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ABSTRACT
Consider an isotropic elastic medium X � R

3 whose Lam�e parameters
are piecewise smooth. In the elastic wave initial value inverse problem,
we are given the solution operator for the elastic wave equation, but
only outside X and only for initial data supported outside X. Using the
recently introduced scattering control series in the acoustic case, we
prove that piecewise smooth Lam�e parameters are uniquely deter-
mined by this map under certain geometric conditions.
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1. Introduction

The wave inverse problem asks for the unknown coefficient(s), representing wave
speeds, of a wave equation inside a domain of interest X, given knowledge about the
equation’s solutions (typically on @X). Traditionally, the coefficients are smooth, and
the data is the Dirichlet-to-Neumann (DN) map, or its inverse. The main questions
are uniqueness and stability: can the coefficients be recovered from the Dirichlet-to-
Neumann map, and is this reconstruction stable relative to perturbations in the
data? In the case of a scalar wave equation with smooth coefficients, a number of
results by Belishev, Stefanov, Vasy, and Uhlmann [1–3] have answered the question
in the affirmative. For the piecewise smooth case, a novel scattering control method
was developed in [4] in order to show in [5] that uniqueness holds as well for piece-
wise smooth wave speeds with conormal singularities, under very mild geometric
conditions. We term that particular method as blind scattering control since it
assumes absolutely no knowledge of the wave speed in the interior region, and uses
only measurements exterior to X. Our goal is to extend these results to the isotropic
elastic system. This presents new difficulties due to the lack of the sharp form of the
unique continuation result of Tataru since we have to deal with two different
wave speeds.
In the elastic setting, or for that matter, any hyperbolic equation with multiple wave

speeds, the story is far from complete. Consider the isotropic elastic wave equation in a
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bounded domain X with smooth boundary. The wave operator for elastodynamics is
given as Q ¼ q@2

t � L with

L ¼ r � ðkdiv � Idþ 2l brÞ,

q is the density, k and l are the Lam�e parameters, and br is the symmetric gradient

used to define the strain tensor for an elastic system via bru ¼ ðruþ ðruÞTÞ=2 for a
vector valued function u. Operator Q acts on a vector-valued distribution uðx, tÞ ¼
ðu1, u2, u3Þ, the displacement of the elastic object. For the isotropic, elastic setting with
smooth parameters, the uniqueness question was settled by Rachele in [6] and Hansen
and Uhlmann [7]. First, Rachele proved that one can recover the jet of k, l, and q at
@X explicitly. In [6, 8], she showed that one can recover the P and S wave speeds in X
provided the hyperbolic DN map is known on the whole boundary and assuming strict
geometry that preclude caustics. Hansen and Uhlmann studied the problem with a
residual stress, allowing conjugate points and caustics, and showed that one can recover
both lens relations and derived the consequences of that. These are all results for the
global problem where the DN map is known on the whole boundary. Stefanov, Vasy,
and Uhlmann [3, 9] have extended these results to the local inverse problem using the
Uhlmann-Vasy methods on the local geodesic ray transform [3] and using a pseudoli-
nearization first developed in [2]. They are able to do a local recovery of both wave
speeds that depend on three parameters k, l, q: There are also related inverse problems
in thermoacoustic tomography where one tries to recover a source (initial condition)
rather than a PDE parameter [10–14].
No such results are known for when the elastic parameters have interfaces (conormal

singularities). Even the blind scattering control method, which is very similar to bound-
ary control and was used to prove uniqueness in [5] for the acoustic setting, does not
readily apply here. The reason is very simple: although unique continuation results hold
for the elastic setting, they are far weaker, being based on the slowest wave speed, and
so the boundary control method is not known to work since it is not possible, or at
least not known, how to decouple the elastic system completely even though it is easy
to do that microlocally. In [15], the authors define a Marchenko-type algorithm via a
Neumann series to eliminate and control multiple scattering in the elastic setting.
However, it is not mathematically rigorous and they assume knowledge of first arrival
times corresponding to purely transmitted P waves, S waves, and certain mode con-
verted waves. This is a strong assumption since a single wave packet entering X produ-
ces numerous scattered waves that one measures at the surface and one cannot a priori
associate travel times with a particular primary reflected wave versus a secondary
reflected wave.
For another approach, a Lam�e type of system having the same principal part which

can be decoupled fully was studied by Belishev in [16] and the boundary control
method (see [1, 17,18]) was used for unique recovery. Such an approach only worked
because the system was able to fully decouple so that the scalar boundary control meth-
ods would apply to the decoupled constituents. Therefore, it fails for the piecewise
smooth setting where the coupling of different modes at the interfaces is unavoidable,
and so it does not simplify matters here to study Belishev’s Lam�e type system with
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piecewise smooth parameters. Instead, we focus on a geometric uniqueness problem
analogous to [9] and employ a layer stripping argument to utilize the results in [3, 9] in
the smooth case. Our proof is based on techniques from microlocal analysis. While this
paper was under review, we became aware of another submission [19] where the
authors carefully construct solutions microlocally of the transmission problem at a
nested set of interfaces, and apply their analysis to the conditional recovery of P- and S-
wave speeds in a layer-wise way.
The main result of this paper is that under certain geometric assumptions, we show

unique determination of Lam�e parameters that contain singularities via microlocal ana-
lysis, scattering control, and a layer stripping argument akin to [9]. Most proofs are
microlocal to avoid using unique continuation results, but we require an important geo-
metric assumption, which is an extended convex foliation condition (see §3 for the
smooth setting) for each wave speed cP=S: As mentioned in [9], for a particular wave
speed, this condition relates to the existence of a function with strictly convex level set.
In particular, this holds for simply connected compact manifolds with strictly convex
boundaries such that the geodesic flow has no focal points (lengths of non-trivial Jacobi
fields vanishing at a point do not have critical points), in particular if the curvature of
the manifold is negative (or just non-positive). Also, as explained in [20], if X is a ball
and the speeds increase when the distance to the center decreases (typical for geophys-
ical applications), the foliation condition is satisfied.
The other key ingredient is that even though a lens map does not make sense with

internal multiples present, one may use a scattering control-like process introduced in
[4] to recover lens data for singly reflected rays. This construction will also be entirely
microlocal and circumvents the need for unique continuation results. We denote by uh
to be the solution to the homogeneous elastic equation on R

3 with initial time Cauchy
data h. All of our function spaces are of the form Xð�;C3Þ since we have vector valued
functions in the elastic setting, but throughout the paper, we will not write the vector
valued part C3 to make the notation less burdensome. Let �X

c
be the complement of �X

and we define the exterior measurement operator F : H1
c ð�X

cÞ� L2c ð�X
cÞ !

C0ðRt;H1ð�XcÞÞ \ C1ðRt; L2ð�X
cÞÞ as

F : h0 ! uh0ðtÞj�Xc :

Due to a technicality, we use slightly different sets for our measurement region than
�X
c
in the main body, but the idea is the same. The operator F only measures waves

outside X after undergoing scattering within X, and it is associated to a particular elas-
tic operator Q with a set of parameters. Given a second set of elastic parameters ek, el we
obtain analogous operators eQ and eF : Denote the associated P=S wave speeds cP=S andecP=S: From here on, we use P=S to refer to either subscript or wave speed. In addition,
to avoid the technical difficulties of dealing with corners or higher codimension singu-
larities of cP=S, we always assume that the singular support of cP=S,ecP=S lies in a closed,
not necessarily connected hypersurface in X; we will deal with corners and edges in a
separate paper.
We assume the Lam�e parameters kðxÞ and lðxÞ satisfy the strong convexity condition,

namely that l > 0 and 3kþ 2l > 0 on �X: We also assume that the parameters k, l lie
in L1ðXÞ and that k, l are piecewise smooth functions that are singular only on a set of
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disjoint, closed, connected, smooth hypersurfaces Ci of �X, called interfaces. We let C ¼
[Ci be the collection of all the interfaces. The two wave speeds are cP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and cS ¼

ffiffiffiffiffiffiffiffi
l=q

p
, where q is the density. In particular, this ensures that cP > cS on �X:

As in [4], we will probe X with Cauchy data (an initial pulse) concentrated close to
X with a particular polarization, in some smooth domain H � X: Since we take meas-
urements outside X, let us extend the Lam�e parameters to all of Rn so that they are
smooth outside �X and our wavefields are now well-defined there as well. We will
denote by

gP=S ¼ c�2
P=Sdx

2

the two different metrics associated to the rays. As in [4], we can define the distance
functions dP=Sð�, �Þ corresponding to the respective metrics by taking the infimum over
all lengths of the piecewise smooth paths between a pair of points. Here and throughout
the paper, a P=S subscript indicates either P or S subscripts.
Now, define the P-depth d�HðxÞ of a point x inside H:

d�HðxÞ ¼
þdPðx, @HÞ, x 2 H,
�dPðx, @HÞ, x 62 H:

:

�

We use the (rough) metric gP since finite speed of propagation for elastic waves is
based on the faster P-wave speed. We will prove the following result.

Theorem 1.1. Assume F ¼ eF , and that cP=S,ecP=S satisfy the extended geometric foliation
condition (see Section 3). Then cP ¼ ecP and cS ¼ ecS inside X.
Via a layer stripping approach, we will obtain local travel time data and lens relations

at the current layer from F 1. To do this, we will employ an analogue of the microlocal
scattering control construction appearing in [4, section 5] to create specific P or S waves
at the current, deepest layer to extract local travel time data and lens relations without
having the internal multiples interfere with recovery of this data. Without such techni-
ques, one would not be able to distinguish waves that contain this subsurface travel
time data from internal multiples created from the conormal singularities of the
Lam�e parameters.

Remark 1.2. We note that a large portion of the proof is in principle constructive. In
Appendix B we use the calculus of Fourier integral operators (FIOs) to explicitly con-
struct initial sources that allow us to extract local travel time data in the interior. As we
layer strip, we progressively obtain new information in the interior in order to make
such constructions. Using local travel time data, the authors in [3, 9] construct the nor-
mal operator of the local ray transform that allows local reconstruction of a first order
perturbation of the wave speed. It should be possible to generate a reconstruction algo-
rithm in a future work using some of our constructions here and those in [3].

1The fact that the interfaces are not dense makes this possible theoretically in the sense that there will exist an open
set of rays at the current layer that do not cross any interfaces after a finite time when they are close to being tangent
to the layer.
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Remark 1.3. We note that our arguments here are microlocal while in a previous paper
[5] for the scalar wave equation, we used exact constructions that allowed for a full
reconstruction algorithm as well. We did not need the extended convex foliation condi-
tion in the acoustic-wave case [5] as we could employ strong unique continuation. We
could follow a similar strategy in the elastic-wave case for the slow (S-wave) domain of
influence only. However, this would only allow partial elimination of scattering in the
elastic case (based on the slow domain of influence) and not the full control necessary
for this problem. Thus, we avoid unique continuation altogether by working with
microlocal solutions and studying wavefront sets.

Index of notation
Due to numerous new notation in this manuscript, we provide a brief index on the
symbols we use with the page number they are introduced. If a symbol is used infre-
quently, we list the other pages it appears.

Symbol Summary Pages

X The domain representing the elastic object 1
Q The elastic wave operator 1
F The exterior measurement operator 2
cP=S The P- and S- wave speeds 3
Ci The i’th interface 3
C Collection of all the interfaces 3
H Small neighborhood of X 3
gP=S Metric corresponding to the P=S wave speeds 3
d�HðxÞ The depth function corresponding to the P wave speed 3
F Solution operator to the elastic wave initial value problem 6
Rs Propagator operator that propagates Cauchy data by s units of time. 6
� Time reversal operator that acts on Cauchy data 6
RP=S The P=S characteristic sets 6
q Convex foliation function 7
LP=S, sðx, nÞ subsurface lens relation within Xs 7
Xs Subdomains of X determined by the foliation function q 8
Rs A leaf of the foliation; that is q�1ðsÞ 8
T�6X Set of foliation upward/downward covectors 8,10
lP=S, sðx, nÞ subsurface travel time used to measure boundary distances on Xs 9
Z A disjoint union of connected components of R3 n C so that @Z contains two copies of

the interface
10

Z A doubled space of Z to use for the two components of Cauchy data. 10
JC!S Cauchy to solution operator 10
JC!Sþ forward Cauchy to solution operator 10
JC!@ Cauchy to boundary map 10
JC!@þ forward Cauchy to boundary map 10
J@!S boundary to solution map 11
PP=S Microlocal projectors of an elastic wavefield u onto the P=S-characteristic set 11
J@!@ boundary to boundary propagator map; propagates boundary data to the next boundary that

the waves intersect
11

MR=T reflection and transmission operators 12
S Set of covectors in T�X such that every unutilized bicharacteristic belonging to a broken

bicharacteristic through the covector is ðþÞ-escapable
14

dsP=Sð�, �Þ P=S distance function restricted to Xs � Xs 19

DTþ
k, Ph0 directly transmitted constituent of the wavefield 18, 29
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2. Preliminary setup

We will use this section to give the basic definitions and setup for the main theorem.
Recall from the introduction that X is a bounded region in R

3 with smooth bound-
ary. It represents a linearly elastic, inhomogeneous, isotropic object. We will add to the
initial pulse a Cauchy data control (a tail) supported outside H, whose role is to remove
multiple reflections up to a certain depth, controlled by a time parameter T 2
0, 12 diamPX
� �

: This will require us to consider controls supported in a sufficiently large
Lipschitz neighborhood !(R

3 of �H that satisfies dSð@!, �HÞ > 2T and is otherwise
arbitrary. It will be useful to define H? ¼ fx 2 !jd�HðxÞ < 0g:

2.1. Elastic waves

Recall that the wave operator for elastodynamics Q discussed in the introduction is Q ¼
q@2

t � L with

L ¼ r � ðkdiv � Idþ 2l brÞ:

Let us also recall the characteristic set of Q defined in [6] and [7]. It consists of two
mutually disjoint sets RP,RS � T�

R
3 where RP=S are the characteristic sets for the scalar

wave operators c�2
P=S@

2
t � D:

Let eC be the space of Cauchy data of interest:eC ¼ H1
0ð!;C3Þ� L2ð!;C3Þ

although we will suppress the “C3” notation when it is clear from the context. We equip
the space with the elastic energy inner product

hðf0, f1Þ, ðg0, g1Þi ¼
ð
X

f1 � �g 1 þ kðxÞdivðf0Þdivð�g 0Þ þ 2lðxÞ brf0 : br�g 0
� �

dx:

Within eC, define the subspaces of Cauchy data supported inside and outside Ht:

H ¼ H1
0ðHÞ� L2ðHÞ, eH? ¼ H1

0ðH?Þ� L2ðH?Þ:

Define the energy of Cauchy data h ¼ ðh0, h1Þ 2 eC in a subset W � R
3 :

EWðhÞ :¼
ð
W

kðxÞjdivðh0Þj2 þ lðxÞj brh0j2 þ jh1j2
� �

dx:

Next, define F to be the solution operator for the elastic wave initial value problem:

F : H1ðRnÞ� L2ðR3Þ ! CðR,H1ðR3ÞÞ Fðh0, h1Þ ¼ u s:t:
Qu ¼ 0,
u„t¼0 ¼ h0,
@tu„t¼0 ¼ h1:

8<: (2.1)

Let Rs propagate Cauchy data at time t¼ 0 to Cauchy data at t¼ s:

Rs ¼ ðF, @tFÞjt¼s : H
1ðR3Þ� L2ðR3Þ ! H1ðR3Þ� L2ðR3Þ: (2.2)

Now combine Rs, with a time-reversal operator � : eC ! eC, defining for a given T

R ¼ � 	 R2T , � : ðf0, f1Þ 7! ðf0, � f1Þ:
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In our problem, only waves interacting with ðX, l, kÞ in the time interval ½0, 2T
 are
of interest. Despite not having full unique continuation, one is still able to construct
parametrices for the elastic equation that are approximate solutions to the elastic equa-
tion. With such parametrices, we will use the principles from scattering control to
obtain “subsurface” travel time data by eliminating certain scattered constituents micro-
locally. This is precisely the task we pursue in the remainder of the paper. First, we
develop our main technical tool, which is the parametrix for elastic wave solutions.

3. Foliation condition

The main theorem is showing that both the P and S wave speeds are determined by the
outside-measurement-operator under certain geometric conditions that give us access to
all the requisite rays. We use this section to describe these geometric conditions.
First, since our proof of the main theorem will require recovery of all the parameters in

a layer stripping argument, we make a simplifying assumption and assume the density

q ¼ 1

throughout the paper.

Remark 3.1. We needed to assume the density q¼ 1 for the proof of the main theorem
in order to recover all Lam�e parameters during the layer stripping procedure, thereby
giving us access to the full wave solution in the known layers. In [21], Rachele shows
how one may use “lower order polarization” data to recover the density q as well under
certain conditions. However, this was in the smooth setting and the result was global
since it utilized a global inversion result of an X-ray transform of tensor fields. Since
that paper, Stefanov, Uhlmann, and Vasy in [22] have shown that one may also obtain
local inversion results of the X-ray transform on tensors. Hence, it may be possible to
combine Rachele’s argument to obtain local, lower order polarization data containing
information on the density from the outside measurement operator combined with the
result in [22] on the local ray transform on tensors to recover the density q during our
layer stripping procedure. We will pursue this strategy in another work.
Let us recall all the definitions from [5], adapted to the elastic setting. We start by

extending the convex foliation condition to our piecewise smooth setting, keeping in
mind that Ci,C are the interfaces defined in section 2.1.

Definition 3.2. q : �X ! ½0, s0
 is a (piecewise) extended convex foliation for ðX, cP=SÞ
(meaning for both cP and cS simultaneously) if the following conditions hold:

� oX ¼ q�1ð0Þ and q�1ðs0Þ has measure zero;
� q is smooth and dq 6¼ 0 on q�1ðð0, s0ÞÞ n C:
� each level set q�1ðtÞ is geodesically convex with respect to cP and cS when viewed

from q�1ððt,TÞÞ, for t 2 ½0, s0Þ:
� the interfaces of cP=S are level sets of qi, that is Ci � q�1ðtiÞ for some ti.
� q is upper semicontinuous.
� lim supe!0þ cP=Sjq�1ðsþeÞ � lim supe!0þ cP=Sjq�1ðs�eÞ whenever Ci � q�1ðsÞ for

some i and Ci.

686 P. CADAY ET AL.



We say that (cP, cS) satisfies the extended convex foliation condition if there exists a
extended convex foliation for ðX, cP=SÞ:

The last condition, which did not appear in [2], is natural for the case of interfaces. It
ensures that rays do not get trapped due to total internal reflection. This is the analog of
the Herglotz condition extended to jump discontinuities as in [23, Definition 1]. Hence, a
P=S-ray approaching C from “below” (defined below) will get transmitted above the inter-
face. Also, any smooth approximation to cP=S that satisfies the other properties of the
extended foliation condition would automatically satisfy this condition by definition of
geodesic convexity. Other non-trivial examples can be constructed from those described in
[9, 24] for the smooth setting. As mentioned in [9] for the smooth setting, it follows from
the result of [24], that manifolds with no focal points satisfy the regular foliation condi-
tion. Manifolds satisfying the foliation condition are not necessarily simple. Thus, accord-
ing to those results, one may take two (or more) manifolds without focal points that are
each foliated by convex geodesic spheres with defining function q1 and q2 (say). One can
then glue portions of each manifold together at the boundary to create an interface. For
example, say M1 ¼ q�1

1 ð½sa, sb
Þ and M2 ¼ q�1
2 ð½sc, sd
Þ for some sb=d > sc=a > 0: After

possibly a diffeomorphism, one may glue M1 to M2 along q�1
1 ðsaÞ and q�1

1 ðsdÞ so that
these geodesic spheres become an interface. By perturbing the metric slightly if necessary,
one can ensure that the final condition in the extended foliation is satisfied, that is, the
wave speed jump across this boundary has the correct sign.
Having interfaces being part of the foliation allows for some unusual configurations.

In addition, the leaves of the foliation may have intricate, non-trivial topologies and the
geometry can be complicated as well, allowing conjugate points (see below Figure 1).
From now on we assume

Assumption 1. ðX, cP=SÞ satisfy the extended convex foliation condition.

We note that the case where cP and cS have separate foliations does not add much
more generality to the theorem (see Remark 3.3).

Remark 3.3. We are assuming that the level sets of one function q produces an
extended convex foliation for both the cP and cS wave speed. One may wonder whether
this is strictly necessary since we recover the wave speeds one at a time in the proof.
Upon close examination of the main proof, it will be vital that the interfaces coincide
with the leaves of the foliation so that we get the correct scattering behavior that
ensures enough branches of a particular ray return outside X, which is the measurement
region. Thus, we may allow cP and cS to have different foliations, but the foliations

Figure 1. An example of a piecewise convex foliation. Thick lines indicate the interfaces C; thin lines
trace selected level sets of the foliation function q, which is allowed (but not required) to be singular
at C.
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must still coincide at and near each interface. Dealing with interfaces is the main nov-
elty of the paper so allowing different foliations away from the interfaces does not pre-
sent much novelty to our results.

Nevertheless, one may wonder whether the extended convex foliation may be weak-
ened near the boundary since we assume that the interfaces are a positive distance from
the boundary. This is plausible, but the argument to recover the parameters near the
boundary would be different than the one considered here, and would be analogous to
[8]. Since our main concern is dealing with interfaces, we do not pursue that argu-
ment here.
We note that the extended convex foliation condition gives us crucial information on

the reflected and transmitted waves emitted when an incident wave hits an interface.
Indeed, define

Xs ¼ q�1ððs, s0
Þ,
X?

s ¼ q�1ðð0, sÞÞ, Rs ¼ q�1ðsÞ: (3.1)

Also, let R6
s denote the two sides of the interface, where ð�Þ refers to the outside of

Xs (facing decreasing s) and ðþÞ the inside. We also fix such notation for the remain-
der of the paper. We have the corresponding sets of P=S hyperbolic points H6

P=S �
T�C6 (see [7, section 4] for the relevant definitions). The convexity guarantees that
Hþ

P � H�
P with an analogous statement for the S hyperbolic set due to the last condi-

tion in the extended convex foliation definition so that rays do not become trapped due
to total internal reflection. Thus, a P wave hitting Rs from below must produce a trans-
mitted P wave. In fact, it must produce a transmitted S wave as well since cP > cS. The
same holds for an S wave hitting C from below, but a mode conversion in the transmit-
ted wave does not necessarily occur since mode conversions only occurs up to a critical
angle. Thus, there is no total internal reflection from below the interfaces.
First, we need several definitions taken from [5] extended to the elastic setting.

Definition 3.4. A foliation downward (resp. upward) covector ðx, nÞ is one pointing in
direction of increasing (resp. decreasing) q. Define T�

6X to be the associated open sets:

T�
6X ¼ fðx, nÞ 2 T�Xj6hn, dqi > 0g:

Hence, we can speak of covectors ðx, nÞ pointing upward/downward with respect to
the foliation.

Definition 3.5. A (unit-speed) broken geodesic in ðRn, cP=SÞ is a continuous, piecewise
smooth path c : R � I ! R

n such that each smooth piece is a unit-speed geodesic with
respect to either gP or gS on R

n n C, intersecting the interfaces C at discrete set of times ti 2
I: Furthermore, at each ti the intersection is transversal and Snell’s law for reflections and
refraction of elastic waves is satisfied. A broken bicharacteristic is a path in T�

R
n of the form

ðc, c0[Þ, the flat operation taken with respect to gP or gS as appropriate. Note that a broken
geodesic defined this way may contain both P and S geodesic segments. More precisely, a
broken bicharacteristic (parameterized by a time variable) can be written as c : ðt0, t1Þ [
ðt1, t2Þ [ ::: [ ðtk�1, tkÞ ! T�

R
n n C, which is a sequence of bicharacteristics connected by

reflections and refractions obeying Snell’s law: for i ¼ 1, :::, k� 1,
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cðt�i Þ, cðtþi Þ 2 T�
CðRnÞ, ðdiCÞ�cðt�i Þ ¼ ðdiCÞ�cðtþi Þ, (3.2)

where iC : C,!R
n is the inclusion map and cðt7i Þ ¼ limt!t7i

cðtÞ: We always assume
that c intersects the interfaces transversely since for our parametrix construction, we
assume that solutions have wave front set disjoint from bicharacteristics tangential to
any of the interfaces. Each restriction cjðti, tiþ1Þ is a P-bicharacteristic, respectively S-
bicharacteristic if it is a bicharacteristic for @2

t � cPD, respectively @2
t � cSD: We also

call each such bicharacteristic a branch of c; we are sometimes more specific and
write P branch or S branch if we want to specify the associated metric. For each i,
note that cðtiÞ projected to the base manifold is a point of Cki for some ki. A branch
cjðti, tiþ1Þ is reflected if the inner product of c0ðtþi Þ and c0ðt�i Þ (when projected to base
space) with a normal vector to Cki have opposite signs. Otherwise, it is a transmitted
branch. Say that cjðti, tiþ1Þ is a mode converted branch if it is a P=S branch and cjðti�1, tiÞ
is a S/P branch.
A purely transmitted P/S broken geodesic (a concatenation of smooth P or S geode-

sics) is a unit-speed broken geodesic that consists of only P=S transmitted branches;
that is, the inner products of c0ðt�i Þ and c0ðtþi Þ with the normal to C have identical
signs at each ti and they are all either P geodesics or S geodesics. A purely transmitted
P/S broken bicharacteristic is then defined the same way using projection to
base space.

Definition 3.6. Let ðx, nÞ 2 T�
þ
�X n 0, and s ¼ qðxÞ: If there exists a purely transmitted

bicharacteristic c (with either only P or only S branches) and limt!0þ cðtÞ ¼ ðx, nÞ, we
define the subsurface travel time lP=S, sðx, nÞ as the smallest l> 0 for which cðlÞ 2
T�
�X \ T�

Rs
X, and the (subsurface) lens relation LP=S, sðx, nÞ ¼ cðlÞ:

If DP=S is the set of ðx, nÞ for which such c exists, extend LP=S to ðDP=S n 0Þ n T�XjC6

by continuity. On the interfaces T�XjC6
, define LP=S by continuity from below.

Definition 3.7. Let Xr  X be the set of regular points, where x is regular if it is regular
with respect to both cP and cS, as defined in [5, Definition 3.2].

Essentially, x 2 Xr means that there is a purely transmitted broken P and S geodesic
that starts normal to @X and passes through x. We do not go into detail on the defin-
ition of Xr since due to the extended convex foliation assumption, it is a dense set in X,
which is all that we use in our proofs:

Lemma 3.8. If X is compact, then Xr is dense in X under the extended convex foli-
ation assumption.

The proof is by applying Lemma 3.3 in [5] to both P and S speeds.
Since the proof of the main theorem is microlocal, we must first construct a parame-

trix for the elastic operator when the Lam�e parameters are piecewise smooth.

4. Elastic-wave parametrix with scattering

In this section, we construct the elastic wave parametrix in the presence of singularities
in the Lam�e parameters. Most constructions are taken directly from [4] used in the
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acoustic setting and [8] in the elastic setting. Other references to construct such para-
metrices are [25] in an acoustic setting and [26] for a general systems setting.
Let us first recall the interfaces Ci, with C ¼ [Ci: These hypersurfaces separate R

3 n
C into disjoint components fXjg: We assume each smooth piece of k and l extends
smoothly to R

3: In order to distinguish the sides of each hypersurface Ci, consider an
exploded space Z in which the connected components of R3 n C are separate. It may be
defined in terms of its closure, as a disjoint union

�Z ¼ t
j
�Xj, Z ¼ [

j
Xj � �Z:

In this way, @Z contains two copies of each Ci, one for each adjoining Xj.
When restricting to a particular Xj, we may do a microlocal decomposition into the

forward and backward propagators as in the acoustic case [6, 8]. This is because away
from the interfaces, – L is a positive elliptic operator with a pseudodifferential square
root. See [27] for a microlocal construction of this square root. Hence, the construction
in [4, appendix A] applies, so for Cauchy data (f0, f1) (time t¼ 0 say), the Cauchy to
solution map may then be decomposed as

Fðf0, f1Þ � Fþgþ þ F�g�,
gþ
g�

� 	
� C

f0
f1

� 	
where C is a microlocally invertible matrix WDO. The Cauchy data ðgþ, g�Þ may be
interpreted as a single distribution g on a doubled space Z ¼ Zþ t Z�: The correspond-
ing layers are then X6, j:

Combining the elastic parametrix construction in Rachele [6] with the scalar wave
parametrix in the presence of singularities in the sound speed [4], we may construct a
parametrix for RT in regions where no glancing occurs at an interface. We will describe
it as a sum of graph FIOs on Z from sequences of reflections, transmissions, and P=S
mode conversions, along with operators propagating data from one boundary to
another, or propagating the initial data to boundary data.

4.1. Cauchy propagators

To begin, extend each restriction lj ¼ ljXj
, kj ¼ kjXj

to a smooth function on R
3: Each

g 2 T�X6, j is associated with a unique P=S-bicharacteristic cP=Sg ðtÞ in T�
R

3 passing
through g at t¼ 0, which may escape and possibly reenter X6, j, as t ! 61:

To prevent reentry of wavefronts, we introduce a pseudodifferential cutoff for P=S

rays, /P=Sðt, x, nÞ, omitting some details for brevity. Let tP=Se6 , tP=Sr6 denote the first positive

and negative escape and reentry times for the P=S-ray. We let /P=Sðt, cP=Sg ðtÞÞ be identi-

cally one on ½tP=Se� , tP=Seþ 
 and supported in ðtP=Sr� , tP=Srþ Þ: One then modifies /P=S on a small
neighborhood of R� T�@X6, j (the glancing P=S rays) to ensure it is smooth.
We then recall the construction of the Cauchy propagators E6

j (with ± corresponding
to “forward” and “backward” propagators) described in detail in [6]: These are global
FIOs that may be defined on each layer by smoothly extending the elastic parameters in
the layer layer to all of R3 as done in [4]. These solution operators solve
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QEj � 0 on R
3 � ð0,TÞ for j ¼ 0, 1

E0jt¼0 � I, E1jt¼0 � 0
@tE0jt¼0 � 0, @tE1jt¼0 � I

8<:
9=;mod smoothing:

As Fourier integral operators, they are locally given by [6]

ðE6
j hÞl ¼

X
P=S

X3
m¼1

ð2pÞ�3
ð
eiu

6
P=S elmP=S,6ðjÞbhm,6ðnÞdn

� 	
(4.1)

with phase functions uP=Sðt, x, nÞ and matrix-valued amplitudes elmP=S,6ðt, x, nÞ:
Finally, let JC!S be the restriction of / 	 E6

j defined by

/ 	 E6
j :¼

X
P=S

X3
m¼1

ð2pÞ�3/P=Sðt, x,DxÞ
ð
eiu

6
P=S elmP=S,6bhm,6ðnÞdn

� 	
to R� X6, j; this is the desired reflectionless propagator.
We also require a variant, denoted JC!Sþ, of JC!S in which waves travel only forward

in time. For this, replace /P=S with some /P=S
þ supported in ðtP=Se� , tP=Srþ Þ and equal to 1

on ½0, teþ
: Restricting JC!Sþ to the boundary, we obtain the Cauchy-to-boundary map
JC!@ ¼ JC!SþjR�@Z: One may also construct the boundary-to-solution map, denoted
J@!S, analogous to the above using the construction in [8] for the smooth Lam�e param-
eter case.
As in [4, Appendix], J@!S, JC!Sþ 2 I�1=4ðZ ! R� ZÞ, and JC!@ 2 I0ðZ ! R� @ZÞ:

Also, J@!S, JC!Sþ are parametrices for the elastic equation when applied to u such that
WFðuÞ lies in an open set V � T�Z whose P=S-bicharacteristics are disjoint from their
respective glancing sets. Such a set exists since we are only concerned with a compact
time interval and the glancing set is closed. The near-glancing covector set, denoted W,
is T�Z n V:

4.2. P=S-Mode projectors

Since we are in the elastic setting, it will be useful to define microlocal projections PP=S

that microlocally project an elastic wavefield u to the respective P and S characteristic
sets. Locally and for small times, from (4.1), u has a representation

u ¼
X
P=S

X3
m¼1

ð2pÞ�3
ð
eiuP=S elmP=S

bhmðnÞdn� 	

and so we define

PPu ¼
X3
m¼1

ð2pÞ�3
ð
eiuPelmP

bhmðnÞdn:
PS is defined analogously. These definitions can be made global, although it is technic-
ally not necessary in our case since our analysis is done near the characteristic set of
the elastic operator.
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4.3. Boundary propagators

Outgoing solutions from boundary data f 2 D0ðR� ZÞ may be obtained by microlocally
converting boundary data to Cauchy data, then applying JC!S as explained in [4]. We
give a cursory overview of the construction, which translates easily to the elastic setting.
The boundary-to-Cauchy conversion can be achieved by applying a microlocal inverse
of JC!@ , conjugated by the time-reflecting map Ss : t ! s� t for an appropriate s. Let
x ¼ ðx0, x3Þ be boundary normal coordinates near @X6, j: Near any covector b ¼
ðt, x0; s, n0Þ 2 T�@X6, j in the hyperbolic region jsj > cP=Sj jn0j, there exists a unique
P=S-bicharacteristic c passing through b and lying inside X6, j in some time interval
½s, tÞ, s < t:2 Then J@!S may be defined by SsJC!SJ�1

C!@Ss microlocally near b. The inverse
can be seen to exist microlocally away from glancing by “diagonalizing” the Cauchy
propagators as done in [27] and applying the same construction of the scalar wave set-
ting in [4].
On the elliptic region jsj < cP=Sj jn0j define J@!S as a parametrix for the elliptic bound-

ary problem. This may be constructed even in the systems setting as shown in [28].
Applying a microlocal partition of unity, we obtain a global definition of J@!S away
from a neighborhood of both P=S glancing regions jsj ¼ cP=Sj jn0j: It can be proven that
J@!S 2 I�1=4ðR� @Z ! R� ZÞ: Its restriction to the boundary r@ 	 J@!S consists of a
pseudodifferential operator equal to the identity on W and an elliptic graph FIO J@!@ 2
I0ðR� @Z ! R� @ZÞ describing waves traveling from one boundary to another.

4.4. Reflection and transmission

It is well known that trasmitted and reflected waves arise from requiring a weak solu-
tion and its normal traction to be C0 near the interface. Given incoming boundary data
f 2 E0ðR� @Z;C3Þ (an image of JC!@ or J@!@) microsupported near b, we seek data fR,
fT satisfying the interface constraints

f þ fR � ifT ,
ðkindivðvJ@!Svf þ J@!SfRÞÞIdþ 2linrsðvJ@!Svf þ J@!SfRÞÞ � gjR�@Z
� iðkoutdivðJ@!SfTÞId þ 2loutrsJ@!SfTÞ � gjR�@Z

Here, v is time-reversal, so vJ@!Sv is the outgoing solution that generated f. The map
i : @Z ! @Z reverses the copies of each boundary component within @Z, and g denotes
the unit normal vector to the interface in question. The subscripts in and out merely
denote which side of the interface one is considering in the Lam�e parameters.
The second equation above simplifies to a pseudodifferential equation

N1f þ NRfR � NTfT

with operators N1,NR,NT 2 W1ðR� @Z;C3Þ that may be explicitly computed. The sys-
tem may be microlocally inverted in the nonglancing, nonelliptic region3 to recover
fR ¼ MRf , fT ¼ MTf in terms of pseudodifferential reflection and transmission operators
MR, iMT 2 W0ðR� @Z;C3Þ: This is the analog to the reflection and transmission

2That is, its projection to T�@X6, j when it hits @T�X6, j is b, but we abuse notation.
3Here, the nonglancing, nonelliptic region refers to covectors in T�C that are not in the glancing set of either @2

t � c2PD
or @2

t � c2SD, but is in the hyperbolic set of one of the operators.
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operators in the scalar wave case constructed in [13]. As in [13], a solution near an
interface Ci (say) has the form u ¼ uI þ uR þ uT , with uI jC ¼ f , uRjC ¼ fR, uT jC ¼ fT :
The solution is such that uI, uR are microlocally zero on one side of the interface and
uT is zero on the other side. Computing MR and MT from the above interface condi-
tions is rather messy, and it is difficult to see whether or not the above equations lead
to an elliptic boundary problem for MR, MT since it involves a 6� 6 matrix. Instead, in
Appendix A we use the traction formulation of the interface conditions to compute
these operators, which will allow us to use symplectic properties in order to compute
and study the ellipticity of MR and MT.
Specifically, we prove in Appendix A

Lemma 4.1. The operators MR and MT are well defined operators in W0ðR� @Z;C3Þ,
microlocally elliptic in the jointly nonglancing, nonelliptic set on both sides of
an interface.

Significance and list of operators
Since we have so many symbols and operators, let us summarize them for
quick reference.

The construction of the parametrix is now taken directly from [4, Appendix].

4.5. Parametrix

First it will be convenient to define M ¼ MR þ iMT : With all the necessary components
defined, we now set

eF ¼ JC!S þ J@!S

X1
k¼0

ðJ@!@MÞkJC!@ (4.2)

eR2T ¼ r2T 	 eF , (4.3)

where r2T is restriction to t ¼ 2T: Again omitting the proof, it can be shown that eF �
F and eR2T � R2T away from glancing rays. In the elastic case it means away from both

Operator Name Summary

JC!S Cauchy to solution operator Propagator mapping Cauchy data to the corresponding solution of
the homogeneous elastic wave equation.

JC!Sþ forward Cauchy to solution operator Similar to JC!S , but only propagates waves forward in time.
JC!@ Cauchy to boundary map Restriction of JC!S to the boundary, which includes each side of

an interface.
JC!@þ forward Cauchy to boundary map As JC!@ , but with only waves that travel forward in time.
J@!S boundary to solution map Maps boundary data (associated with specific side of an interface) to

a wave solution in the interior, traveling forward in time.
PP=S P=S projectors Microlocal projectors of an elastic wavefield u onto the

P=S-characteristic set.
J@!@ boundary to boundary map Restriction of J@!S to the boundary (which includes interfaces).

Hence, it propagates boundary data to the next boundary that
the waves intersect.

MR=T reflection and transmission operators Zeroth-order PsiDO’s at the boundary that act as the reflection/
transmission coefficients of the scattered wave from an incident
field at an interface.
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P and S glancing rays; that is, for initial data h0 such that every broken bicharacteristic
originating in WFðh0Þ is disjoint from the glancing set. Recalling that M ¼ MR þMT ,
we may write eR2T as a sum of graph FIO indexed by sequences of reflections and trans-
missions: eR2T ¼

X
s2fR,Tgk, k2fP, Sgkþ1

eRs, k, eRðÞ ¼ r2TJC!S (4.4)

eRðs1, :::, sk;k0, :::, kkÞ ¼ r2TJ@!SPkkMskJ@!@ � � �Pk2Ms2J@!@Pk1Ms1JC!@Pk0 : (4.5)

The solution operator eF likewise decomposes into analogous components eFa:

Now that we have a parametrix, we will use it in the next section to obtain certain
“subsurface” travel time and lens relations.

5. Proof of Theorem 1.1

In this section, we will prove our main result on the uniqueness of elastic wave speeds
under the extended foliation condition.
A key ingredient in the proof of uniqueness will be the following theorem proved by

Stefanov, Uhlmann, and Vasy in [3].

Theorem 5.1. Choose a fixed metric g0 on X. Let n ¼ dimðXÞ � 3; let c,ec > 0 be smooth,
and suppose @X is convex with respect to both g ¼ c�2g0 and eg ¼ ec�2g0 near a fixed
p 2 @X. If dgðp1, p2Þ ¼ deg ðp1, p2Þ for p1, p2 on @X near p, then c ¼ ec in X near p.
We write down a trivial corollary due to continuity of the distance function.

Corollary 5.2. Consider the same setup as in the above theorem. If dgðp1, p2Þ ¼ deg ðp1, p2Þ
for a dense set of points p1, p2 on some neighborhood of P in @X, then c ¼ ec in X
near P.

We need this since due to the multiple scattering in our setting, we will only be able
to recover boundary travel times on a dense set of points and not a full neighborhood.

Outline of the proof of Theorem 1.1
The proof of the main theorem is technical but the main argument is quite intuitive
and geometric. Thus, we provide a summary of the proof that emphasizes the key ideas.
The first goal is to do a local recovery of the wave speeds in the form of Corollary 5.11.
Inductively, suppose that we have recovered the Lam�e parameters above Rs, s > 0, that
is, inside Xc

s, and let z 2 Rs: Say we want to use Theorem 5.1 to recover cP near z (a
similar argument works for cS). Viewing Rs as the boundary of the domain Xs, we
would need to recover the local boundary distance function dPjRs�Rs

near z to apply the
above theorem. Let x 2 RP near z where RP is the P-characteristic set defined earlier,
ðx, nÞ 2 S�Rs

�Xs pointing downward, and lP, sðx, nÞ the corresponding boundary travel
time that we would like to recover.
Let c be a purely transmitted P-bicharacteristic, entering X at some time t< 0 and

passing through ðx, nÞ at time t¼ 0. For convenience, let us view c as lying in T�ðR3 �
RtÞ: With appropriate Cauchy data h0 supported outside X, we can generate a microlo-
cal P-wave whose wavefront set is initially along c. Let us denote this wave solution by
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uh0 : By propagation of singularities, uh0 will have each point along c in its wavefront set
and two points in particular: cð0Þ, which projects to ðx, nÞ 2 T�

R
3, and cðlP, sðx, nÞÞ:

The problem is that due to the interface and the multiple scattering of P=S-waves in the
interior, their singularities will also lie in WFðuh0Þ so we cannot uniquely recover
cðlP, sðx, nÞÞ in this wavefront set. Hence, in addition to h0, we must microlocally con-
struct additional Cauchy data (a “tail” similar to [4]) that eliminates this type of mul-
tiple scattering. In order to suppress mode converted transmissions resulting from the
initial P-wave (see Figures 2 and 3), we will construct h0 in two steps. In the first step,
h0 has wavefront set along a single covector associated to c. We then modify h0 with
appropriate Cauchy data to eliminate mode converted transmissions when c hits an
interface. After this additional “tail” is constructed (see Proposition 5.3), we will be able
to uniquely identify cðlP, sðx, nÞÞ in the wavefront set.
In order to layer strip past an interface, we must also recover information on trans-

mission angles for incident waves refracting from an interface (see Lemma 5.8). With
the controls in place, we are able to first do a local recovery of the lens relations in the
vicinity of a particular point and covector (Lemma 5.10) followed by a local recovery of
the wave speeds near the point (Corollary 5.11). An inductive layer stripping argument
leads to the global result whose proof is just below Corollary 5.11. Since Proposition 5.3
and Lemma 5.8 are tedious technical computations, the proofs of those are delegated to
Appendices A and B.
We now turn to the multiple lemmas and propositions involved in proving the main

theorem. Let S � T�X be the set of n such that every unutilized bicharacteristic belong-
ing to a broken bicharacteristic through n is (þ)-escapable (all definitions are in
Appendix B). The set S will be dense within an appropriate set, allowing us to work
wholly inside S (see Lemma 5.9). We will state a series of propositions and lemmas to
prove the main theorem. We first state the following crucial proposition that is at the
heart of proving our main theorem and whose proof requires the microlocal analysis of

Figure 2. With knowledge of the elastic parameters above x, it is possible to construct initial data h0
that produces a single P or S ray at almost every covector ðx, nÞ, here a P ray. However, due to the
presence of multiple reflected rays, it is not immediately possible to recover the length lP, sðx, nÞ:
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scattering control. In order to make the polarization statement in the following propos-
ition, recall that RP=S are the characteristic varieties defined earlier.

Proposition 5.3. Let ðx, nÞ 2 S, s ¼ qðxÞ, and let v be a distribution whose wavefront set
is exactly ðx,RþnÞ. Then there exists Cauchy data h1 supported outside X and a unique
minimal time T> 0 such that WFðRTh1 � vÞ \ T�Xs ¼ ; and WFðRTþsh1 � RsvÞ \
T�Xs ¼ ; for all s � 0. Moreover, we may choose v so that WFðuh1Þ � RP within Xs for
times t close enough to T. The same may be done with WFðuh1Þ � RS instead.

Remark 5.4. The time T is very concrete. It is essentially a scalar multiple of the S-dis-
tance from x to @H: The reason is that we need access to all S wave constituents start-
ing near x that produce branches that eventually return to the surface @H: The details
will be made clear in the proof.

Remark 5.5. The second part of the theorem means that not only can we generate
Cauchy data to produce a certain singularity at a given depth, but we may even con-
struct it to be a P or an S wave. This is essential for the uniqueness result since we
must be able to recover subsurface lens relations for the P and S speeds separately.

The proof of Proposition 5.3 is quite technical and is done in Appendix B.
The next two lemmas are the main technical complications in the elastic setting.

When we later show uniqueness via layer stripping, we will be able to layer strip past
an interface if the wave speeds of both Lam�e systems infinitesimally match up just past
the interface, even when we do not have direct access past such an interface. More con-
cretely, as we layer strip past an interface contained in Rs (say), we will need to gener-
ate waves with wavefront at a fixed covecter g 2 T�

Rs
�Xs (say) pointing inwards. To do

this, we will need to generate an incoming wave that when it hits Rs, it is singular at a
covecter related to g via Snell’s law of refraction so that the transmitted wave is singular

Figure 3. By appropriately augmenting the initial data h0 with extra initial data Ktail, producing total
initial data h1, multiple reflections can be suppressed, and lP, sðx, nÞ can be recovered from examin-
ation of the solution’s wavefront set.
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at g. In order to know this covector, which is needed to generate the appropriate
incoming wave, we need to know the infinitesimal jumps in the wave speeds past an
interface to obtain the correct transmission angles.
To do this, we rely on obtaining the principal symbols of reflection coefficients to

recover the infinitesimal jumps in wave speeds past the interfaces. In terms of notation,
any symbol with a tilde above it represents the corresponding symbol for the second set
of Lam�e parameters, and the superscript prin denotes the principal symbol of a pseudo-
differential operator.

Lemma 5.6. Suppose that Rs � C and cP=S ¼ ecP=S outside �Xs: Assume F ¼ eF . Then

Mprin
R ¼ eMprin

R on T�R�
s :

Remark 5.7. The proof actually shows that one may recover the full symbol, but it is
unnecessary in our analysis.

Proof. This is essentially an inductive argument, whereby we recover the coefficients at
each successive interface using appropriate sources. Let Rs1 denote the first interface,
and suppose cP=S ¼ ecP=S outside Xs1 : Since q¼ 1, both elastic operators Q, eQ (see §2.1
for notation) agree on X?

s1 : Combining this with F ¼ eF , propagation of singularities,
and the extended convex foliation assumption to ensure no trapped rays, then uh � euh

in X?
s1 for h 2 C:4 By taking a limit to R�

s1 , we get MRJC!@h ¼ eMRJC!@h: By consider-
ing h to be a P wave and then picking h to be an S wave, we obtain the desired claim
since we only need MR in the hyperbolic regions where JC!@ is elliptic and so we may
generate microlocal P and S waves at the first interface. The argument is a direct ana-
logue to the one in [8, section 2.3].
To proceed inductively, suppose MR is recovered for the first k interfaces

Rs1 , :::,Rsk�1 : Let Rsk be the kth interface and let ðy, gÞ 2 @þS�Xsk be a fixed covector.
We assume cP=S ¼ ecP=S in X?

sk
and so we may assume the transmission coefficients are

recovered for these interfaces as well. We let ðx0, n0Þ 2 T�H? lie on the same P-trans-
mitted ray as ðy, gÞ which exists due to the convex foliation. We will repeat this con-
struction for the S-transmitted ray too. Let h be Cauchy data supported in H� whose
wavefront set in S�R3 is exactly ðx0, n0Þ: The constituent of Fhj@H associated to the first
primary reflection from Rsk is

MRðJ@!@MTÞk�1J@!@JC!@h:

Due to the extended convex foliation assumption, our assumptions on the wave
speeds, and that Fh ¼ eF h, we again have uh � ueh on X?

s by propagation of singular-
ities. Hence, the associated constituent for fFh must be equal to this one at Rs since we
are not looking at what happens inside Xs, as we are only considering a reflection.
Since Mprin

T are the same for both operators on Rsj , j ¼ 1, :::, k� 1, by our assumption
on the wave speeds, then the same argument as before where we let h generate s waves
associated to a purely transmitted s-ray through ðy, gÞ shows Mprin

R ðy, g0, sÞ ¼

4In fact, we can use unique continuation to obtain the same result since we are allowed to measure outside H for an
unlimited amount of time. Nevertheless, this is overkill for what we need here, which is a microlocal equivalence.

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 697



eMprin
R ðy, g0, sÞ by applying the inverse of Mprin

T and of Jprin@!@: Here, ðy, g0Þ is the projection
of ðy, gÞ to T�Rsk : We are using the fact that, since the Lam�e parameters match on X?

sk
,

the operators J@!@ are equal as well for operators in this region. Also, these operators
are elliptic near the hyperbolic point sets we are considering. w

Lemma 5.8. Suppose that Rs � C, cP=S ¼ ecP=S outside �Xs, and denote R6
s for the two

sides of Rs. Suppose that M
prin
R ¼ eMprin

R on T�ðRt � R�
s Þ. Then cP=S ¼ ecP=S on Rþ

s :

The above lemma is essentially saying that the principal symbols of reflection coeffi-
cients are enough to recover the jumps in both wave speeds at an interface. This should
not come as a surprise since the reflection coefficient would vanish identically if the
speeds were actually continuous across the interface. Thus, two waves with identical
reflections, must also have transmissions that correspond to the same covectors. Since
the proof of the lemma is quite technical, we save it for the appendix (see
Appendix A.1).
Both of these crucial lemmas will suffice to recover subsurface travel times and lens

relations for a particular covector. We will show the following: Let C � Rs be relatively
open and let T> 0. Then the lens relations ðLP, s, lP, sÞ and ðLS, s, lS, sÞ are determined
uniquely on the open sets of (x, v) with x 2 C such that the unit speed geodesic issued
from (x, v) at time 0 in the metric c�2

P dx2, respectively c�2
S dx2, is transversal at x and

hits Rs again, transversely, at a point in C at a time not exceeding T and without hitting
any other interfaces. Since we assume that the interfaces are not dense, one may always
ensure with T or C small enough that such rays do not hit another interface before
returning to Rs:

Also, to recover the lens relation for a particular covector, we will need to use the
microlocal scattering control in the form of Proposition 5.3. This requires covectors
belonging to S and we must ensure there are enough of them. The following lemma
uses the extended convex foliation assumption to ensure that we have enough of them.

Lemma 5.9. Let x 2 Rs for some s. Then there is a neighborhood Bx � Rs such that Bx \
@þS�Xs \ S is dense in Bx \ @þS�Xs:

Proof. The proof follows from the extended convex foliation condition and repeated
application of Lemma B.8 and its proof.
Take a particular covector ðx, �Þ 2 @þS�Xs pointing upwards and let cP=S, �x be the

associated smooth bicharacteristic starting at ðx, �Þ: Considering cP, �x first, it will either
glance or hit the next interface Rs1 at time t1, say, transversely. If the latter, the convex
foliation guarantees that both the P and S transmitted branches continuing cP, �x will
also be transverse to Rs1 and move “upward” (decreasing q). Also, there will be exactly
two opposite branches at cP, �xðt1Þ that are transverse to Rs1 and move upward in back-
ward time. If it glances, then by Lemma B.6, an arbitrary perturbation of � avoids this.
We can apply this analysis to each successive P branch discussed and iterate; since the
time Ts in the definition of escapability is finite, there will be only finitely many branch-
ings and so there will be a dense set of � 2 @þS�xXs such that all the P-branches of cP, �x
escape. The continued S branches will be analyzed next.
Let us now consider cS, �x and use the same notation t1 and Rs1 as in the previous

case. The analysis for cS, �x will apply just as well for the s branches discussed in the
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previous paragraph. If cS, �xðt1Þ does not glance, the extended convex foliation guaran-
tees an S transmitted branch that continues cP, �x , is transverse to Rs1 , and moves
“upward” (decreasing q). The issue is that the transmitted P branch might be glancing
where we have hit a critical angle. However, this glancing set is a dimension lower than
the hyperbolic points and so we may perturb this P-branch to be transversal to Rs1 and
move upward. We may then continue this branch backward with an S ray that starts on
@þS�Xs, is a slight perturbation of cS, �x , and has a different base point.
Hence, we now have both a transmitted P and S branch moving upwards by the

extended convex foliation, and an opposite P and S branch moving upwards backward
in time. We then apply the analysis in the last paragraph and iterate the above for each
successive interface. Hence, either ðx, �Þ or an open set of perturbations of it will
be escapable.
Using Lemma B.6, the above analysis shows there is a neighborhood Bx � Rs of x

such that a dense set of @þS�Bx
Xs are escapable. Indeed, any covector that is not escap-

able can be perturbed by the above procedure. w

In the following series of proofs, we rely on the previous lemma to keep using
Proposition 5.3 without explicitly saying so.

Lemma 5.10. Let ðx, nÞ 2 @T�X \ S�þX as described above and assume the extended con-
vex foliation condition. If F ¼ eF and k ¼ ek, l ¼ el outside Xs, then cP=S and ecP=S have
identical subsurface lens relations w.r.t. Rs in a neighborhood of ðx, nÞ within T�

Rs
X:

Proof. Without loss of generality, under the extended convex foliation condition we
may assume that x is a regular point since otherwise, one may use a continuity/density
argument described in [5]. We will divide the proof into two cases, which have slightly
different proofs.
The point x is not on an interface: We let v 2 E0ðXÞ be such that WFðvÞ ¼ ðx,RnÞ

and let h be as in Proposition 5.3 supported outside X. We let u ¼ FðR�ahÞ and eu ¼eFðR�ahÞ with an appropriately chosen a based on the support of h (see [5] for details).
Now, u ¼ eu outside X and by unique continuation, u ¼ eu outside Xs since the Lam�e
parameters coincide there. In fact all we need is that u � eu in X?

s which follows by
microlocal analysis. Indeed, any ray in this set has a branch that escapes X by the foli-
ation condition. Thus, by propagation of singularities, u ¼ eu inside X?

s mod-
ulo smoothing.
Let T denote the time the transmitted geodesic from @X reaches n. By Proposition

5.3, we can ensure WFðuÞ restricted to Rt � Xs is generated purely from the P-ray asso-
ciated to n. We only consider those n whose associated P-geodesic does not encounter
any interface before reaching @Xs: This is always possible by the extended convex foli-
ation condition and taking n that are near tangent to @Xs: Since the Lam�e parameters
are smooth near x, then for a n nearly tangential to @Xs, the first singularity of u in
T�
þRs occurs at time T þ lP, sðx, nÞ and covector LP, sðx, nÞ: This must be true for eu as

well since u ¼ eu outside Xs: Hence, lP, sðx, nÞ ¼elP, sðx, nÞ and LP, sðx, nÞ ¼ eLP, sðx, nÞ: We
then repeat the above argument using Proposition 5.3 to generate a pure s-wave, singu-
lar precisely at ðx, nÞ when restricted to Xs at the appropriate time. This works since we
can always restrict to rays which do not hit any interfaces before returning to Rs by the
convex foliation.
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The point x is at an interface: First, without loss of generality, we may assume
that Rs actually coincides with the interface near x. Indeed, any point z 2 Rs near x
that is not at an interface implies that the Lam�e parameters are smooth there. Hence
we may apply the above result for the smooth case combined with Theorem 5.1 to
show that the wave speeds coincide near such points. Progressing in this fashion
shows that both wave speeds in fact coincide near x up to the interface that contains
x, and so the wavefields coincide there as well. Hence, we may assume that Rs is
the interface.
Using Lemma 5.8, we conclude that if u is a pure P-wave for some time in Xs, theneu is as well, both associated to ðx, nÞ, even though inside Xs they could theoretically be

quite different.
We then examine the construction of h in Proposition 5.3 more closely.5 The

P=S-directly transmitted component of RTh is DTþ
k,P=Sh from definition B.1. We make

the decomposition h ¼ h0 þ Ktail: We take any wavefield v, supported in Xs initially
and whose wavefront set is exactly cPnx and inside RP, where cPnx is a P-bicharacteristic
whose initial covector is ðx, nÞ 2 T�Xs: With qC denoting restriction to C, we may view
qRs

v as boundary data. The construction of h0 and Ktail in Proposition 5.3 ensures

RTþthjXs
� DTþ

k,Ph0jXs
� vjXs

:

That is, the directly transmitted constituent of h inside Xs (the “underside” of Rs) is
precisely a P-wave associated to ðx, nÞ: The point is that the same initial data h will also
produce a pure P-wave with respect to ecP on the underside of Rs by Lemma 5.8 since
that lemma implies that eMT � MT at T�Rs near x.
Thus, since the transmission matrices of u and eu coincide microlocally near ðx, nÞ,

then

qRs
v � qRs

ujXs
� DTþ

k,Ph ¼ fDT
þ
k,Ph � qRs

eujXs
:

We note that inside Xs,eJ@!SqRs
v is indeed a pure P-wave associated to ðx, nÞ, soeJ@!SqRs

eu will be as well with speed ecP: By our assumptions, WFðujR�
s
Þ ¼ WFðeujR�

s
Þ:

By Proposition 5.3, if we consider the t-component of this wavefront set, then the
first t past T in this wavefront set will be precisely lP, sðx, nÞ by our construction. By
equality of the wavefields and since eu was also a pure P-wave at time T in Xs, then
lP, sðx, nÞ ¼elP, sðx, nÞ: A similar argument lets us conclude lS, sðx, nÞ ¼elS, sðx, nÞ as
well. w

We can combine the above lemma with Theorem 5.1 to obtain the key corollary.
First, let dsP=S denote the P=S-distance function restricted to �Xs � �Xs:

Corollary 5.11. With the assumptions in the above lemma, dsP=SjRs�Rs
¼ eds

P=SjRs�Rs
in

some neighborhood of x, and cP=S ¼ ecP=S in some neighborhood of x.

Proof of Theorem 1.1. The proof is by contradiction. Suppose cP 6¼ ecP or cS 6¼ ecS, and
let f ¼ jcP �ecPj2 þ jcS �ecSj2: Now consider S :¼ Xr \ supp f , and take s ¼ minSq : so

5The following argument is necessary to ensure that we match a P travel time associated to Q with the corresponding
one associated to eQ rather than an s travel time associated to eQ:
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cP ¼ ecP and cS ¼ ecS above Xs, but by compactness there is a point x 2 Rs \ S: The con-
dition that q�1ðTÞ has measure zero rules out the trivial case s ¼ s0:
Let us now consider a small neighborhood of x, denoted Bx, and we consider the

Rs-boundary distance function dsP=S restricted to such neighborhoods. Since the interfa-
ces are not dense, and we assume convex foliation, we may choose Bx small enough so
that all P and S rays corresponding to rays staying completely inside Bx do not reach an
interface; i.e. even the mode converted rays do not reach an interface. This insure that a
P-wave that hits Bx, transmits a P and S wave, the P-wave returns to Rs first before any
other ray.
We now consider two cases, depending on whether x is on an interface of cP=S

or not.

Smooth case: x 62 C: As in [3] we use the fact that cP=S and ecP=S are equal above Xs to
show they locally have the same lens relation on Rs: We can then apply Corollary 5.11
to show that in fact cP=S ¼ ecP=S near x, contradicting x 2 suppf : The additional wrinkle
is that we must ensure that ecP=S is also smooth near x.
Suppose on the contrary that ecP=S were not smooth at x. Since cP=S ¼ ecP=S on X?

s , if
x 2 eC, then eC must be tangent to the leaf Rs: Now let c be any bicharacteristic through
a covector ðx, nÞ not tangential to the leaf Rs, and choose initial data h by Proposition
5.3 satisfying WFðRThÞ ¼ ðx,RþnÞ: Then euhðTÞ is singular on the reflected bicharacter-
istic to c at x. This is because the reflection operator MR is elliptic at T�eC in the non-
glancing region as shown in Appendix A. But this is impossible, since uhðTÞ ¼ euhðTÞ
on X?

s , and the reflected bicharacteristic is contained in X?
s for t slightly greater than T,

since eC is tangent to Rs:

From the argument above, we conclude cP=S,ecP=S are smooth in a sufficiently small
�-ball B�ðxÞ: Next, there exists a smaller neighborhood B�0 ðxÞ � B�ðxÞ in which every
two points have a minimal-length path between them that is contained in B�ðxÞ, and in
particular does not intersect C [ �C: This is true by the boundedness of cP=S and ecP=S:
Namely, picking global bounds 0 < m < cP=S,ecP=S < M and taking �0 ¼ �m=ðmþ 2M þ
1Þ, one can verify dP=Sðy, @B�ðxÞÞ > 2diamPB�0 ðxÞ:
Finally, we apply Lemma 5.10, concluding that cP=S and ecP=S have identical lens rela-

tions for covectors ðx, nÞ 2 @T�Xs \ T�
�X whose bicharacteristics do not intersect any

interfaces before returning to Rs: Note that the lemma is applied multiple times to
recover the lens relation for each wave speed. This is true, in particular, for the geode-
sics connecting points in U ¼ B�0 ðxÞ \ Rs: Hence, dsP=S ¼ eds

P=S on U�U. Applying local
boundary rigidity (Theorem 5.1 and its corollary), we conclude cP ¼ ecP and cS ¼ ecS on
some neighborhood of x, contradicting x 2 ess supp f :
Interface case: x 2 C: This follows from the above case using Lemma 5.8 and

Lemma 5.10. Indeed, it is those two lemmas that allow us to recover the lens relation
on the underside of the interface Rs for both cP and cS. Similarly to the smooth case,
the ball B�ðxÞ is constructed to be disjoint from any other interface except for Rs so
that rays between points in Rs, starting on the underside of Rs in B�ðxÞ stay completely
in B�ðxÞ before returning to Rs: w
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A. Computation of reflection and transmission PsiDO’s

Let us recall the traction formulation of the elastic equation, and since we work locally, we
assume for simplicity at first that an interface Ci is given by fx3 ¼ 0g: The non-flat case will not
require much more work, and we provide details on this later. A similar setup with analogous
calculations may be found in [29].

Set the unit normal to interface Ci by � ¼
0
0
1

24 35: Then the traction components are defined to
be

tj ¼ ðkdiv� Idþ 2l brÞu � ej, j ¼ 1, 2, 3

where e1, e2, e3 are the standard basis vectors in R
3, and the elastic equation reads

@2
t u ¼ div

t1
t2
t3

24 35 ¼ @x1 t1 þ @x2t2 þ @x3 t3
(A.1)

It is also useful to denote the tangential dual variables in space by n0 ¼ ðn1, n2, 0Þ: Locally, the
PDE can be put into the form
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@x3
u
t3

� 	
¼ Aðt, x0,Dt ,D0

xÞ
u
t3

� 	
¼ A11 A12

A21 AT
11

� 	
u
t3

� 	
(A.2)

Although this is natural, A will be a 6� 6 matrix of PsiDO’s of different order, which does
not allow using the PsiDO calculus. Thus, it is convenient to instead write the partial differential

equation using
hDtiu
t3

� 	
with hDti :¼ ð1þ D2

t Þ
1=2; using the same symbols, we have

@x3
hDtiu
t3

� 	
¼ Aðt, x0,Dt ,D0

xÞ
hDtiu
t3

� 	
¼ A11 A12

A21 AT
11

� 	
hDtiu
t3

� 	
(A.3)

Here, the pseudodifferential operators Aij are all in W1ðR� CÞ and have principal symbols

a11 ¼
1
i

0 0 n1
0 0 n2
an1 an2 0

24 35 a12 ¼ s
l�1 0 0
0 l�1 0
0 0 ðkþ 2lÞ�1

24 35
a21 ¼

1
s

b1n
2
1 þ ln22 � s2 n1n2b2 0
n1n2b2 ln21 þ b1n

2
2 � s2 0

0 0 �s2

264
375 a22 ¼ aT11

where

a ¼ k
kþ 2l

b1 ¼ 4l
kþ l
kþ 2l

b2 ¼ l
3kþ 2l
kþ 2l

:

Also, the eigenvectors of the principal symbol of A are easy to find. Indeed, we can first write

tj ¼ T jðx,DxÞu

where T j is a W DO of order 1 with principal symbol denoted etjðx, nÞ:
Explicitly, one may compute

et3ðx, nÞ ¼ i
ln3 0 ln1
0 ln3 ln2
kn1 kn2 ðkþ 2lÞn3

24 35:
To do principal symbol computations (this is enough since obtaining the lower order terms is

quite standard in the literature) we employ the correspondence between @t , @x1 , @x2 and
is, in1, in2, respectively.

If uðjÞ, j¼ 1, 2 represents u on each side of the interface, then the interface conditions become
simply

uð1Þ ¼ uð2Þ on C
tð1Þ3 ¼ tð2Þ3 on C:

Let us denote U ¼ ½u t3
>, so the interface condition is briefly stated as

Uð1Þ ¼ Uð2Þon C:

As shown in [27, section 3] and [7], there is an elliptic matrix pseudodifferential operator in
W0 denoted Sðx,D0,DtÞ with microlocal inverse S– that diagonalizes A:

Aðx,D0,DtÞ ¼ Sðx,D0,DtÞdiagðCI
P,C

I
S,C

O
P ,C

O
S ÞS�ðx,D0,DtÞ
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where CI=O
p are scalar operators in W1 corresponding to the incoming (I) and outgoing ðOÞ P

waves, and CI=O
S is a diagonal 2� 2 pseudodifferential operator corresponding to the incoming

and outgoing S waves.
We can denote the columns of S by SP=S,6 in correspondence with the diagonal matrix, so

that the modes are exactly the six components of the vector valued distribution

V :¼ S�U

where S– is a parametrix for S. Denote by Sð1Þ, Sð2Þ the matrix S on either side of the interface.
With this notation, the interface conditions read

Sð1ÞVð1Þ ¼ Sð2ÞVð2Þ on C,

where it is important to note that because x3 changes sign across C, the first three components
of Vð1Þ are incoming while those of Vð2Þ are outgoing. We proceed to compute the principal sym-
bol of S and its microlocal inverse.

Let v be an eigenvector of the principal symbol p of the elastic wave operator, with corre-
sponding eigenvalue s2 � c2Sjnj

2 or s2 � c2Pjnj
2 so that using (A.1), one has

pv ¼ ðs2 � c2P=Sjnj
2Þv () ðs2Idþ in1et1 þ in2et2 þ in3et3Þv ¼ ðs2 � c2P=Sjnj

2Þv

() ðs2Idþ in1et1 þ in2et26in3,P=Set3Þv ¼ 0 if we set n3 ¼ 6n3,P=S :¼
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2
P=Ss

2 � jn0j2
q

6in3,P=Set3v ¼ �ðs2Idþ in1et1 þ in2et2Þv ¼ a21svþ a22et3ðvÞ:
Thus,

svet3ðvÞ
� 	

is an eigenvector of the principal symbol of A with eigenvalues 6in3, P=S when v is

in the null space of p, which is where propagation occurs. It is well known that there are six

independent eigenvectors with four eigenvalues [29].
It will be useful to denote these normal momenta components by

aP=S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2
P=Ss

2 � jn0j2
q

where we later use a superscript to distinguish which side of the interface we are considering.
During these computations, we assume that aP=S is a positive real number; that is, we are in the
joint hyperbolic regime for both wave speeds. One can analyze the elliptic regions as well with a
sign change in the following computations. Hence, we may form the 6� 6 matrix of eigenvectors

S ¼
j j j j j j

sP, I ssV , I ssH, I sP,O ssV ,O ssH,O

j j j j j j

24 35
that we compute explicitly below and corresponding eigenvalue diagonal matrix

K ¼ diagðin3,P, in3, S, in3, S, � in3,P, � in3, S, � in3, SÞ:
By construction, one has

AS ¼ SK:

Then form

K ¼ 03 I3
I3 03

� 	
:

We will compute S�1 and see that it has a particularly simple form despite S being a large,
complicated matrix. Label V6 as the 3� 3 matrix of eigenvectors of p, which in particular are in
the null space of p(t, x) on the respective characteristic set. More explicitly, one has
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V6 ¼
n1 6n1aS �n2
n2 6n2aS n1
7aP jn0j2 0

24 35:
With the eigenvectors of S computed above, it is convenient to define

et3V6 ¼ i
72ln1aP �2ln1v 6laSn2
72ln2aP �2ln2v 7laSn1

2lv 72ljn0j2aS 0

24 35
where v ¼ 1

2 s
2=l� jn0j2:

Thus, with our earlier computation of the eigenvectors (A.4), we have

S ¼ sVþ sV�et3Vþ et3V�

� 	
:

Note, one can easily scale the components of S to make S order 0 by dividing by powers of s,
which is nonzero near the characteristic set. We do not do this in order to have a cleaner
computation.

Hence, we have

S ¼

sn1 sn1aS �n2 sn1 �sn1aS �sn2
sn2 sn2aS sn1 sn2 �sn2aS sn1
�saP sjn0j2 0 saP sjn0j2 0

�2ln1aP �2ln1v laSn2 2ln1aP �2ln1v �laSn2
�2ln2aP �2ln2v �laSn1 2ln2aP �2ln2v laSn1

2lv �2ljn0j2aS 0 2lv 2ljn0j2aS 0

26666664

37777775
And

STK ¼

�2ln1aP �2ln2aP 2lv sn1 sn2 �saP
�2ln1v �2ln2v �2ljn0j2aS sn1aS sn2aS sjn0j2
laSn2 �laSn1 0 �sn2 sn1 0
2ln1aP 2ln2aP 2lv sn1 sn2 saP
�2ln1v �2ln2v 2ljn0j2aS �sn1aS �sn2aS sjn0j2
�laSn2 laSn1 0 �sn2 sn1 0

26666664

37777775
A quick calculation shows

STKS ¼ sdiagð�2s2aP, � 2s2jn0j2aS, � 2s2aS, 2s
2aP, 2s

2jn0j2aS, 2s2aSÞ :¼ D:

Thus, S�1 ¼ D�1STK:
Next it is useful to define

eE ¼
n1 n2 0
0 0 1

�n2 n1 0

24 35, eE�1 ¼ 1

jn0j2
n1 0 �n2
n2 0 n1
0 jn0j2 0

24 35:
And set E ¼

eE 0
0 eE

" #
: Without loss of generality, we assume s¼ 1 since s is a nonzero con-

stant along bicharacteristics and can be used as a scaling factor. Then

ES ¼

jn0j2 jn0j2aS 0 jn0j2 �jn0j2aS 0
�aP jn0j2 0 aP jn0j2 0
0 0 jn0j2 0 0 jn0j2

�2ljn0j2aP �2ljn0j2v 0 2ljn0j2ap �2ljn0j2v 0
2lv �2ljn0j2aS 0 2lv 2ljn0j2aS 0
0 0 �ljn0j2aS 0 0 ljn0j2aS

266666664

377777775
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Then

ðESÞ�1 ¼ S�1E�1 ¼ D�1STKE�1

and

STKE�1 ¼

�2laP 2lv 0 1 �aP 0
�2lv �2ljn0j2aS 0 aS jn0j2 0
0 0 �laS 0 0 1

2laP 2lv 0 1 aP 0
�2lv 2ljn0j2aS 0 �aS jn0j2 0
0 0 laS 0 0 1

26666664

37777775:

Note that if we are away from normal incidence so that jn0j2 6¼ 0, we may use this as an elliptic
scaling factor as well to make S and E order 0 as long as we make A order 1. Then, we may
remove all instances of jn0j appearing in the above formulas and replace the appearance of s withbs ¼ s=jn0j: Denoting the interface as C, we recall that UðiÞ ¼ SðiÞVðiÞ are microlocal solutions to
the PDE on opposite side of the interface with interface conditions given by

Sð1ÞVð1Þ ¼ Sð2ÞVð2Þ on C

Now the first three components of Vð1Þ represent incident “incoming” waves, denoted vð1ÞI ,
and the latter three components reflected “outgoing” waves using the ansatz

Vð1Þ ¼ vð1ÞI

Rvð1ÞI

" #
, Vð2Þ ¼ Tvð1ÞI

0

" #
:

Thus, we obtain

vð1ÞI

Rvð1ÞI

" #
¼ ðSð1ÞÞ�1Sð2Þ Tvð1ÞI

0

" #
:¼ Q Tvð1ÞI

0

" #
:

So writing Q ¼ Q11 Q12

Q21 Q22

� 	
, where each entry is a 3� 3 block matrix, we obtain the two

equations

I ¼ Q11T and R ¼ Q21T

So if we have Q11 being microlocally invertible, we would obtain T ¼ Q�1
11 and R ¼ Q21Q�1

11 :

Notice that ðSð1ÞÞ�1Sð2Þ ¼ D�1ððSð1ÞÞTKE�1ÞðESð2ÞÞ so it will suffice to show that
½ððSð1ÞÞTKE�1ÞðESð2ÞÞ
11 (the first 3� 3 subblock) is invertible.

A.1. Defining MR=T

In order to define MR=T , note that if we view the 6� 6 matrix S as four 3� 3 blocks labeled Sð1Þij ,

then Sð1Þ11 and Sð1Þ12 are invertible. On the “upper” side of the interface, we have incoming wave uI
with an outgoing reflected wave uR. When restricted to C, we have uI ¼ Sð1Þ11 VI : Since Uð1Þ ¼
Sð1ÞVð1Þ, then the solution is uð1Þ ¼ Sð1Þ11 vI þ Sð1Þ12 RvI ¼ uI þ uR with uI and uR defined respectively

by that equation. Thus, we have uR ¼ Sð1Þ12 RðS
ð1Þ
11 Þ

�1uI jC and the natural definition is MR ¼
Sð1Þ12 RðS

ð1Þ
11 Þ

�1 which is elliptic if R is elliptic. Similarly, uð2Þ ¼ Sð2Þ11 TvI ¼ Sð2Þ11 TðS
ð1Þ
11 Þ

�1uI so

that MT :¼ Sð2Þ11 TðS
ð1Þ
11 Þ

�1:

Proof of Lemma 4.1. By the above construction, it suffices to show R and T are elliptic. By
looking at the structure of ES and STKE�1, namely that each of the four sublocks have a block
structure consisting of a 2� 2 matrix, and a 1� 1 matrix, and the 1� 1 pieces are trivial, it will
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suffice to analyze the remaining 2� 2 constituents. Then the first 2� 2 minor of this matrix is
given by the multiplication of

�2l1a
ð1Þ
P 2l1v

ð1Þ 1 �að1ÞP

�2l1v
ð1Þ �2l1a

ð1Þ
S að1ÞS 1

" # 1 að2ÞS

�að2ÞP 1

�2l2a
ð2Þ
P �2l2v

ð2Þ

2l2v
ð2Þ �2l2a

ð2Þ
S

266664
377775 ¼ t11 t12

t21 t22

� 	
:

So

t11 ¼ �2l1a
ð1Þ
P � 2l1v

ð1Það2ÞP � 2l2a
ð2Þ
P � 2l2v

ð2Það1ÞP

¼ �2l1a
ð1Þ
P � bs2að2ÞP þ 2l1a

ð2Þ
P � 2l2a

ð2Þ
P � bs2að1ÞP þ 2l2a

ð1Þ
P

¼ �bs2ðað1ÞP þ að2ÞP Þ � 2að1ÞP ðl1 � l2Þ þ 2að2ÞP ðl1 � l2Þ
¼ �bs2ðað1ÞP þ að2ÞP Þ � 2ðað1ÞP � að2ÞP Þðl1 � l2Þ:

Next

t21 ¼ �2l1v
ð1Þ þ 2l1a

ð1Þ
S að2ÞP � 2l2a

ð2Þ
P að1ÞS þ 2l2v

ð2Þ

¼ �bs2 þ 2l1 þ 2l1a
ð1Þ
S að2ÞP � 2l2a

ð2Þ
P að1ÞS þ bs2 � 2l2

¼ 2ðl1 � l2Þ þ 2að1ÞS að2ÞP ðl1 � l2Þ
¼ ð2þ 2að1ÞS að2ÞP Þðl1 � l2Þ:

Next

t12 ¼ �2l1a
ð1Þ
P að2ÞS þ 2l1v

ð1Þ � 2l2v
ð2Þ þ 2l2a

ð1Þ
P að2ÞS

¼ �2l1a
ð1Þ
P að2ÞS þ bs2 � 2l1 � bs2 þ 2l2 þ 2l2a

ð1Þ
P að2ÞS

¼ �2ðl1 � l2Þ � 2að1ÞP að2ÞS ðl1 � l2Þ
¼ �ð2þ 2að1ÞP að2ÞS Þðl1 � l2Þ:

Then

t22 ¼ �2l1v
ð1Það2ÞS � 2l1a

ð1Þ
S � 2l2v

ð2Það1ÞS � 2l2a
ð2Þ
S

¼ �bs2að2ÞS þ 2l1a
ð2Þ
S � 2l1a

ð1Þ
S � bs2að1ÞS þ 2l2a

ð1Þ
S � 2l2a

ð2Þ
S

¼ �bs2ðað1ÞS þ að2ÞS Þ þ 2að2ÞS ðl1 � l2Þ � 2að1ÞS ðl1 � l2Þ
¼ �bs2ðað1ÞS þ að2ÞS Þ � 2ðað1ÞS � að2ÞS Þðl1 � l2Þ:

It is worth noting here that t21 and t12 vanish when the parameters are equal, while the other
two terms do not. This just means there is transmission of the P and S waves with no mode con-
versions, as to be expected when there are no interfaces.

So the determinant of this 2� 2 minor is

det ¼ t11t22 � t21t12
t11t22 ¼ bs4ðað1ÞS þ að2ÞS Þðað1ÞP þ að2ÞP Þ

þ 2bs2ðað1ÞS þ að2ÞS Þðað1ÞP � að2ÞP Þðl1 � l2Þ þ 2bsðað1ÞP þ að2ÞP Þðað1ÞS � að2ÞS Þðl1 � l2Þ
þ 4ðað1ÞS � að2ÞS Þðað1ÞP � að2ÞP Þðl1 � l2Þ2

¼ bs4ðað1ÞS þ að2ÞS Þðað1ÞP þ að2ÞP Þ
þ 4bs2ðað1ÞP að1ÞS � að2ÞP að2ÞS Þðl1 � l2Þ
þ 4ðað1ÞS � að2ÞS Þðað1ÞP � að2ÞP Þðl1 � l2Þ2

¼ bs4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þ þ bs4ðað1ÞS að1ÞP þ að2ÞS að2ÞP Þ
þ ðbs2 þ 2ðl1 � l2ÞÞ2a

ð1Þ
P að1ÞS þ ðbs2 � 2ðl1 � l2ÞÞ2a

ð2Þ
P að2ÞS

� bs4að1ÞP að1ÞS � 4að1ÞP að1ÞS ðl1 � l2Þ2 � bs4að2ÞP að2ÞS � 4að2ÞP að2ÞS ðl1 � l2Þ2
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þ 4ðað1ÞS � að2ÞS Þðað1ÞP � að2ÞP Þðl1 � l2Þ2

¼ bs4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þ
þ ðbs2 þ 2ðl1 � l2ÞÞ2a

ð1Þ
P að1ÞS þ ðbs2 � 2ðl1 � l2ÞÞ2a

ð2Þ
P að2ÞS

� 4að1ÞP að1ÞS ðl1 � l2Þ2 � 4að2ÞP að2ÞS ðl1 � l2Þ2

þ 4ðað1ÞS � að2ÞS Þðað1ÞP � að2ÞP Þðl1 � l2Þ2

¼ bs4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þ
þ ðbs2 þ 2ðl1 � l2ÞÞ2a

ð1Þ
P að1ÞS þ ðbs2 � 2ðl1 � l2ÞÞ2a

ð2Þ
P að2ÞS

� 4að1ÞP að1ÞS ðl1 � l2Þ2 � 4að2ÞP að2ÞS ðl1 � l2Þ2

þ 4ðað1ÞP að1ÞS þ að2ÞP að2ÞS Þðl1 � l2Þ2 � 4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þðl1 � l2Þ2

¼ bs4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þ
þ ðbs2 þ 2ðl1 � l2ÞÞ2a

ð1Þ
P að1ÞS þ ðbs2 � 2ðl1 � l2ÞÞ2a

ð2Þ
P að2ÞS

� 4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þðl1 � l2Þ2

Next, we have

�t21t12 ¼ ð2þ 2að1ÞP að2ÞS Þð2þ 2að2ÞP að1ÞS Þðl1 � l2Þ2

¼ 4ð1þ að1ÞP að2ÞP að1ÞS að2ÞS Þðl1 � l2Þ2 þ 4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þðl1 � l2Þ2

Thus, after canceling the relevant terms, we obtain a nonzero determinant as long as aðjÞP and
aðjÞS are not all complex:

det ¼ bs4ðað1ÞS að2ÞP þ að2ÞS að1ÞP Þ
þ ðbs2 þ 2ðl1 � l2ÞÞ2a

ð1Þ
P að1ÞS þ ðbs2 � 2ðl1 � l2ÞÞ2a

ð2Þ
P að2ÞS

þ 4ð1þ að1ÞP að2ÞP að1ÞS að2ÞS Þðl1 � l2Þ2:
Next, notice that t13, t23, t31, t32 ¼ 0: We may also calculate

t33 ¼ �lð2Það2ÞS � lð1Það1ÞS 6¼ 0

away from glancing and this concludes our proof that T is microlocally invertible in the microlo-
cally nonelliptic region. w

A.2. Proof of Lemma 5.8
We can now do the tedious computation required to prove Lemma 5.8, which states that one
may recover the infinitesimal jumps in wave speeds from the reflection operator.

Proof of Lemma 5.8. We would like to compute R ¼ Q21T as well, or at the least check that it
is invertible. As before, it suffices to check ½ððSð1ÞÞTKE�1ÞðESð2ÞÞ
21 is invertible. Then the first
2� 2 minor of this matrix is given by the multiplication of

2l1a
ð1Þ
P 2l1v

ð1Þ 1 að1ÞP

�2l1v
ð1Þ 2l1a

ð1Þ
S �að1ÞS 1

" # 1 að2ÞS

�að2ÞP 1

�2l2a
ð2Þ
P �2l2v

ð2Þ

2l2v
ð2Þ �2l2a

ð2Þ
S

266664
377775 ¼ z11 z12

z21 z22

� 	
:

First, we have

z11 ¼ 2l1a
ð1Þ
P � 2l1v

ð1Það2ÞP � 2l2a
ð2Þ
P þ 2l2a

ð1Þ
P vð2Þ

¼ 2l1a
ð1Þ
P � að2ÞP ðbs2 � 2l1Þ � 2l2a

ð2Þ
P þ að1ÞP ðbs2 � 2l2Þ

¼ bs2ðað1ÞP � að2ÞP Þ þ 2að1ÞP ðl1 � l2Þ þ 2að2ÞP ðl1 � l2Þ
¼ bs2ðað1ÞP � að2ÞP Þ þ 2ðað1ÞP þ að2ÞP Þðl1 � l2Þ:
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Next, we have

z21 ¼ �2l1v
ð1Þ � 2l1a

ð2Þ
P að1ÞS þ 2l2a

ð2Þ
P að1ÞS þ 2l2v

ð2Þ

¼ �ðbs2 � 2l1Þ � 2að2ÞP að1ÞS ðl1 � l2Þ þ ðbs2 � 2l2Þ
¼ 2ðl1 � l2Þ � 2að2ÞP að1ÞS ðl1 � l2Þ
¼ ð2� 2að2ÞP að1ÞS Þðl1 � l2Þ:

Continuing,

z12 ¼ 2l1a
ð1Þ
P að2ÞS þ 2l1v

ð1Þ � 2l2v
ð2Þ � 2l2a

ð1Þ
P að2ÞS

¼ 2að1ÞP að2ÞS ðl1 � l2Þ � 2l1 þ 2l2
¼ ð�2þ 2að1ÞP að2ÞS Þðl1 � l2Þ:

Lastly,

z22 ¼ �2l1a
ð2Þ
S vð1Þ þ 2l1a

ð1Þ
S þ 2l2a

ð1Þ
S vð2Þ � 2l2a

ð2Þ
S

¼ �að2ÞS ðbs2 � 2l1Þ þ 2l1a
ð1Þ
S þ að1ÞS ðbs2 � 2l2Þ � 2l2a

ð2Þ
S

¼ bs2ðað1ÞS � að2ÞS Þ þ 2að2ÞS ðl1 � l2Þ þ 2að1ÞS ðl1 � l2Þ
¼ bs2ðað1ÞS � að2ÞS Þ þ 2ðað1ÞS þ að2ÞS Þðl1 � l2Þ:

We also have

z33 ¼ �lð2Það2ÞS þ lð1Það1ÞS

It will be convenient to denote R ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

24 35 the individual entries. Next, notice that

r13, r23, r31, r32 ¼ 0 since the corresponding entries for T and Q21 are as well. Using the calculation
for T, we may calculate

r33 ¼
lð1Það1ÞS � lð2Það2ÞS

lð1Það1ÞS þ lð2Það2ÞS

:

We may then compute ðr33 � 1Þ=ðr33 þ 1Þ ¼ ðlð2Það2ÞS Þ=ðlð1Það1ÞS Þ, so since lð1Þ and að1ÞS is

already determined, we recover lð2Það2ÞS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2Þjn0j2 � s2

q
: Since the tangential momenta n0, s are

already determined, we recover lð2Þðx0Þ and thereby að2ÞS ðx0, s0, n0Þ:
All we have left to determine is að2ÞP which would give us kð2Þðx0Þ: For this, we use the first

2� 2 minor of T and Q21, and after a tedious computation, since everything is known except
kð2Þ, we get the recovery by similar arguments as above.

We assumed throughout these calculations that jn0j lies away from zero. However, at 0, the
calculations are much simpler and follow the same arguments. w

B. Proof of Proposition 5.3

Before proving this proposition, it will be useful to have a notion of the direct transmission con-
stituent of a wavefield, defined microlocally.

Microlocal almost direct transmission
As in [4, section 3], we are interested in isolating the microlocal almost direct transmission since
this will be the main tool necessary to prove the main theorem in the presence of multiple scat-
tering. Intuitively, it is the microlocal restriction of the solution at time T (say) to singularities in
T�H whose P-distance from the surface @T�H is at least T. Formally, first let ðT�MÞt be the set
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of covectors of depth greater than t in a manifold M:

ðT�MÞt ¼ fn 2 T�Mjd�T�MðnÞ > tg

where d�T�MðnÞ is defined as in [7, section 3] using dP.
Instead, we consider smooth cutoffs, and for choose nested open sets H0,H00 between X and

H:

X � H0 � H0 � H00 � H00 � H:

A microlocal almost direct transmission of h0 at time T is a distribution hMDT satisfying

hMDT � RTh0 on ðT�HÞT WFðhMDTÞ � ðT�H00ÞT :
We present the more precise definition of the directly transmitted component of the forward

elastic wave propagator Rþ
T :

Definition B.1. (The microlocal direct transmission). Fix ðx, nÞ 2 T�
�X and let cP=S be a purely

transmitted P or S ray, starting outside X at t¼ 0 and passing through ðx, nÞ at some time t¼T.
Assume cP=S intersects C exactly k times. Define the directly transmitted wave constituent FIO

DTþ
k,P=S ¼

rTPP=SJC!S, k ¼ 0,

rTPP=SJ@!SiMTðJ@!@PP=SiMTÞk�1JS!@PP=SJC!S, k > 0

(
(B.1)

By construction, if h0 is a distribution of Cauchy data with WFðh0Þ ¼ RþcP=Sð0Þ, then
DTþ

k,P=Sh0 will be a distribution whose wavefront set is equal to ðx,RþnÞ: Moreover, it will be a
polarized P=S wave. At each point in time, the direct transmission is a microlocal restriction of
the wavefield which has wavefront set contained in a small neighborhood of a purely transmitted
P or S bicharacteristic.

The key to prove this proposition is to isolate hMDT: For this, we need access outside of X to
all scattered rays related to hMDT (unutilized bicharacteristics defined below), which certainly
includes all possible S-rays as well.

Definition B.2.
a. Let c : ½0, t�
 ! T�

R
3 be a purely transmitted, broken, P or S ray that starts outside X and

hits k interfaces at discrete times t1, :::, tk > 0 say. At such a time ti, c will have one or two
reflecting branches and one possible mode converted branch according to Snell’s law. Such
branches that are reflections are called unutilized reflecting rays associated to c. A transmit-
ted branch that is a mode conversion associated to c will be called a unutilized transmission.
Essentially, for a purely transmitted ray, c, we seek to use in our proofs to recover local
interior travel times, when c hits an interface, the outgoing reflected branches and the mode
converted transmitted branch (when it exists) are unutilized rays. The rays we eliminate
with scattering control are either the unutilized transmissions or reflected rays produced
from an unutilized reflection hitting an interface. These two types of rays we eliminate are
precisely the ones that go deeper into the interior and interfere with our travel time meas-
urements. A wave associated with such a ray will be called a unutilized wave and we may
refer to either branch as a unutilized ray or unutilized branch. For the proof of the propos-
ition, such unutilized reflecting waves are precisely the ones that will create waves (upon
their next interaction with an interface) that need to be eliminated and will not be utilized
to probe deeper into the medium. We must also ensure that these unutilized mode-conver-
sion transmissions are eliminated as well.

b. Bicharacteristics c1, c2 are connected if their concatenation c1 [ c2 is a broken bicharacteris-
tic. Note that mode conversions are allowed (e.g., a P ray may be connected to an S ray) if
their tangential momenta match. A bicharacteristic c1 terminating at an interface may have
one or two (totally reflected with P=S mode conversions), or two, three, or four (reflected
and transmitted) connecting bicharacteristics there. If c1 has a transmitted bicharacteristic,
there exists an opposite bicharacteristic c sharing c1’s connecting bicharacteristics. There can
be up to two opposite bicharacteristics (one for P and one for S). Basically, for an outgoing
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ray b, say, moving away from the interface, its opposite bicharacteristics are all incoming
rays on the other side of the interface that are connected to b; hence, any incoming wave
singular along an opposite bicharacteristic associated with b will produce a transmitted wave
singular along b. Note that c1 or c2 (or both) may be glancing at an interface (see [4] for
definitions). If it is not, we say that it is non-glancing.

c. Fix a large time Ts > 0 (see below). A bicharacteristic c : ðt�, tþÞ ! T�ðR3 n CÞ is (±)-escap-
able if either:

d. it has escaped: c is defined at T6Ts and cðT6TsÞ 62 T�H,
or recursively, after only finitely many recursions, either

i. all of its connecting bicharacteristics at t6 are (±)-escapable and are non-glancing at
the interface;

ii. all of its reflecting bicharacteristics (both P and S if they exist) are ð6Þ escapable and non-
glancing and both P,S opposite bicharacteristics are ð7Þ escapable and non-glancing.

Remark B.3.. The t6 are just the times at the two endpoints of a bicharacteristic segment c.
Thus, c is merely a single branch of a family of broken bicharacteristics (determined via con-
catenated branches that we term reflections, transmissions, and mode conversions in the defin-
ition), in which cðt6Þ are the endpoints of the branch. The reason the ð6Þ notation is being
used is that for ðþÞ-escapability, say, we will follow a series of concatenated branches forward in
time, continuing cðtþÞ of each branch until it escapes. We are describing these escapable broken
bicharacteristics recursively via their branches since the parametrix construction is simpler with a
recursive formula. At each interface, we must consider both P (if present) and S transmissions-
as well as any reflections, to ensure that unwanted multiple reflections can be controlled.

Let us explain the choice of Ts further. The idea is that we want a large enough time so that
any returning bicharacteristic, even a concatenation of pure slow rays, will return to H? by time
Ts. In fact, there is a unique minimal time that has these properties. This will ensure that there is
enough time for all wave constituents of a particular uh associated to returning bicharacteristics
eventually return to H? by time Ts. This avoids the problems encountered in the lack of control
in the previous appendix. We also note that Ts is not used to discriminate between certain rays
and we can even allow it to vary for different rays since we are allowed infinite time to take
exterior measurements of the wavefield. Rather, it just makes the notation less cumbersome to
have a fixed time beyond which other rays are irrelevant and will not affect the construction of
the “tail”.

The idea is that ðþÞ-escapable singularities are ones we do not worry about since they escape
and do not enter the directly transmitted region. Once there are connecting rays that are not
ðþÞ-escapable, then those need to be eliminated. Thus, property (c) iii. in Definition B.2 guaran-
tees that corresponding to these non-escapable rays, there are corresponding opposite ð�Þ-escap-
able rays that we use to send in waves to eliminate waves associated to rays that do not escape.
The previous definition of unutilized rays are exactly the ones that create (through geometric
optics concatenation) the non-escapable rays just described.

In the final case, if the (±)-escapable connecting bicharacteristic is a reflection, then we require
that there are both P and S opposite bicharacteristics that escape. They must be there so that we
can construct an incoming wave parametrix, singular on such opposite rays, that eliminates a
particular scattered wave. They must also escape so that we obtain all the necessary information
not just from the fast moving P-waves, but the S-waves as well. This is because we must con-
struct S waves in addition to P waves for the tail, even if one is merely trying to eliminate a sin-
gle P wave.

To help illustrate these definitions, we refer the reader to [4, Figure 3.7] for a visualization in
the acoustic setting, where in that setting, unutilized rays are called “returning.”

Remark B.4. The definition of escapability merely ensures that in our measurement region, we
access all backscattered rays caused by the direct transmission. In addition, the recursive
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definition and the notion of opposite rays ensures that for any new nonescapable scattered waves
created by an appropriate tail, one will be able to eliminate them as well if they enter the direct
transmission’s domain of influence. The conditions should be compared to the linear problem of
obtaining an observability inequality with partial data. There as well, one needs access to all the
relevant rays in the measurement region.

Remark B.5. Note that the definition of ð6Þ-escapable rays can be made more general to deal
with more general geometries that do not assume a convex foliation. Since we only need to elim-
inate waves associated to rays that are not escapable, this only requires having the associated
number of opposite escapable rays. Thus, we need the number of opposite ð7Þ-escapable rays to
equal the number of not ð6Þ-escapable rays that are reflecting or transmitting.

We recall S � T�X as the set of n such that every unutilized bicharacteristic belonging to a
broken bicharacteristic through n is (þ)-escapable. Note that the definition of escapable ensures
that the mode conversion are non-glancing as well. For example, if a purely transmitted P bichar-
acteristic starts outside X and passes through n, then all the transmitted S, mode-converted con-
necting rays are non-glancing. An analog holds for a purely transmitted S bicharacteristic.

Lastly, before beginning the proof, we cannot construct our usual parametrices near glancing
rays. Fortunately, the extended convex foliation condition will guarantee that “most” (in a sense
to be described soon) broken bicharacteristics (that travel for a fixed finite time T say) will not
glance at an interface.

Lemma B.6. Let G ¼ GT � T�H be the set of ðy, gÞ 2 T�H such that a broken bicharacteristic
passing through ðy, gÞ of length T contains a glancing point. G is a manifold and under the
extended convex foliation assumption, it has dimension at most 2n� 2. Thus, the set of covectors
ðy, gÞ 2 T�H where all broken rays of length T passing through ðy, gÞ never glance is dense
in T�H:

We now present a series of lemmas to demonstrate that under the extended convex foliation
condition, we have enough covectors lying in S:

Lemma B.7. Let c be a transmitted geodesic with respect to some wave speed c. Then q 	 c either
monotonically decreases, strictly monotonically increases, or strictly decreases then strictly increases.

Proof. Suppose, on the contrary, that q 	 c is nondecreasing on ½a, b
 then nonincreasing on
½b, d
 for some a< b < d. Let s ¼ qðbÞ: If c is smooth near cðbÞ then there is a neighborhood
ða0, d0Þ � ½a, d
 of b such that qðcða0ÞÞ ¼ qðcðd0ÞÞ ¼ s0 � s: Then cj½a0 , d0 
 is a geodesic between
points on Rs0 outside of Xs0 , contradicting the strict convexity of @Xs0 : Conversely, if c is discon-
tinuous at cðbÞ, then cðða, bÞÞ and cððb, dÞÞ are on opposite sides of C, which is locally given by
Rs, by the definition of a transmitted geodesic. This is a contradiction as well. w

The next lemma states that upward-traveling geodesics are not trapped.

Lemma B.8. The set of ðx, nÞ 2 T�
�X for which there exists a purely transmitted geodesic c :

½a, b
 ! �X with c0ð0Þ[ ¼ ðx, nÞ and cðaÞ, cðbÞ 2 @X is open and dense in T�
�X:

Proof. Our restriction to foliation upward covectors is needed to avoid total internal reflections,
which would prevent c from reaching the boundary.

By symmetry, it suffices to show that we can find c with one endpoint, say b, on @X: Let c :
T ! T�

R
3 be the unique maximal purely transmitted bicharacteristic with cð0Þ ¼ ðx, nÞ, and let

c be its (continuous) projection onto R
3: If cðbÞ 2 @T�X we are done, so assume this does not

hold, and let s ¼ supI:
If s < 1, then cðsÞ 2 C since otherwise the geodesic could be continued. There are two possi-

bilities: c glances off C (cðsÞ 2 T�C), or there is total internal reflection. In the first case, note
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that c is in the flowout of T�C n 0 under U; this has measure zero in T�X because U is piecewise
smooth and dimT�C ¼ dimT�X� 2:

In the second case, c is smaller on the side of C opposite cðs�Þ by B.7 convexity of the interfa-
ces, as noted in the proof of Theorem 1.1. This rules out internal reflection, so c can be contin-
ued past s, a contradiction.

Let us suppose now that s ¼ 1: By lemma B.7, q 	 c is increasing on ð0,1Þ: Let q� ¼ infc q,
and choose a sequence sj ! 1 such that qðcðsjÞÞ ! q�: By compactness, sj has a subsequence
(which we may again label sj) such that cðsjÞ converges to some point ðx, nÞ 2 T�X, and by con-
tinuity ðx, nÞ 62 T�

þX: However, by strict convexity the geodesic starting at any ðx, nÞ 2 T�
þX

immediately leaves T�X n T�Xs: This is true even if x 2 C: By continuity, this is true if we
replace ðx, nÞ by any sufficiently close covector and in particular cðsjÞ for sufficiently large j (as
noted above, total internal reflection cannot occur). Hence q� cannot be the infimum of q on c,
a contradiction. w

The density allows us to just recover the wave speeds at points where all possible rays through
the point never glance.

Proof of Proposition 5.3 Because any broken ray intersects only finitely many interfaces in
the time interval t 2 ½0, 2T
, the condition of being ð6Þ-escapable is open, and in particular S
is open.

Construction of h0
Let c be a purely transmitted P-bicharacteristic starting at @H (when projected to the base space)
for t¼ 0 and cðTÞ ¼ ðx, nÞ: Let h0 be any Cauchy data supported in H n X with wavefront set
containing Rþcð0Þ so that inside �HT , WFðRTh0Þ ¼ WFðvÞ by finite speed of propagation (see
Figure 2). This would actually suffice for our purposes, but since we have the FIO calculus, we
can construct h0 more carefully for the improved result that WFðRTh0 � vÞ \ T� �XT ¼ ;:

Let us give a brief argument on one possible construction of such h0 described above. First
define J�@!@ ¼ �J@!@� (� is the time reversal operator defined in Section 2.1), which is like J@!@

but propagating backwards in time. Let v be distribution with wavefront set Rðx, nÞ and let d be
the number of interfaces between x and Xc: Then define h0 ¼ J�1

C!@M
�1
T Pd

i¼1ðJ�@!@M
�1
T ÞvjC: The

wavefront set of h0 (viewed in the cosphere bundle) will consists of up to 2d covectors (see
Figure 2).

The key now is to construct a tail that eliminates the multiple scattering and justify that such
an h0 above can be constructed.

Construction of Ktail

We first define FIO’s NI
6,N

O
6 : C1ðR� @ZÞ ! D0ðZÞ of order 0 producing tails outside H for

ð6Þ-escapable bicharacteristics. The NI=O
þ -constructed tail for a singularity on a ðþÞ-escapable

bicharacteristic ensures this singularity escapes H by time T þ Ts, without generating any singu-
larities in hMDT’s P=S-domain of influence where hMDT is associated to a purely transmitted
P=S-ray. The NI=O

� -constructed tail generates a given singularity on a ð�Þ-escapable bicharacteris-
tic, again without causing any singularities in the P=S domain of influence. The NO

6 are defined
on outgoing boundary data while the NI

6 are defined on incoming data, microlocally near the
final, resp., initial covectors of ð6Þ-escapable bicharacteristics.

Let c : ðt�, tþÞ ! T�Z be ð6Þ-escapable bicharacteristic. Denote by bO the pullback to the
boundary of its finals point: bO ¼ ðdiCÞ�cðt6Þ, where by abuse of notation we consider cðt6Þ as
a space-time covector T�ðR� ZÞ: Define bI ¼ ðdiCÞ�cðt7Þ similarly. We now define NI=O

6 micro-
locally near bI=O, starting with the incoming maps NI

6:

� If t6 2 ð0,T þ TsÞ : We simply follow the bicharacteristic and apply NO
6 at the other end. In

the ðþÞ case define NI
þ � NO

þJo!o: In the ð�Þ case, define NI
� � NO

�J
�
o!o near bI, where

J�o!o ¼ vJo!ov is like Jo!o but propagating backwards in time.
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� If c escapes, t6=2½0,T þ Ts
 : This is the terminal case. In the ðþÞ case, there is nothing to
do: define Nþ � 0 near bI. For the ð�Þ case, define NI

� � J�1
C!o near bI to obtain the neces-

sary Cauchy data,

We now turn to NO
6, considering each of the cases of in the definition of ð6Þ-escapability.

� if c escapes: This case never arises: NI
6 is not defined in terms of NO

6 for such c:
� If all outgoing bicharacteristics are ð6Þ-escapable: Recursively apply NI

6 to the reflected and
transmitted (if any) bicharacteristics, defining NO

6 � NI
6M near bO.

� If all the reflecting bicharacteristics are ð6Þ-escapable, and the opposite incoming P=S rays
are ð7Þ-escapable: This is the core case. In the ðþÞ case, near bO let

NO
þ � �NI

�M
�1
T MR þ NI

þðMT �MRM
�1
T MRÞ,

The inverses here are all microlocal near the appropriate covector. The ð�Þ case is slightly dif-
ferent: near bO,

NO
� � �NI

�M
�1
T þ NI

þMRM
�1
T :

Given g 2 S � T�Ho, consider all the unutilized reflecting, ðþÞ-escapable rays associated to g.
Each is associated with a distinct sequence of reflections and transmissions a ¼ ða1, :::, akÞ 2
fR,Tgk for some k and corresponding P=S wave microlocal mode projections Pkj , k ¼
ðk1, :::, kkÞ, and a corresponding propagation operator

Pa, k,R ¼ J@!@PkkMak � � � J@!@Pk2Ma2 J@!@Pk1Ma1 JC!@:

Notice the k is here so that we are observing the wave (with possible reflection, transmission,
and mode conversions) associated to a single broken bicharacteristic consisting of a concaten-
ation of P and S rays. Likewise we can define Pa, k,T for the transmitting, unutilized rays that are
ð�Þ-escapable. These transmitting unutilized rays are new for the systems setting due to multiple
wave speeds and were not present in the acoustic setting of [4]. Let Gþ ¼ Gþ

g be the set of all
such finite sequences ða, kÞ associated to unutilized reflecting, ðþÞ-escapable rays associated to g.
Likewise, G� ¼ G�

g is the set of such ða, kÞ associated to the transmitting, unutilized rays that
are minus escapable and associated to g.

First define

Ag ¼ NO
þ

X
ða, kÞ2Gþ

Pa, k,R þ NO
�

X
ða, kÞ2G�

Pa, k,T ,

and then define A by patching together the Ag with a microlocal partition of unity as in [4].
Given an h0, the tail is precisely

Ktail :¼ Ah0

The remainder of the proof follows simply by construction of NO
þ and NI

�: Recall our construc-
tion that inside T�Xs,WFðRTh0Þ ¼ WFðvÞ for some large enough T. One just needs T to be
greater than the P or S (depends on which case in the proposition we are considering) distance
between ðx, nÞ and S�Xc, and one can increase T after that by adjusting h0. Set h1 ¼ h0 þ Ktail,
and we must verify that Fh1jXs

� v for t � Ts: Any other waves in this region may only come
from Pa, k,Th0 or RtN

O
6Pa, k,R=Th0 for some t and ða, kÞ 2 G6: But by construction of NO

6, any
such unutilized wave from Pa, k,Th0 will get canceled by NO

6Pa, k,R=Th0: The recursive definition
also ensures that any new unutilized wave created by NO

6P
ðlÞ
a, kh0 also gets eliminated. Thus, nei-

ther of these constituents may produce waves whose singularities enter Xs microlocally and that
completes the proof. w
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