k′=−kjΨ(x, k′)
k′ + kj

,

where

ErR(x, k) = 1
2πi∫Γ+R

Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) − T0

k − k′
dk′ + 1

2πi∫Γ−R
Ψ−(x, k′) − T0

k − k′
dk′.

Lemma VII.3 provides us with the expressions for the residues; we use that j(k′) − j(−k′) is entire for Im k ≠ 0.
We substitute (147) in the integrand of the integral in the left-hand side and take the limit R→∞. As

lim
R→∞

ErR(x, k) = 0,

we obtain (144).
Finally, using (116) and that Φ−(x,−k) = Φ+(x, k) for real-valued k by definition, we obtain (145). ◻

We factorize φ and φ̂ and introduce 𝒜 and 𝒜 according to

φ(x, k) = T0𝒜 (x, k), φ̂(x, k) = T0 𝒜 (x, k), k ∈ R, (148)

and write
𝒜 j(x) = 𝒜 (x, kj), j = 1, . . . , N.

We note that
Res±kj∈C±𝒜 (x, k)j(k) = Res±kj∈C±𝒜 (x, k)j(k). (149)

We introduce
○
e(x, k) = T−1

0 {T0e(x, k) − ϕ0(x, k)(1 + 1
2

ik( j(k) − j(−k)))} (150)

[cf. (132)] in the following.

Lemma VII.4. The functions 𝒜 (x, k), 𝒜 (x, k), and 𝒜 j(x), j = 1, . . . , N, satisfy
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4𝒜 (x, k) = 4
○
e(x, k) + 1

πi∫
∞

−∞
k′𝒜 (x, k′)j(k′)(ẽ(x, k′ − k) + ẽ(x, k′ + k))dk′

−
N

∑
j=1

𝒜 j(x)Cj(ẽ(x, kj − k) + ẽ(x, kj + k)), Im k = 0. (151)

This equation holds, in particular, for k = ki, i = 1, . . . , N.

Proof. We take (144) as a point of departure. We first study the behavior of this equality, upon multiplication by ik T−1
0 , as k→∞, in

particular, the integral contribution (suppressing the factor 1
2π ) in the right-hand side,

∫
∞

−∞
k′eik′xφ̂(x, k′)( j(k′) − j(−k′))E(−ik′)

k′ − k
dk′.

To establish uniform boundedness, it is sufficient to only consider the “leading” order of φ̂(x, k′), that is, the second term in (131),

k′eik′x(eik′x + e−ik′x)m1(x)( j(k′) − j(−k′))
⎛
⎜
⎝

0 0

−2ϖik′ 0

⎞
⎟
⎠

(152)

or, in fact, the non-vanishing matrix element (suppressing the factor −2ϖi),

(k′)2e2ik′xm1(x)( j(k′) − j(−k′)) + (k′)2m1(x)( j(k′) − j(−k′)),

in the numerator of the integrand. Concerning the second term, we note that

0 = ∫
∞

−∞
(k′)2m1(x)( j(k′) − j(−k′))dk′ = lim

R→∞
lim

k→∞
(−k)∫

R

−R

(k′)2m1(x)( j(k′) − j(−k′))
k′ − k

dk′, (153)

which holds true also for x = 0. Hence,

lim
R→∞

lim
k→∞
(−i)kT−1

0 ∫
R

−R

k′φ̂(0, k′)( j(k′) − j(−k′))E(−ik′)
k′ − k

dk′ = 0. (154)

We now let x > 0 and perform integration by parts, exploiting the exponent e2ik′x, while analyzing the first term,

∫
R

−R

(k′)2m1(x)e2ik′x( j(k′) − j(−k′))
k′ − k

dk′ = −∫
R

−R

m1(x)
2ix

e2ik′x
d
dk′ {(k

′)2( j(k′) − j(−k′))}
k′ − k

dk′ + ErR;1(x, k)

+ ∫
R

−R

m1(x)
2ix

e2ik′x (k′)2( j(k′) − j(−k′))
(k′ − k)2 dk′ + ErR;2(x, k).

We have
lim

R→∞
lim

k→∞
(−i)kErR;1,2(x, k) = 0,

whence

lim
R→∞

lim
k→∞
(−i)k∫

R

−R

(k′)2m1(x)e2ik′x( j(k′) − j(−k′))
k′ − k

dk′

= lim
R→∞
(−i)∫

R

−R

m1(x)
2ix

e2ik′x d
dk′
{(k′)2( j(k′) − j(−k′))}dk′ is bounded. (155)

This implies that

lim
R→∞

lim
k→∞
(−i)kT−1

0 ∫
R

−R

k′eik′xφ̂(x, k′)( j(k′) − j(−k′))E(−ik′)
k′ − k

dk′

= lim
R→∞∫

R

−R
ik′eik′xT−1

0 φ̂(x, k′)( j(k′) − j(−k′))E(−ik′)dk′

= 2∫
∞

−∞
ik′𝒜 (x, k′)j(k′)e(x, k′)dk′ is bounded. (156)
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Here, we used that the integrand is even in k′.
We use (145) and that φ is even in k to get

4φ(x, k) = e−ikx(Ψ+(x, k) +Ψ−(x, k))E(−ik)−1 + eikx(Ψ−(x,−k) +Ψ+(x,−k))E(ik)−1.

Adding and subtracting terms, we rewrite this equality as

4φ(x, k) = 4T0e(x, k) − 2ikϕ0(x, k)( j(k) − j(−k)) + I1(x, k) + I2(x, k) + I3(x, k) + I4(x, k) (157)

or
4φ̂(x, k) = 4T0

○
e(x, k) + I1(x, k) + I2(x, k) + I3(x, k) + I4(x, k), (158)

where

I1 = e−ikx(Ψ+(x, k) + ikeikxϕ0(x, k)( j(k) − j(−k))E(−ik) − T0)E−1(−ik),
I2 = e−ikx(Ψ−(x, k) − T0)E−1(−ik),
I3 = eikx(Ψ+(x,−k) + ike−ikxϕ0(x, k)( j(k) − j(−k))E(ik) − T0)E−1(ik),
I4 = eikx(Ψ−(x,−k) − T0)E−1(ik).

We note that I1 and I4 have poles, kj, in the complex k half plane C+ (Im k > 0) and that I2 and I3 have poles, −kj, in the complex k half plane
C− (Im k < 0). We introduce a positive half-circle (with radius R) contour γ+R in C+ containing poles kj and k inside and a negative half-circle
(with radius R) contour γ−R in C− containing poles −kj and k inside. Then,

1
2πi

lim
R→∞∫γ+R

e−ikx(Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) − T0)E(−ik)−1

k′ − k
dk′

= I1(x, k) +
N

∑
j=1

e−ikxRes k′=kj(Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′))E(−ik)−1

kj − k
, (159)

1
2πi

lim
R→∞∫γ−R

e−ikx(Ψ−(x, k′) − T0)E(−ik)−1

k′ − k
dk′ = I2(x, k) +

N

∑
j=1

e−ikxRes k′=−kjΨ−(x, k′)E(−ik)−1

−kj − k
, (160)

1
2πi

lim
R→∞∫γ−R

eikx(Ψ+(x,−k′) + ik′e−ik′xϕ0(x, k′)( j(k′) − j(−k′))E(ik′) − T0)E(ik)−1

k′ − k
dk′

= I3(x, k) +
N

∑
j=1

eikxRes k′=−kj(Ψ+(x,−k′) + ik′e−ik′xϕ0(x, k′)( j(k′) − j(−k′))E(ik′))E(ik)−1

−kj − k
, (161)

1
2πi

lim
R→∞∫γ+R

eikx(Ψ−(x,−k′) − T0)E(ik)−1

k′ − k
dk′ = I4(x, k) +

N

∑
j=1

eikxRes k′=kjΨ−(x,−k′)E(ik)−1

kj − k
. (162)

We observe that the contributions from the upper and lower semicircles in the limit vanish, that is,

1
2πi

lim
R→∞∫γ+R

e−ikx(Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) − T0)E(−ik)−1

k′ − k
dk′

= 1
2πi∫

∞

−∞
e−ikx(Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) − T0)E(−ik)−1

k′ − k
dk′, (163)

1
2πi

lim
R→∞∫γ−R

e−ikx(Ψ−(x, k′) − T0)E(−ik)−1

k′ − k
dk′ = − 1

2πi∫
∞

−∞
e−ikx(Ψ−(x, k′) − T0)E(−ik)−1

k′ − k
dk′, (164)
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1
2πi

lim
R→∞∫γ−R

eikx(Ψ+(x,−k′) + ik′e−ik′xϕ0(x, k′)( j(k′) − j(−k′))E(ik′) − T0)E(ik)−1

k′ − k
dk′

= − 1
2πi∫

∞

−∞
eikx(Ψ+(x,−k′) + ik′e−ik′xϕ0(x, k′)( j(k′) − j(−k′))E(ik′) − T0)E(ik)−1

k′ − k
dk′, (165)

1
2πi

lim
R→∞∫γ+R

eikx(Ψ−(x,−k′) − T0)E(ik)−1

k′ − k
dk′ = 1

2πi∫
∞

−∞
eikx(Ψ−(x,−k′) − T0)E(ik)−1

k′ − k
dk′. (166)

Hence, using that in the residues, the terms containing ϕ0(x, k′)( j(k′) − j(−k′)) do not contribute,

I1(x, k) + I2(x, k) + I3(x, k) + I4(x, k)

= 1
2πi∫

∞

−∞
e−ikx(Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) −Ψ−(x, k′))E(−ik)−1

k′ − k
dk′

− 1
2πi∫

∞

−∞
eikx(Ψ+(x,−k′) + ik′e−ik′xϕ0(x, k′)( j(k′) − j(−k′))E(ik′) −Ψ−(x,−k′))E(ik)−1

k′ − k
dk′

−
N

∑
j=1

e−ikxRes k′=kjΨ+(x, k′)E(−ik)−1

kj − k
+

N

∑
j=1

e−ikxRes k′=−kjΨ−(x, k′)E(−ik)−1

kj + k

+
N

∑
j=1

eikxRes k′=−kjΨ+(x,−k′)E(ik)−1

kj + k
−

N

∑
j=1

eikxRes k′=kjΨ−(x,−k′)E(−ik)−1

kj − k
. (167)

Using Lemma VII.3, the summations over the poles in (167) add up to

−
N

∑
j=1

e−ikxRes k′=kjΨ+(x, k′)E−1(−ik)
kj − k

+
N

∑
j=1

e−ikxRes k′=−kjΨ+(x, k′)E−1(−ik)
kj + k

+
N

∑
j=1

eikxRes k′=−kjΨ+(x,−k′)E−1(ik)
kj + k

−
N

∑
j=1

eikxRes k′=kjΨ−(x,−k′)E−1(−ik)
kj − k

.

= −
N

∑
j=1
φ(x, kj)Cj(ẽ(x, kj − k) + ẽ(x, kj + k)). (168)

Using (146), the integrals in (167) add up to

1
2πi∫

∞

−∞
e−ikx(Ψ+(x, k′) + ik′eik′xϕ0(x, k′)( j(k′) − j(−k′))E(−ik′) −Ψ−(x, k′))E(−ik)−1

k′ − k
dk′

− 1
2πi∫

∞

−∞
eikx(Ψ+(x,−k′) + ik′e−ik′xϕ0(x, k′)( j(k′) − j(−k′))E(ik′) −Ψ−(x,−k′))E(ik)−1

k′ − k
dk′

= 1
π∫

∞

−∞
(−ik′)φ̂(x, k′)j(k′)(ẽ(x, k′ − k) + ẽ(x, k′ + k))dk′. (169)

We established boundedness of this integral in (156). Substituting (168) and (169) into (167) and the result into (158) implies the statements
upon considering k ∈ R (and k = kj). ◻

With Proposition VII.1 and the proof of the previous lemma concerning the limit k→∞ (Im k = 0), we obtain the following.

Lemma VII.5. The following holds true:

T−1
0 {(D(x) + ω2

2μ0
x)T0 − T1} = −

1
π∫

∞

−∞
ik′𝒜 (x, k′)j(k′)e(x, k′)dk′ +

N

∑
j=1

𝒜 j(x)Cje(x, kj), (170)

where D(x) is given in Lemma VII.1.
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In the above, we note that T1 depends on ω through θ1. This lemma provides an identity for D. It is essential for this lemma that we
analyzed the asymptotic expansions of F, M, and Φ. The right-hand side of (170) motivates the introduction of

K(x, y) = − 1
π∫

∞

−∞
ik′𝒜 (x, k′)j(k′)e(y, k′)dk′ +

N

∑
j=1

𝒜 j(x)Cje(y, kj)

= − 1
2πi∫

∞

−∞
𝒜 (x, k′)( j(k′) − j(−k′))eik′yE(−ik′)k′dk′ +

N

∑
j=1

𝒜 j(x)Cje(y, kj), y ∈ [−x, x] (171)

[cf. (139)], the first term of which can be identified with a Fourier transform and plays a key role in the proof of the next proposition. The
right-hand of (170) is K(x, x).

Remark VII.1. From the analysis leading to (156), it follows that K(x, x) is bounded. In fact, the continuous differentiability of K(x, x) is
directly related to the continuous differentiability of V through D(x).

We note that T0 can be obtained from the asymptotic expansion of M [cf. (109) and (118)]. Suppose that K(x, x) were known; then, the
potential, V , can be recovered upon differentiating (170),

T−1
0 D′(x)T−1

0 +
ω2

2μ0
= K′(x, x),

where D is given in Lemma VII.1 with

D′(x) = 1
2

V(x)
⎛
⎜⎜⎜
⎝

−GH
11(

c0

2
GH

12H +GH
22) GH

11(
c0

2
GH

11H +GH
21)

−GH
12(

c0

2
GH

12H +GH
22) GH

12(
c0

2
GH

11H +GH
21)

⎞
⎟⎟⎟
⎠

.

The kernel, K(x, y), is determined by the boundary spectral data, which is the content of the following.

Proposition VII.2 (Gel’fand-Levitan). The kernel K(x, y) is the unique solution of the Gel’fand-Levitan type equation,

4 K(x, y) + 4̂g(x, y) − ∫
x

−x
K(x, y′)E(2δ(x + y′))g(−y′, y)dy′ = 0, y ∈ [−x, x], (172)

where E is given in (117),

g(x, y) = 1
πi∫

∞

−∞
e(x, k)j(k)e(y, k)kdk −

N

∑
j=1

e(x, kj)Cje(y, kj), (173)

and

ĝ(x, y) = 1
πi∫

∞

−∞
○
e(x, k)j(k)e(y, k)kdk −

N

∑
j=1

∗
e(x, kj)Cje(y, kj), (174)

in which
∗
e(x, k) = e(x, k) − 1

2
ikT−1

0 ϕ0(x, k)( j(k) − j(−k)). (175)

Proof. We distinguish two parts to complete the proof. Part I: construction of (172). We consider (171) and write

K(x, y) = T+(x, y) + T−(x,−y),

where

T±(x, y) = − 1
2πi∫

∞

−∞
𝒜 (x, k)j(k)eikyE(∓ik)kdk + 1

2

N

∑
j=1

𝒜 j(x)CjeikjyE(∓ikj).

We note that [cf. (149)]

J. Math. Phys. 63, 031505 (2022); doi: 10.1063/5.0055827 63, 031505-26

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

T±(x, y) = − 1
2πi∫

∞

−∞
Â(x, k)j(k)eikyE(∓ik)kdk +∑

j
Res kj∈C+𝒜 (x, k)j(k)eikyE(∓ik)k

= lim
R→∞

1
2πi∫Γ+R

𝒜 (x, k)eikxj(k)eik(y−x)E(∓ik)kdk (176)

and

T±(x, y) = − 1
2πi∫

∞

−∞
𝒜 (x, k)j(k)eikyE(∓ik)kdk −∑

j
Res−kj∈C−𝒜 (x, k)j(k)eikyE(∓ik)k

= − lim
R→∞

1
2πi∫Γ−R

𝒜 (x, k)e−ikxj(k)eik(y+x)E(∓ik)kdk (177)

with
−∑

j
Res−kj∈C−𝒜 (x, k)j(k)eikyE(∓ik)k =∑

j
Res kj∈C+𝒜 (x, k)j(k)eikyE(∓ik)k (178)

as
lim

k→kj

(k − kj)j(k) = − lim
k→−kj

(k + kj)j(k).

The absence of singularities means that 𝒜 (x, k)e±ikx has a bounded holomorphic extension to the half-plane ±Im k ≥ 0. Through the
exponential decay of eik(y−x), we find that

if ∣y∣ > x, then T±(x, y) = 0.

From the Fourier inversion formula, we obtain

𝒜 (x, k)j(k)k − πi
N

∑
j=1

𝒜 j(x)Cjδ(k − kj) = −(i∫
x

−x
T±(x, y)e−ikydy)E(±ik).

We substitute this expression in (151). Using that

1
πi∫

∞

−∞
k′
⎡⎢⎢⎢⎢⎣
−πi

N

∑
j=1

𝒜 j(x)Cjδ(k − kj)
⎤⎥⎥⎥⎥⎦

j(k′)(ẽ(x, k′ − k) + ẽ(x, k′ + k))dk′ =
N

∑
j=1

𝒜 j(x)Cj(ẽ(x, kj − k) + ẽ(x, kj + k)),

which shows that the summation over poles in (151) is cancelled, we obtain

4𝒜 (x, k) = 4
○
e(x, k) − ∫

x

−x
T±(x, y)B±(k, y)dy, (179)

in which

B±(k, y) = 1
2πi∫

∞

−∞
e−ik′yE(±ik′)

⎛
⎝

ei(k′−k)xE(−i(k′ − k))
k′ − k

− e−i(k′−k)xE(i(k′ − k))
k′ − k

+ ei(k′+k)xE(−i(k′ + k))
k′ + k

− e−i(k′+k)xE(i(k′ + k))
k′ + k

⎞
⎠

dk′.

By straightforward calculations, we find that

B+(k, y) = (sgn(x − y)e(y, k) + sgn(x + y)e(−y, k))

+ 8ϖδ(x + y)e(−y, k)
⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠
+ 4ϖ sgn(x + y) d

dy
e(−y, k)

⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠

(180)

and

B−(k, y) = B+(k,−y) = (sgn(x + y)e(−y, k) + sgn(x − y)e(y, k))

+ 8ϖδ(x − y)e(y, k)
⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠
+ 4ϖ sgn(x − y) d

dy
e(y, k)

⎛
⎜
⎝

0 0

1 0

⎞
⎟
⎠

. (181)
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Taking half the sum of the ± representations in (179), we get

4𝒜 (x, k) − 4
○
e(x, k) = −1

2∫
x

−x
K(x, y)B+(k, y)dy.

Substituting (180) and (181) into this equation and using that e(x, k) + e(−x, k) = 2 cos kx I2, we get

4𝒜 (x, k) − 4
○
e(x, k) = −∫

x

−x
K(x, y′)E(2δ(x + y′))e(−y′, k)dy′. (182)

We multiply this equation by 2j(k)e(y, k)k − 2πi∑N
j=1δ(k − kj)Cje(y, kj) and obtain

4𝒜 (x, k)j(k)2e(y, k)k − 8πi𝒜 (x, k)
N

∑
j=1
δ(k − kj)Cje(y, kj)

− 4
○
e(x, k)j(k)2e(y, k)k + 8πi

∗
e(x, k)

N

∑
j=
δ(k − kj)Cje(y, kj)

= −∫
x

−x
K(x, y′)E(2δ(x + y′))e(−y′, k)dy′

⎛
⎝

j(k)2e(y, k)k − 2πi
N

∑
j=1
δ(k − kj)Cje(y, kj)

⎞
⎠

.

Dividing this equation by 2πi and integrating over k lead to (172). More precisely, we first integrate over [−R, R] and establish that the integrals
are uniformly bounded after which we interchange orders of integration and take the limit R→∞.

As

∫
x

−x

⎛
⎜
⎝

0 0

2ϖk sin(ky′) 0

⎞
⎟
⎠

⎛
⎜
⎝

I2 +
⎛
⎜
⎝

0 0

4ϖδ(x + y′) 0

⎞
⎟
⎠

⎞
⎟
⎠

cos(k′y′)dy′ = 0

the representation of g, in fact, can be simplified,

g(x, y) = 1
πi∫

∞

−∞
cos(kx)j(k)e(y, k)kdk −

N

∑
j=1

cos(kjx)Cje(y, kj). (183)

Part II: (172) has a unique solution. We note that g(x, y) = 0 for ∣y∣ > x and that Eq. (172) is of Volterra type. We consider x as parameter
and K(x, y) as unknown function. For unique solvability, we need to prove that, for some constant C > 0 (dependent on x),

sup
∣y∣≤x
∫

x

−x
∣E(2δ(x + y′))g(−y′, y)∣dy′ ≤ C. (184)

Using a special form of matrices g and E, it follows that (184) is satisfied. Then, using the Volterra property, it follows that the solution to the
homogeneous problem is trivial and the solution to (172) can be constructed by iteration. This completes the Proof of Proposition V.1. ◻

B. Recovery of GH

Here, we prove that GH is determined by the two leading orders in asymptotic expansion of the Jost solution F at x = 0 as ξ →∞, ξ ∈𝒦+.
The asymptotic expansion of F(0, ξ) is given by (101)–(103) upon substituting x = 0,

F(0, ξ) = ξ
⎛
⎜
⎝
− μ0

ω2

⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

+ 1
ξ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

GH
11
(λ0 + μ0)H
2(λ0 + 2μ0)

+GH
21 0

GH
12
(λ0 + μ0)H
2(λ0 + 2μ0)

+GH
22 0

⎞
⎟⎟⎟⎟
⎠
− 1

2
μ0

ω2∫
H

0
V(y)dy

⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

+ o( 1
∣ξ∣ )
⎞
⎟
⎠

.

The expression for V(y) can be directly deduced from the analysis in Sec. III. From the leading order term in this asymptotic expansion, we
recover GH

11 and GH
12.
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In the next order term, we write as S(ω) = X + ω−2Y , where X and Y are independent of ω and given by

X =
⎛
⎜⎜⎜⎜
⎝

GH
11
(λ0 + μ0)H
2(λ0 + 2μ0)

+GH
21 0

GH
12
(λ0 + μ0)H
2(λ0 + 2μ0)

+GH
22 0

⎞
⎟⎟⎟⎟
⎠
− μ0

2 ∫
H

0
((G−1(y)B2(x)G(x))T

−
⎛
⎜⎜⎜
⎝

G−1
0 (y)

⎛
⎜⎜⎜
⎝

− 1
μ0

0

0 − 1
λ0 + 2μ0

⎞
⎟⎟⎟
⎠

G0(x)
⎞
⎟⎟⎟
⎠

T
⎞
⎟⎟⎟
⎠

dy
⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

(185)

and

Y = −1
2
μ0∫

H

0
(G−1B1G)T

dy
⎛
⎜
⎝

GH
11 GH

11

GH
12 GH

12

⎞
⎟
⎠

. (186)

Using S(ω1), S(ω2) for any two frequencies ω1 ≠ ω2 ∈ R+, we get

Y = 1
1
ω2

1
− 1

ω2
2

(S(ω1) − S(ω2))

and, then, simply, X = S(ω1) − ω−2
1 Y . We multiply X from the right with ( 1 1

−1 −1
) and obtain

X
⎛
⎜
⎝

1 1

−1 −1

⎞
⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

GH
11
(λ0 + μ0)H
2(λ0 + 2μ0)

GH
11
(λ0 + μ0)H
2(λ0 + 2μ0)

GH
12
(λ0 + μ0)H
2(λ0 + 2μ0)

GH
12
(λ0 + μ0)H
2(λ0 + 2μ0)

⎞
⎟⎟⎟⎟
⎠
+
⎛
⎜
⎝

GH
21 GH

21

GH
22 GH

22

⎞
⎟
⎠

. (187)

As we already recovered GH
11 and GH

12 and GH
11GH

22 −GH
12GH

21 = 1, we obtain GH
21 and GH

22.

C. Recovery of λ and μ

With the recovery of GH , we recover Q0 and, hence, Q. Finally, we note that Q = Q(ω) = Q1 + ω2Q2 with Qj related to BT
j in (21) and (22)

by similarity transformations. Then, if Q(ω1), Q(ω2) are known for some frequencies ω1 ≠ ω2 ∈ R+, we obtain

Q2 =
1

ω2
1 − ω2

2
(Q(ω1) −Q(ω2))

and, then,

Tr Q2 = −
1
μ
− 1
λ + 2 μ

and det Q2 =
1
μ

1
λ + 2 μ

,

wherefrom λ and μ are recovered.

ACKNOWLEDGMENTS
M.V.d.H. was supported by the Simons Foundation under the MATH + X program, the National Science Foundation under Grant No.

DMS-1815143, and the corporate members of the Geo-Mathematical Imaging Group at Rice University.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

J. Math. Phys. 63, 031505 (2022); doi: 10.1063/5.0055827 63, 031505-29

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

APPENDIX A: RIEMANN SURFACE

For the introduction of the proper Riemann surface, we refer to the work of Chapman.21 We denote by
√

z the principal branch of the
square root that is positive for z > 0 and with the cut along the negative real axis. For the analytic continuation in ∣ξ∣ ∈ R+, we replace ∣ξ∣ by
ξ ∈ C. We define qS(ξ) by choosing the branch with

qS(ξ) ∈ iR+ for real-valued ξ > ω
√μ0

and qS(ξ) ∈ iR− for real-valued ξ < − ω
√μ0

.

Then,
Im qS(ξ) > 0 for Re ξ > ω

√μ0
and Im qS(ξ) < 0 for Re ξ < − ω

√μ0
.

We note that Im qS(ξ) = 0 for ξ ∈ [− ω√μ0
, ω√μ0

] ∪ iR.
We let22

𝒦S ∶= C/([−
ω
√μ0

,
ω
√μ0
] ∪ iR).

We observe that qS : ξ →
√

ω2

μ0
− ξ2 is a conformal mapping 𝒦S →𝒦S and satisfies

qS(ξ) = iξ − iω2

2μ0ξ
+ O( 1

∣ξ∣2 ) as ∣ξ∣→∞. (A1)

Moreover, qS maps the cut [− ω√μ0
, ω√μ0

] on the real axis onto itself and the imaginary axis onto the complement of this cut on the real axis,

qS(iR) = (−∞,− ω
√μ0
] ∪ [ ω

√μ0
,∞). (A2)

Furthermore,

qS(iR±) = R∓/(−
ω
√μ0

,
ω
√μ0
), qS(R±/(−

ω
√μ0

,
ω
√μ0
)) = iR±,

and
±Im(qS(ξ)) > 0 iff ξ ∈𝒦S,± = {ξ ∈𝒦S : ±Re ξ > 0}.

The Riemann surface for qS(ξ) is obtained by joining the upper and lower rims of two copies of C/[(−∞,− ω√μ0
] ∪ [ ω√μ0

,∞)] cut along
the (−∞,− ω√μ0

] ∪ [ ω√μ0
,∞) in the usual (cross-wise) way. Instead of this two-sheeted Riemann surface, it is more convenient to work on the

cut plane 𝒦S and half planes 𝒦S,± such that qS(𝒦S,±) = C± ∶= {z ∈ C : ±Imz > 0}. The “upper” (physical) sheet for qS corresponds to 𝒦S,+.
We collect below some useful properties,

Im qS(ξ) > 0 iff ξ ∈𝒦S,+,

for ξ ∈ C/([− ω
√μ0

,
ω
√μ0
] ∪ iR) : qS(ξ) = −qS(−ξ) = −qS(ξ),

for ξ ∈ [− ω
√μ0

,
ω
√μ0
] : qS(ξ ± i 0) = ∓∣ω

2

μ0
− ξ2∣

1/2
,

for ξ ∈ iR, : qS(ξ ± 0) = ∓∣ω
2

μ0
− ξ2∣

1/2
,

for ξ ∈ (−∞,− ω
√μ0
] ∪ [ ω

√μ0
,∞) : qS(ξ) = ±i∣ξ2 − ω

2

μ0
∣
1/2

, ±ξ ≥ ω
√μ0

.

(A3)

By replacing μ0 with σ0 ∶= λ0 + 2μ0, we get analogous properties for quasimomentum,

qP(ξ) =
√

ω2

σ0
− ξ2.

J. Math. Phys. 63, 031505 (2022); doi: 10.1063/5.0055827 63, 031505-30

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Corresponding objects get the subscript P instead of S. We introduce

𝒦P ∶= C/([−
ω√
σ0

,
ω√
σ0
] ∪ iR).

We observe that qP : ξ →
√

ω2

σ0
− ξ2 is a conformal mapping 𝒦P →𝒦P. We obtain the Riemann surface ℛ for both qP and qS by joining the

separate Riemann surfaces for qP and qS so that qP and qS are single-valued holomorphic functions of ξ. We note that ℛ is a four-fold cover
of the plane. We identify the part of ℛ where Im qP > 0, Im qS > 0 with the physical (“upper”) sheet, which coincides with 𝒦S,+. Each sheet
can be identified by the signs of Im qS and Im qP. We omit the subscript S in the notation and write 𝒦 =𝒦S and 𝒦+ =𝒦S,+ for the cut plane
and the part of the cut plane corresponding to the physical sheet, respectively. We note that ξ has the meaning of Regge parameter.

In the main text, we introduce ζ = ξ2. We note that Im qS(ζ) > 0, Im qP(ζ) > 0 for ζ ∈ Π+, where

Π+ = C/(−∞,
ω2

μ0
] (A4)

corresponds to the physical sheet, while (𝒦+)2 = Π+. We introduce the notation

Π+,1 = Π+/{
ω2

μ0
}, 𝒦+,1 =𝒦+/{

ω
√μ0
}.

We will use both parameters ξ (Jost solutions and Jost function) and ζ (Weyl solutions and Weyl matrix) and both cut planes 𝒦+ and Π+,
switching between them when it appears natural.

APPENDIX B: GREEN’S FUNCTION

We have
G(x, y) = [F(1)(x, y) F(2)(x, y)],

where F(1)(x, y), F(2)(x, y) are solutions of (39) for x > y, with boundary values

F(1)(y, y) =
⎛
⎜
⎝

0

0

⎞
⎟
⎠

, (F(1))′(y, y) =
⎛
⎜
⎝

1

0

⎞
⎟
⎠

, F(2)(y, y) =
⎛
⎜
⎝

0

0

⎞
⎟
⎠

, (F(2))′(y, y) =
⎛
⎜
⎝

0

1

⎞
⎟
⎠

.

By explicit construction, we obtain the following.

Lemma B.1. The following holds true:

G(x, y) =A(x) sin((x − y)qP)
qP

+B(y) sin((x − y)qS)
qS

+C cos((x − y)qS) − cos((x − y)qP)
ω2 , (B1)

where

A(x) =
⎛
⎜⎜⎜
⎝

GH
12(

c0

2
GH

11(x −H) −GH
21) GH

11(−
c0

2
GH

11(x −H) +GH
21)

GH
12(

c0

2
GH

12(x −H) −GH
22) GH

11(−
c0

2
GH

12(x −H) +GH
22)

⎞
⎟⎟⎟
⎠

,

B(y) =
⎛
⎜⎜⎜
⎝

GH
11(

c0

2
(−y +H)GH

12 +GH
22) −GH

11(
c0

2
(−y +H)GH

11 +GH
21)

GH
12(

c0

2
(−y +H)GH

12 +GH
22) −GH

12(
c0

2
(−y +H)GH

11 +GH
21)

⎞
⎟⎟⎟
⎠

,

C =
⎛
⎜
⎝

μ0GH
12GH

11 −μ0(GH
11)2

μ0(GH
12)2 −μ0GH

12GH
11

⎞
⎟
⎠

[cf. (32)].

We note that A(x) and B(y) are first-order matrix-valued polynomials in x and y, respectively, while C is a constant matrix.
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1. Homogeneous half space
In a homogeneous half space when H = 0, with μ = μ0 and GH

12 = GH
21 = 0, GH

11 = GH
22 = 1, (B1) reduces to

G(x, y) =
⎛
⎜⎜⎜
⎝

c0

2
(−y) sin((x − y)qS)

qS
− c0

2
[x sin((x − y)qP)

qP
− y

sin((x − y)qS)
qS

] + μ0[
cos((x − y)qP) − cos((x − y)qS)

ω2 ]

0
sin((x − y)qP)

qP

⎞
⎟⎟⎟
⎠

. (B2)

APPENDIX C: WEYL MATRIX AND NEUMANN-TO-DIRICHLET MAP OF THE RAYLEIGH SYSTEM

In this appendix, we study relationships between the orginal and transformed problems, that is, the Jost and Weyl solutions and the Jost
function before the Markushevich transform. Consistent with the notation in (13), we let

w(x, ξ) =M−1(F)(x, ξ), (C1)

where F signifies the Jost solution [cf. (52)], and we write

w = [wP wS] and w̃− = [w̃−P w̃−S ] (C2)

[cf. (6)], supplemented with boundary conditions (9) and (10),

B(w) =
⎛
⎜
⎝

b−(wP) b−(wS)
a−(wP) a−(wS)

⎞
⎟
⎠
=
⎛
⎜
⎝

0 i

−1 0

⎞
⎟
⎠

⎛
⎜
⎝

a−(w̃−P ) a−(w̃−S )
b−(w̃−P ) b−(w̃−S )

⎞
⎟
⎠

. (C3)

In the right-most equality, we reverted to the original notation [cf. (6)]. Setting χ = B(w), (38) yields the expression for the Jost function,

FΘ(ξ) = (Da(ξ))−1B(w). (C4)

In a likewise manner, we obtain for the adjoint problem,

Fa
Θ(ξ) = (D(ξ))−1B(w). (C5)

Substituting (C3) into (C4) then gives

FΘ(ξ) =
1

2μ0μ(0)ξ

⎛
⎜⎜
⎝

μ(0) 0

2μ0
μ′(0)
μ(0) 2μ0ξi

⎞
⎟⎟
⎠

⎛
⎜
⎝

a−(w̃−P ) a−(w̃−S )
b−(w̃−P ) b−(w̃−S )

⎞
⎟
⎠

. (C6)

Substituting (C3) into (C5) gives

Fa
Θ(ξ) =

1
2μ0μ(0)ξ

⎛
⎜
⎝
−2μ0ξ 0

0 −μ(0)i

⎞
⎟
⎠

⎛
⎜
⎝

a−(w̃−P ) a−(w̃−S )
b−(w̃−P ) b−(w̃−S )

⎞
⎟
⎠

. (C7)

We subject the Weyl solution to M−1 [cf. (14)], substitute (70), and introduce

r(x, ξ) =M−1(Φ)(x, ξ) = θ(x, ξ) + ψ(x, ξ)M(ξ), (C8)

with
θ(x, ξ) =M−1(S)(x, ξ), ψ(x, ξ) =M−1(φ)(x, ξ). (C9)

Using the definition of Weyl solution, we find that
w(x, ξ) = r(x, ξ)FΘ(ξ), (C10)

where we write
r = [rP rS]. (C11)

Equation (C4) implies that

B(r) =
⎛
⎜
⎝

b−(rP) b−(rS)
a−(rP) a−(rS)

⎞
⎟
⎠
= χI = Da(ξ),

J. Math. Phys. 63, 031505 (2022); doi: 10.1063/5.0055827 63, 031505-32

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where we used (C3). Substituting (C4) into (C10), we get

w(x, ξ) = r(x, ξ)(Da(ξ))−1B(w). (C12)

Now, recalling the relation between a solution to system (7)-(8) [cf. (C11)],

r●(x, ξ) =
⎛
⎜
⎝

r●,1(x, ξ)
r●,2(x, ξ)

⎞
⎟
⎠

,

and a solution to system (2)-(3),

r̃●(x, ξ) =
⎛
⎜
⎝

ir●,1(−Z, ξ)
r●,2(−Z, ξ)

⎞
⎟
⎠

,

where ● stands for either P or S, the Neumann-to-Dirichlet map for the Rayleigh problem is given by

ND(ξ) = r̃(0, ξ) (Da(ξ))−1
⎛
⎜
⎝

0 i

−1 0

⎞
⎟
⎠
= (θ̃(0, ξ) + ψ̃(0, ξ)M(ξ))(Da(ξ))−1

⎛
⎜
⎝

0 i

−1 0

⎞
⎟
⎠

=

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

i
μ0

μ(0) 0

0 0

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝

0
1
2

i

− μ0

μ(0) ξ 0

⎞
⎟⎟
⎠

M(ξ)

⎤⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜
⎝

1
2μ0ξ

0

μ′(0)
μ2(0)

1
ξ

i
μ(0)

⎞
⎟⎟⎟
⎠

(C13)

[cf. (C8)]. This equation provides a direct relationship between the Weyl matrix and the (observable) Neumann-to-Dirichlet map and, more
specifically, between the associated spectral data as θ and ψ are entire functions in ξ. Substituting (61) into the equation above yields the
Neumann-to-Dirichlet map in a homogeneous half space.
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