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Abstract. We consider an isotropic elastic medium occupying a bounded domain \Omega \subset \BbbR 3 whose density and
Lam\'e parameters are piecewise smooth. In the elastic wave initial value inverse problem, we are
given the solution operator for the elastic wave equation, but only outside \Omega and only for initial
data supported outside \Omega , and we study the recovery of the density and Lam\'e parameters. For
known density, results have recently been obtained using the scattering control method to recover
wave speeds. Here, we extend this result to include the recovery of the density in addition to the
Lam\'e parameters under certain geometric conditions using techniques from microlocal analysis and
a connection to local tensor tomography.
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1. Introduction. The main goal of this work is to recover a piecewise smooth density of
mass in addition to the other elastic parameters in an isotropic elastic setting using exterior
measurements. In general, the wave inverse problem asks for the unknown coefficient(s),
representing wave speeds, of a wave equation inside a domain of interest \Omega \subset \BbbR 3, given
knowledge about the equation's solutions (typically on \partial \Omega ). Consider the isotropic elastic
wave equation in a bounded domain \Omega \subset \BbbR 3 with smooth boundary. The wave operator for
elastodynamics is given as
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1911

(1.1) \scrP = \rho \partial 2t  - W

with
W = \nabla \cdot (\lambda div\otimes Id + 2\mu \widehat \nabla ),

where \rho is the density of mass that we term simply as density, \lambda and \mu are the Lam\'e param-
eters, and \widehat \nabla is the symmetric gradient used to define the strain tensor for an elastic system
via \widehat \nabla u = (\nabla u + (\nabla u)T )/2 for a vector valued function u. Operator \scrP acts on a vector val-
ued distribution u = (u1, u2, u3), the displacement of the elastic object. Let \Gamma 1, . . . ,\Gamma k be
closed disjoint, smooth surfaces (interfaces) splitting \Omega into subdomains, each with an exte-
rior boundary given by some \Gamma i and some interior boundary \Gamma j ; see [28, Figure 1, left] for an
illustrative example. In this work, we assume that the \rho , \lambda , and \mu are functions, smooth (C\infty )
up to these interfaces with possible jumps there. That is, \rho , \lambda , \mu have conormal singularities
at the interfaces.

The motivation of this inverse problem comes from seismic imaging of the Earth where
the density and the Lam\'e parameters typically jump across geological interfaces within the
crust, and across major discontinuities associated with phase transitions in the deep interior,
but the methods we employ also have engineering applications in nondestructive testing of
elastic materials. As explained in [23], there is a long history of using high frequency waves
to detect flaws in structural materials, and by understanding the scattering of elastic waves
by flaws in an otherwise isotropic elastic space, one can solve an inverse problem to detect
the flaws. In our problem, we use welded contact transmission conditions which preclude
flaws. However, the principles of our approach could be adapted (in the acoustic case) to the
presence of flaws nonetheless with applications to nondestructive testing as in [23]. In our
inverse problem we only consider dynamic moduli since our inverse problem is with waves, and
we are mainly focused on the density of mass. It is interesting to note that in engineering,
outside of highly engineered materials (steel, carbon-based composites, etc.), density and
elastic (Lam\'e) properties are often not correlated. In our inverse problem as well, we do not
make any assumptions about a relation between density and Lam\'e parameters.

Traditionally, the coefficients of the elastic system are smooth, and the data is the Dirichlet-
to-Neumann map, or its inverse. The main questions are uniqueness and stability: Can the
coefficients be recovered from the Dirichlet-to-Neumann map, and is this reconstruction stable
relative to perturbations in the data? In the case of a scalar wave equation with smooth coef-
ficients, a number of results such as [2, 30, 24] have answered the question in the affirmative.
For the piecewise smooth case, a novel scattering control method was developed in [7] in order
to show in [5] that uniqueness holds as well for piecewise smooth wave speeds with conormal
singularities, under mild geometric conditions. Less is known in the elastic setting as will
be described, but several works such as [13, 32, 28] show how to construct a Fourier integral
operator (FIO) representation of the solution to the elastic wave equation near an interface,
which is useful for inverse problems in the hyperbolic elastic setting where coefficients have
conormal singularities. An additional challenge of recovering a coefficient that is not in the
principal symbol of the operator is that one needs to solve a tensor tomography problem at
some stage of the argument, which has a gauge freedom that obstructs uniqueness [18]. As
will be explained, the gauge freedom in our case actually gets exploited to derive an elliptic
equation that allows a unique recovery of the density.D
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1912 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

In this work, we recover a piecewise smooth density of mass (in the isotropic elastic
wave equation) in the interior of the domain, thereby recovering all three Lam\'e parameters.
We essentially want to ``image"" the density using high frequency waves; the first step is a
uniqueness result that we consider in this manuscript, but a partial reconstruction will be
future work since much of the proof here is constructive. In [28], Stefanov, Uhlmann, and
Vasy recover piecewise smooth wavespeeds from the Dirichlet-to-Neumann map under certain
geometric conditions. Their argument relies on the principal symbol of the elastic operator
and the parametrix. As noted in [28, Remark 10.2], their argument does not address unique
determination of the density of mass past the first interface, nor at the interface itself. Since
the density appears in the lower order part of the elastic operator, it is natural to look at the
lower order symbols in the asymptotic expansion of elastic wave solutions. This leads to the
inverse problem considered here where we study the lower order constituents of a parametrix,
as done by Rachele in [22] in the smooth case, to recover a piecewise smooth density of mass.

For the isotropic, elastic setting with smooth parameters, the uniqueness question was
settled by Rachele in [21] and Hansen and Uhlmann [14]. In [6], the authors extended these
results to the isotropic elastic system, where the parameters are piecewise smooth. The main
difficulty in the elastic system setting is lack of the sharp form of the unique continuation result
of Tataru [29] since one has to deal with two different wave speeds, whereas in the scalar wave
setting, the wave speed may be reconstructed without the microlocal approach we take here by
relying on a unique continuation result (see [5]). The main result of [6] is that under a convex
foliation condition on the domain, one can uniquely determination the P/S-wave speeds that
contain singularities via microlocal analysis, scattering control, and a layer stripping argument
akin to [25]. In [6], it is assumed that the density \rho was trivial, but with similar yet more
sophisticated arguments, it was proved in [28] that this assumption can be dispensed with, and
that both piecewise smooth wave speeds can be recovered from exterior measurements even
when the density is piecewise smooth. The simpler case of piecewise analytic and piecewise
constant coefficients is considered in [9, 8] and the arguments are quite different from our
approach here. In our approach, low frequencies are not required in the data.

Recovering the material density does not simply follow from the arguments in [28, 6]. This
is because those arguments only rely on the principal symbol of the elastic operator and the
principal term in the high frequency asymptotic expansion of solutions to the elastic wave
equation to recover travel times, and the principal symbol contains no information about the
density [21, 22]. Rachele also showed in [22] that the polarization of the waves does not contain
information about the density. By looking at the lower order terms of the amplitude of an
FIO representation of an elastic wave solution, Rachele shows [22] that in the smooth setting,
one may recover the density as well under certain conditions. That was a global result, but
by using the results of [25] in local tensor tomography, Battacharyya shows in [3] that one
can locally recover the density as well near the boundary in the smooth setting. We aim
to extend the results in [22] to the piecewise smooth setting and recover a piecewise smooth
density of mass. We also note that Rachele's results in [21, 3] assume that the manifold is
simple so that there are no caustics. Here, we do not assume that the manifold is simple,
but we do assume a ``convex foliation condition"" that will be described shortly, which allows
for caustics and, in particular, is satisfied by manifolds with nonnegative curvature. Another
novelty is that previous papers [20, 22] used plane waves to recover parameters and lowerD
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1913

order amplitude data that reduced the inverse problem to a tensor tomography problem. In
the smooth setting, the Dirichlet-to-Neumann map applied to a plane wave is a Lagrangian
distribution corresponding to a single Lagrangian, where one may ``peel off"" each term in the
asymptotic expansion of its symbol. This approach is not known to work to recover such data
past an interface since due to the multiple scattering, the measured data using an initial plane
wave would be a complicated sum of Lagrangian distributions that are difficult to disentangle.
Thus, we use more general distributions and show how to recover ``lower order polarizations""
of elastic waves locally beyond an interface or multiple interfaces.

In Theorem 1.1 we show that under an extended convex foliation condition (see section 3)
and outside a specific set, we can uniquely determine all three Lam\'e parameters that contain
singularities. We first recover the wave speeds as in [28, 6] via microlocal analysis, scattering
control, and a layer stripping argument akin to [25] by recovering and manipulating local
travel time data. To recover \rho from the boundary up until the first interface, the results of [3]
may be employed as shown in [28], where they recover all three parameters up until the first
interface, but do not address recovering the density of mass past the first interface. To recover
the density (and all its derivatives) across the interface, we first send in high frequency waves
at the interface and measure their reflected amplitudes (we can do this since we have already
recovered the full elastic operator above this interface) to recover the reflection operator at the
interface as in [6]. The reflection operator is a classical 0th order pseudodifferential operator
(PsiDO), and we recover all the terms in the polyhomogeneous expansion of its symbol. We
may then use the result in [4] to recover the jet of \rho and all its derivatives infinitesimally
below the interface. We then send in high frequency waves that generate a transmitted P -
wave directly below the interface, which then travels near the interface before returning to it.
We measure the amplitude of this P -wave to obtain ``lower order polarization data"" which
involves the density, and recovering the density gets reduced to a local 2-tensor tomography
problem by a careful analysis of this lower order amplitude. Normally, this would create gauge
freedom in the recovery of the density, but we employ the argument of [3, 22] to show that
the gauge freedom actually leads to an elliptic equation for the density, where we can then
locally recover the density in the interior below the interface. We proceed in this way until
the density is recovered in all layers.

A subtle technical point is that we probe the medium with distributions that have wave-
front at a single covector (modulo the \BbbR + group action) in T \ast \Omega (this is the cotangent bundle of
\Omega ), and hence, locally and away from any interface, the waves we generate have a wavefront set
consisting of a single bicharacteristic. Such distributions do not fall into a specific H\"ormander
class of conormal distributions, and our given measurements have the form FV where F is
a specific FIO with a polyhomogeneous symbol and V is just an arbitrary distribution. To
obtain the ``lower order polarization"" amplitudes, we need to extract the principal symbol as
well as the lower order symbols associated to F from such data. In section 4, we derive a
variation of the Weinstein symbol calculus in [31] that applies to arbitrary distributions and
extend those results to get a product-type formula for the principal symbol of an FIO applied
to an arbitrary distribution. The principal term can then be ``peeled off"" to obtain the lower
order amplitudes by a similar procedure.

Most proofs are microlocal to avoid using unique continuation results, but we require an
important geometric assumption, which is an extended convex foliation condition (see sectionD
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1914 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

3.2 for the smooth setting) for each wave speed cP/S . As mentioned in [25], for a particular
wave speed, this condition relates to the existence of a function with strictly convex level
sets, which in particular holds for simply connected compact manifolds with strictly convex
boundaries such that the geodesic flow has no focal points (lengths of nontrivial Jacobi fields
vanishing at a point do not have critical points), in particular if the curvature of the manifold
is negative (or just nonpositive). Thus, caustics are still allowed under this condition since a
manifold with nonpositive curvature satisfies the condition. Also, as explained in [27], if \Omega is a
ball and the speeds increase when the distance to the center decreases (typical for geophysical
applications), the foliation condition is satisfied.

We denote by uh the solution to the homogeneous elastic equation on \BbbR 3, with transmission
conditions and initial time Cauchy data h (see (2.2) and (2.3)). All of our function spaces
are of the form X(\cdot ;\BbbC 3) since we have vector valued functions in the elastic setting, but
throughout the paper, we will not write the vector valued part \BbbC 3 to make the notation less
burdensome. Let \Omega 

c
be the complement of \Omega and we define the exterior measurement operator

\scrF : H1
c (\Omega 

c
)\oplus L2

c(\Omega 
c
) \rightarrow C0(\BbbR t;H

1(\Omega 
c
)) \cap C1(\BbbR t;L

2(\Omega 
c
)) as (see (2.6) for full details)

\scrF : h0 \rightarrow uh0(t)| \Omega c .

The operator \scrF only measures waves outside \Omega after undergoing scattering within \Omega , and it
is associated to a particular elastic operator \scrP with a set of parameters.1 See Figure 1 for
an example of an initial source h0 and the measured data \scrF h0. Given a second set of elastic
parameters \~\lambda , \~\mu , \~\rho we obtain analogous operators \~\scrP and \~\scrF . Denote the associated P/S wave
speeds cP/S and \~cP/S . The goal of the work is to prove unique determination of \mu , \lambda , \rho from \scrF 
under some geometric hypotheses. From here on, we use P/S to refer to either subscript or
wave speed. In addition, to avoid the technical difficulties of dealing with corners or higher
codimension singularities of cP/S , we always assume that the singular support of cP/S , \~cP/S lies
in a closed, not necessarily connected hypersurface in \Omega ; we will deal with corners and edges
in a separate paper.

We assume the Lam\'e parameters \lambda (x) and \mu (x) satisfy the strong convexity condition,
namely that \mu > 0 and 3\lambda + 2\mu > 0 on \Omega . We also assume that the parameters \lambda , \mu , \rho lie
in L\infty (\BbbR 3) and that \lambda , \mu , \rho are piecewise smooth functions that are singular only on a set of
disjoint, closed, connected, smooth hypersurfaces \Gamma i of \Omega , called interfaces. We let \Gamma =

\bigcup 
\Gamma i

be the collection of all the interfaces. The two wave speeds are cP =
\sqrt{} 

(\lambda + 2\mu )/\rho and
cS =

\sqrt{} 
\mu /\rho , where \rho is the density. In particular, this ensures that cP > cS on \Omega . As in [7],

we will probe \Omega with Cauchy data (an initial pulse) concentrated close to (but outside \=\Omega ) \Omega 
with a particular polarization. We will denote by

gP = c - 2
P dx2, gS = c - 2

S dx2

the two different (rough) metrics associated to the rays. As in [7], we can define the distance
functions dP/S(\cdot , \cdot ) corresponding to the respective metrics by taking the infimum over all
lengths of the piecewise smooth paths between a pair of points.

1We describe the SI units used for measuring various quantities. Acoustic pressure is Pa (= Nm - 2); the
shear modulus \mu and the Lam\'e modulus are usually measured in GPa. The density units are kg/m3. The
elastic displacements uh0 and \scrF h0 are measured in m.D
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1915

∂Ω

h0

Γ1

Γ2

∂Ωq

Ωq

Ω

Fh0

x0

Figure 1. An example of an initial source h0 (given as time zero Cauchy data) located at x0 and initially
traveling in a given direction. The rest of the diagram depicts the propagation of rays from such an initial
source. P waves are denoted with a solid line and S waves are dashed. The measured data is \scrF h0, which are
waves that return and exit \Omega . The set \Omega q is an interior subdomain defined in section 3. For simplicity of the
diagram, we have suppressed the multiply reflected waves in the measurement data, but they are included in our
approach.

Let us define the closed subset \scrD := \{ x \in \Omega ; cP (x) = 2cS(x)\} \subset \Omega . In this article we
prove the following result.

Theorem 1.1. Assume \scrF = \~\scrF and that cP/S, \widetilde cP/S satisfy the extended geometric foliation

condition (see section 3). If (\lambda , \mu , \rho ) = (\~\lambda , \~\mu , \~\rho ) in \Omega c, then (\lambda , \mu , \rho ) = (\~\lambda , \~\mu , \~\rho ) inside \Omega \setminus \scrD .
Remark 1.2. We use the map \scrF for mathematical convenience but we could also consider

the time dependent Dirichlet-to-Neumann map on a bounded domain for the elastic wave
equation instead. As shown in [21] and [28], the Dirichlet-to-Neumann map determines \scrF 
since one can uniquely determine all three material parameters and their derivatives at the
boundary from the Dirichlet-to-Neumann map, which then allows one to smoothly extend
them outside of \Omega to all of \BbbR 3 (they still have the same discontinuities in \Omega ).

Remark 1.3. We do not need the data to be measured for the whole time \BbbR t; instead it
is sufficient to take measurement for a finite time (0, 2T ) where T > 0 is the maximum time
that a S-wave takes to travel past \Omega . Observe that since cP > cS , therefore T > 0 is enough
time for P -waves to travel past \Omega . We will give the precise definition of T in section 3.

Remark 1.4. In regard to errors in the parameters, these can be estimated with data
in the range of the forward map, in the noise-free case, through stability estimates for the
inverse problem. This would require an adaptation analogous to the results in [17] and the
references there in the smooth, scalar wave setting. To accommodate noisy data, we will need
to extend the current work to a Bayesian framework as developed for the non-abelian geodesic
ray transform in [16]. This requires establishing additional quantitative estimates pertaining
to injectivity of the outside measurement operator.

Remark 1.5. Note that here we do not consider any correlation between the density and
the Lam\'e parameters. The unknowns \lambda , \mu , \rho are independent piecewise smooth functions
satisfying only the strict convexity conditions, i.e., \mu (x) > 0, \rho (x) > 0, and 3\lambda (x)+ 2\mu (x) > 0
over \Omega .D
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1916 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

1.1. Outline. In section 2, we introduce the elastic wave equation with transmission con-
ditions. In section 3, we introduce our main geometric assumption which is a convex foliation
condition and describe the geometry of bicharacteristics in the elastic setting with interfaces.
We also define local travel times and lens relations that we use later in the proof, as well as
a standard geometric optics representation of a solution to the elastic wave equation in the
presence of scattering. A key ingredient in the main proof is to have a notion of ``principal
symbol"" of an FIO applied to an arbitrary distribution so section 4 is devoted to introducing
such a construction based on [31]. The proof of the main theorem is done in section 5, followed
by a section with some concluding remarks. The main proof requires past results on recov-
ering wave speeds with discontinuities and recovering all the parameters across a particular
interface from reflection data, so those are summarized at the start of section 5.

2. Elastic wave equation and transmission conditions. In this section, let us give the
basic definitions and setup of the elastic wave equation that we study in the main theorem.
Recall that \Omega \subset \BbbR 3 is a smooth, bounded domain. As described in [6, section 2], we will probe
\Omega with Cauchy data (an initial pulse) concentrated close to \Omega with a particular polarization,
in some smooth domain \Theta \supset \Omega . The wave generated by the source will scatter when it
hits an interface inside \Omega , and the scattered waves will multiply as they encounter other
interfaces (scattered multiples). See [28, Figure 1] for an illustration of the type of domain we
consider and the multiple scattering. We will add to the initial pulse a Cauchy data control (a
tail) supported outside \Theta , whose role is to remove multiple reflections up to a certain depth,
controlled by a time parameter T \in (0, 12diamP (\Omega )), where diamP (\Omega ) is the diameter of \Omega 
using the metric gP . See [6, Figure 2] for an illustration of the initial pulse and [6, Figure
3] for the control denoted Ktail there. This will require us to consider controls supported in
a sufficiently large Lipschitz neighborhood \Upsilon \subsetneq \BbbR 3 of \Theta . For an incoming elastic wave uI
that enters \Omega , we obtain an array of output scattered waves outside \Omega after hitting one or
more interfaces. From the measurements of the input and the scattered outputs, the goal is
to recover the piecewise smooth coefficients in \Omega .

Define the P -depth d\ast \Theta (x) of a point x inside \Theta :

d\ast \Theta (x) =

\Biggl\{ 
+dP (x, \partial \Theta ), x \in \Theta ,

 - dP (x, \partial \Theta ), x /\in \Theta .

We use the (rough) metric gP since finite speed of propagation for elastic waves is based on
the faster P -wave speed. Since we will probe all of \Omega , fix any T > diamS\Omega . We only require
controls supported in a sufficiently large Lipschitz neighborhood \Upsilon \subsetneq \BbbR 3 of \Theta that satisfies
dS(\partial \Upsilon ,\Theta ) > 2T and is otherwise arbitrary. Thus, we only require elastic wave solutions on
the finite time interval (0, 2T ).

Following the notation in [28, section 3], for an interface \Gamma , we work locally in a small
neighborhood of a point on \Gamma and call one of its sides \Omega  - negative and the other one \Omega +,
positive. For a material parameter generically denoted c, we have c = c - in \Omega  - and c = c+ in
\Omega +, where c - , c+ are smooth up to \Gamma and c - \not = c+ pointwise. We denote f | \Gamma \pm to be the limit
of f(x) as x approaches \Gamma from the positive/negative side. Define the Neumann operator at
\Gamma as the normal component of the stress tensor, given as

(2.1) \scrN \pm u = (\lambda div\otimes I + 2\mu \^\nabla )u \cdot \nu | \Gamma \pm ,D
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1917

where \nu is a fixed unit normal vector at \Gamma . When we wish to leave the exact boundary
restriction ambiguous and just refer to the normal component of the stress tensor at some
hypersurface \Gamma , we will also write \scrN u = (\lambda div \otimes I + 2\mu \^\nabla )u \cdot \nu | \Gamma when it is clear which
hypersurface \Gamma we are referring to. The Cauchy problem for the isotropic, inhomogeneous
elastic wave equation we consider is

(2.2)
\scrP u(t, x) =0 in \BbbR t \times \BbbR 3,

u| t=0 = \psi 0 \partial tu| t=0 =\psi 1, in \BbbR 3,

where \psi 0, \psi 1 are compactly supported in \BbbR 3 \setminus \Omega . We also impose the transmission conditions
at each interface \Gamma i

(2.3) [u] = [\scrN u] = 0 on \Gamma i,

where [v] stands for the jump of v from the exterior to the interior across \Gamma i. Let us also define
the function spaces which will be useful in the analysis. Define the space for the Cauchy data

(2.4) C := H1
0 (\Upsilon ;\BbbC 3)\oplus L2(\Upsilon ;\BbbC 3).

Next, define F to be the solution operator for the elastic wave initial value problem:

(2.5) F : H1(\BbbR n)\oplus L2(\BbbR 3) \rightarrow C(\BbbR , H1(\BbbR 3)), F (h0, h1) = u s.t.

\left\{     
\scrP u = 0,

u\upharpoonright t=0 = h0,

\partial tu\upharpoonright t=0 = h1.

Thus, the outside measurement map may be written as

(2.6) \scrF (h) = F (h)(t)| \Omega c , h \in C.

Let Rs propagate Cauchy data at time t = 0 to Cauchy data at t = s:

(2.7) Rs = (F, \partial tF )
\bigm| \bigm| \bigm| 
t=s

: H1(\BbbR 3)\oplus L2(\BbbR 3) \rightarrow H1(\BbbR 3)\oplus L2(\BbbR 3).

3. Geometric assumptions and notation. In this section, we introduce our notation and
state the geometric assumptions we make. All the definitions and results in this section are
a brief summary of what was defined in [3, 7, 6]. Recall that \Gamma is the collection of closed
connected hypersurfaces \Gamma j for j = 0, 1, . . . , n in \Omega where \Gamma 0 = \partial \Omega and the parameters are
smooth on each connected component of \BbbR 3 \setminus \Gamma .

The principal symbol of the hyperbolic operator \scrP is given as

(3.1) p(t, x, \tau , \xi ) =  - \rho 
\bigl[ \bigl( 
\tau 2  - c2S | \xi | 2

\bigr) 
I  - 

\bigl( 
c2P  - c2S

\bigr) 
(\xi \otimes \xi )

\bigr] 
.

One can calculate the lower order terms in the full symbol of \scrP , and the order one term is

(3.2) p1(t, x, \tau , \xi ) =  - i [\nabla x\lambda \otimes \xi + (\nabla x\mu \cdot \xi )I + \xi \otimes \nabla x\mu ] .

From the principal symbol, we readily observe that \xi and \xi \bot are eigenvectors of p(t, x, \tau , \xi ) with
eigenvalues cP and cS , respectively. The eigenspace corresponding to cP is one-dimensional,
whereas the eigenspace corresponding to the eigenvalue cS is two-dimensional.D
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1918 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

Geodesics and bicharacteristics. The bicharacteristics curves \gamma \pm P/S in T \ast (\BbbR \times \BbbR 3) are the

integral curves of the Hamiltonian vector fields VH\pm 
P/S

, where H\pm 
P/S = \tau \pm cP/S | \xi | along with the

condition that \gamma \pm P/S lies in the set \{ det p(t, x, \tau , \xi ) = 0\} . Parametrized by s \in \BbbR , one obtains

(3.3)
dt

ds
= c - 1

P/S ,
dx

ds
= \pm \xi 

| \xi | 
,

d\tau 

ds
= 0,

d\xi 

ds
= \mp | \xi | \nabla x(log cP/S),

along with the condition that det p(t, x, \tau , \xi ) = 0. We refer to \gamma \pm P/S as the forward and

backward P/S bicharacteristic curves.

Definition 3.1. We refer to a piecewise smooth curve \gamma P/S : I \subset \BbbR \rightarrow \Omega as a unit speed

broken geodesic in (\Omega , gP/S) if

1. \gamma P/S is a continuous path which is smooth in \Omega \setminus \Gamma ,
2. each smooth segment of \gamma P/S is a unit speed geodesic with respect to gP/S,
3. \gamma P/S intersects \Gamma at only finitely many points ti \in I and all the intersections are transversal,
4. \gamma P/S obeys Snell's law of refraction for elastic waves where it cuts \Gamma .

A broken bicharacteristic is a path in T \ast (\BbbR n) of the form (\gamma , \gamma \prime \flat ), the flat operation taken
with respect to gP or gS as appropriate. Note that a broken geodesic defined this way may con-
tain both P and S geodesic segments. More precisely, a broken bicharacteristic (parameterized
by a time variable) can be written as \gamma : (t0, t1) \cup (t1, t2) \cup \cdot \cdot \cdot \cup (tk - 1, tk) \rightarrow T \ast \BbbR n \setminus \Gamma , which
is a sequence of bicharacteristics connected by reflections and refractions obeying Snell's law:
for i = 1, . . . , k  - 1,

(3.4) \gamma (t - i ), \gamma (t
+
i ) \in T \ast 

\Gamma (\BbbR n), (d\iota \Gamma )
\ast \gamma (t - i ) = (d\iota \Gamma )

\ast \gamma (t+i ),

where \iota \Gamma : \Gamma \lhook \rightarrow \BbbR n is the inclusion map, T \ast 
\Gamma (\BbbR n) is the cotangent bundle of \BbbR n that is re-

stricted to \Gamma in the base variable, d is the differential, and \gamma (t\mp i ) = limt\rightarrow t\mp i
\gamma (t). Throughout

the manuscript, we restrict ourselves to broken geodesics \gamma that intersect the interfaces trans-
versely (it is never tangent to an interface) since for our geometric optics representation of
an elastic wave solution, we assume that solutions have wavefront set disjoint from broken
bicharacteristics that are tangent to one of the interfaces. This restriction is justified since as
explained in [28, section 5], for the purpose of the inverse problem, it suffices to analyze the
propagation of singularities away from a set of measure zero, and thus, there is no need to
build a parametrix near the glancing regions. Each restriction \gamma | (ti,ti+1) is a P -bicharacteristic,
respectively, S-bicharacteristic, if it is a bicharacteristic for \partial 2t  - cP\Delta , respectively, \partial 2t  - cS\Delta .
We also refer to each such bicharacteristic as a branch of \gamma ; we are sometimes more specific
and write P branch or S branch if we want to specify the associated metric. For each i, note
that \gamma (ti) projected to the base manifold is a point of \Gamma ki for some ki. A branch \gamma | (ti,ti+1) is

reflected if the inner product of \gamma \prime (t+i ) and \gamma 
\prime (t - i ) (when projected to base space) with a normal

vector to \Gamma ki have opposite signs. Otherwise, it is a transmitted branch. Say that \gamma | (ti,ti+1)

is a mode converted branch if it is a P/S branch and \gamma | (ti - 1,ti) is a S/P branch.
A purely transmitted P/S broken geodesic (a concatenation of smooth P or S geodesics) is

a unit speed broken geodesic that consists of only P/S transmitted branches; that is, the inner
products of \gamma \prime (t - i ) and \gamma \prime (t+i ) with the normal to \Gamma have identical signs at each ti and theyD
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1919

are all either P geodesics or S geodesics. A purely transmitted P/S broken bicharacteristic
is then defined the same way using projection to base space.

We define the broken P/S bicharacteristics as (\gamma P/S , \.\gamma 
\flat 
P/S) where \gamma is a unit speed P/S

broken geodesic and the operation (flat) is taken with respect to the metric gP/S.

Foliation condition. We assume that the domain \Omega has an extended convex foliation with
respect to both of the metrics gP and gS . This is an extension of the convex foliation condition
given in [30] to the piecewise smooth setting and was introduced in [6, Definition 3.2].

Definition 3.2 (extended convex foliation). We say \kappa : \Omega \mapsto \rightarrow [0, \~q] is a (piecewise) extended
convex foliation for (\Omega , gP/S) if

1. \kappa is smooth and d\kappa \not = 0 on \Omega \setminus \Gamma ,
2. \kappa is upper semicontinuous,
3. each level set \kappa  - 1(q) is geodesically convex with respect to gP and gS, when viewed from
\kappa  - 1((q, \~q)) for any t \in [0, \~q),

4. \partial \Omega = \kappa  - 1(0) and \kappa  - 1(\~q) has measure zero,
5. there is some qi \in [0, \~q] such that \Gamma i \subset \kappa  - 1(qi) for i = 0, . . . ,m,
6. lim sup\epsilon \rightarrow 0+ cP/S | \kappa  - 1(q+\epsilon ) \leq lim sup\epsilon \rightarrow 0+ cP/S | \kappa  - 1(q - \epsilon ) whenever \Gamma i \subset \kappa  - 1(q) for some i and

\Gamma i.
We say (cP , cS) satisfies the extended foliation condition if there exists an extended convex

foliation for (\Omega , cP/S).

See the discussion below [6, Definition 3.2] for an explanation of the last condition. We
write \Omega q := \kappa  - 1(q, \~q] to denote the part of the domain whose boundary is \Sigma q := \kappa  - 1(q). Let
us fix the convention of writing ``above"" \Sigma q to be outside of \Omega q and ``below"" to be inside
\Omega q. We write \Sigma \mp 

q to denote two copies of \Sigma q approached from ``above"" or ``below"" \Sigma q. Let
us observe that, if required, we can extend each \Gamma j along with \Sigma qj and denote \Omega j to be the

connected components of \Omega \setminus \Gamma . Write \widetilde \Omega j to be \Omega qj , where \Gamma j \subset \Sigma qj .

Definition 3.3. We define the set of the inward or the outward pointing covectors at a closed
connected hypersurface \Sigma as

T \ast 
\pm \Sigma := \{ (x, \xi ) \in T \ast \Sigma : \pm \langle \xi , d\kappa \rangle > 0\} ,

where the above inner product is taken in the Euclidean sense.
For a domain \Omega q we define

\partial \pm T
\ast \Omega q := \{ (x, \xi ) \in T \ast \Omega ;\pm \langle \xi , d\kappa \rangle > 0\} .

With the help of the notion of the inward or outward covectors, we define the q-interior
travel time and lens relation in \Omega .

Definition 3.4. Let (x, \xi ) \in T \ast 
+\Sigma q \setminus \{ 0\} . Let \gamma P/S be the unit speed broken geodesic such that

lim
t\rightarrow 0+

\bigl( 
\gamma P/S(t), \.\gamma P/S(t)

\bigr) 
= (x, \xi ).

(i) We define the q-interior travel time lP/S,q(x, \xi ) > 0 such that \gamma P/S(lP/S,q) \in \Sigma q.D
ow
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(ii) The q-interior P/S lens relation is LP/S,q(x, \xi ) :=
\bigl( 
\gamma P/S(lP/S,q), \.\gamma P/S(lP/S,q)

\bigr) 
\in T \ast 

 - \Sigma q, where
lP/S,q(x, \xi ) is defined as above.

We end this section by summarizing all the assumptions we have made so far.

Assumption 1. Let us assume all the notations and definitions above. We assume that
(i) the interfaces \Gamma j are a collection of disjoint, connected, closed hypersurfaces in \Omega ,
(ii) \Omega has an extended convex foliation \kappa with respect to both the metrics gP/S .

FIOs and elastic parametrix. In this section we show the microlocal parametrix construc-
tion for the system (2.2) in the smooth setting similar to [20]. Since many of our arguments in
the proof of the main theorem are local, this will suffice. The full parametrix with transmis-
sion conditions where the material parameters have discontinuities is in Appendix B. First,
the geometric optics solution for the initial value problem (2.2) when the material parameters
are smooth has the form

U = E0f0 + E1f1,

where Ek, k = 0, 1, are the solution operators given in terms of FIOs. We write A \equiv B for
two FIOs A and B to denote that A is same as B modulo a smoothing operator. We impose
that the FIOs E0 and E1 solve the following system modulo a smoothing operator:

(3.5)

\scrP Ek \equiv 0 on (0,\infty )\times \BbbR 3,

E0| t=0 \equiv I, \partial tE0| t=0 \equiv 0, on \BbbR 3,

E1| t=0 \equiv 0, \partial tE1| t=0 \equiv I, on \BbbR 3.

The FIOs Ek for k = 0, 1 are given as

(3.6) Ekv =
\sum 

\pm ,P/S,l

\int 
\BbbR 3

e
i\phi \pm 

P/S
(t,x,\xi )

a\cdot ,l\pm ,k,P/S(t, x, \xi )\^vl(\xi ) d\xi , where v = (v1, v1, v3),

a\cdot ,\cdot \pm ,k,P/S(t, x, \xi ) is a matrix valued symbol, \^v is the Fourier transform of v (componentwise),

and i =
\surd 
 - 1. The phase function \phi \pm P/S(t, x, \xi ) is homogeneous of order 1 in \xi and solves the

eikonal equation

(3.7) det p(t, x, \partial t\phi 
\pm 
P/S ,\nabla x\phi 

\pm 
P/S) = 0.

One can simplify the eikonal equation to

(3.8) \partial t\phi 
\pm 
P/S = \mp cP/S | \nabla x\phi 

\pm 
P/S | .

We can choose the initial value to be \phi \pm P/S | t=0 = x \cdot \xi and solve the above equation using
Hamilton--Jacobi theory.

Remark 3.5. Note that the phase function \phi \pm P/S can be determined by the principal symbol
p and thus the wave speeds cP/S . The principal symbol of Ek is also determined by the wave
speeds and not the density [20]. Therefore, if one needs to recover the parameters \rho , \lambda , \mu 
individually, then one must consider the lower order terms of the asymptotic expansion of
a\cdot ,l\pm ,k,P/S .D
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Unlike the phase function \phi \pm P/S , the amplitudes cannot be determined using only the

principal symbol p. We do an asymptotic expansion of the amplitudes a\cdot ,l\pm ,k,P/S(t, x, \xi ) as

a\cdot ,l\pm ,k,P/S(t, x, \xi ) =
\sum 

J=0, - 1, - 2,...

\Bigl( 
a\cdot ,l\pm ,k,P/S

\Bigr) 
J
,

where (a\cdot ,l\pm ,k,P/S)J are homogeneous of order J in | \xi | . Now, each 3\times 3 matrice (a\cdot ,l\pm ,k,P/S)J(t, x, \xi )
satisfies

(3.9) p(t, x, \partial t\phi 
\pm 
P/S ,\nabla x\phi 

\pm 
P/S)(a\pm ,k,P/S)J - 1 = BP/S(a\pm ,k,P/S)J + CP/S(a\pm ,k,P/S)J+1,

where (a\pm ,k,P/S)1 = 0 and the matrix operators BP/S , CP/S are given as

(3.10)

(BP/SV ) = i\partial \tau ,\xi p
\Bigl( 
t, x, \partial t\phi 

\pm 
P/S ,\nabla x\phi 

\pm 
P/S

\Bigr) 
\cdot \partial t,xV + ip1(t, x, \partial t\phi 

\pm 
P/S ,\nabla x\phi 

\pm 
P/S)V

+ i
1

2

\sum 
| \beta | =2

\partial \beta \tau ,\xi p
\Bigl( 
t, x, \partial t\phi 

\pm 
P/S ,\nabla x\phi 

\pm 
P/S

\Bigr) 
\cdot 
\Bigl( 
\partial \beta t,x\phi 

\pm 
P/S

\Bigr) 
V,

\bigl( 
CP/SV

\bigr) 
= i\partial \tau ,\xi p1

\Bigl( 
t, x, \partial t\phi 

\pm 
P/S ,\nabla x\phi 

\pm 
P/S

\Bigr) 
\cdot \partial t,xV

+
1

2

\sum 
| \beta | =2

\partial \beta \tau ,\xi p
\Bigl( 
t, x, \partial t\phi 

\pm 
P/S ,\nabla x\phi 

\pm 
P/S

\Bigr) 
\cdot \partial \beta t,xV.

In order to calculate the explicit form of (aj,l\pm ,k,P/S)J , let us define the unit vectors N =

\nabla x\phi 
\pm 
P

| \nabla x\phi 
\pm 
P | and define N1, N2, such that \{ N1, N2\} forms an orthonormal basis of the kernel of

p(t, x, \partial t\phi 
\pm 
S ,\nabla x\phi 

\pm 
S ). Observe that the unit vector N spans the kernel of p(t, x, \partial t\phi 

\pm 
P ,\nabla x\phi 

\pm 
P )

and \{ N1, N2\} form an orthonormal basis for the kernel of p(t, x, \partial t\phi 
\pm 
S ,\nabla x\phi 

\pm 
S ). Now, let us

write

(3.11)
(a\cdot ,l\pm ,k,P )J = (h\cdot ,l\pm ,k,P )J + (bl\pm ,k,P )JN, l = 1, 2, 3,

(a\cdot ,l\pm ,k,S)J(t, x, \xi ) = (h\cdot ,l\pm ,k,S)J +
\Bigl[ 
(bl\pm ,k,S)1,JN1 + (bl\pm ,k,S)2,JN2

\Bigr] 
,

where (h\cdot ,l\pm ,k,P/S)J is perpendicular to the kernel of p(t, x, \partial t\phi 
\pm 
P/S ,\nabla x\phi 

\pm 
P/S) for J \leq  - 1 with

(h\cdot ,l\pm ,k,P/S)0 = 0.

Observe that from (3.9) we obtain a necessary condition that

(3.12) NP/S

\bigl[ 
BP/S(a\pm ,k,P/S)J + CP/S(a\pm ,k,P/S)J+1

\bigr] 
= 0 for J = 0, - 1, - 2, . . . ,

where NP = N and NS = N1, N2.

4. Symbol of an FIO applied to an arbitrary distribution. In a layer stripping procedure
to recover the density of mass, we will use scattering control to generate internal sources with
a specified wavefront set (as done in [28, 6]). The data that we will be able to recover from
the outside measurement operator has the form FV where V is more or less an arbitraryD
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distribution (the internal source we want to generate) and F is an FIO representation of the
elastic wave propagator. We need to recover the terms in the polyhomogeneous expansion
of the symbol of F from such data and in particular show that they vanish when doing a
uniqueness argument. The main idea is quite natural and an analogous argument can be
found in [11, Example 2.6]. When A is a PsiDO and u is a compactly supported distribution

that is smooth outside \{ 0\} , \widehat Au(\xi ) has an expansion involving the full symbol of A and and
its derivatives, together with \^u and its derivatives, evaluated at (0, \xi ). When Au \in C\infty , then
the terms in this expansion vanish, which creates algebraic equations where one can extract
information regarding the principal symbol of A as well as its lower order symbols in the
classical symbol expansion. Our aim is to do something similar when A is an FIO whose
associated Lagrangian is a canonical graph, and the formalism of Weinstein's symbol calculus
in [31] will be natural to obtain a similar expansion by associating a principal symbol to an
arbitrary distribution.

In a seminal paper [31], Weinstein showed how to define the principal symbol of an ar-
bitrary distribution and showed a product type formula for the principal symbol of a PsiDO
applied to an arbitrary distribution. Here, we tweak several arguments in [31] to compute the
principal symbol of a canonical graph FIO applied to a distribution. We state the necessary
lemmas and propositions we will use in this manuscript but postpone the proofs to Appendix
A to not interrupt the flow of the article.

4.1. Weinstein symbols of arbitrary distributions. We use the formulation of Weinstein
to define the symbol of a distribution. First, fix (x0, \xi ) \in T \ast \BbbR n. Let f \in \scrD \prime (\BbbR n) and let
\phi : \BbbR n \rightarrow \BbbR be a C\infty function with \phi (x0) = 0 and d\phi (x0) = \xi . We define the distribution f \tau \phi 
for \tau \geq 1 by

\langle f \tau \phi , u\rangle = \langle f, \tau n/2e - i\tau \phi (x)u(
\surd 
\tau (x - x0))\rangle ,

where u is a test function. If f \in L1, then f \tau \phi = (fe - i\tau \phi )((x  - x0)/
\surd 
\tau ). Essentially, f \tau \phi =

Tx0D1/
\surd 
\tau Me - i\tau \phi f , where M\bullet is multiplication operator, D\bullet is dilation operator, and Tx0 is a

translation operator so this distribution is well defined. We will usually use \phi = (x  - x0) \cdot \xi 
so we leave out the subscript \phi in this case and just write g\tau . It is also useful to denote
u\tau = \tau n/2e - i\tau \phi (x)u(

\surd 
\tau (x - x0)) so that \langle f \tau , u\rangle = \langle f, u\tau \rangle .

We also need a notion of ``order"" of a distribution by measuring the growth rate of f \tau .
We have the following definition from [31, Definitions 1.1.3, 1.1.7, 1.3.6].

Definition 4.1. If \frakE is a vector space with a distinguished class of subsets called ``bounded
sets,"" we denote by SN (\frakE ) the set of families [1,\infty ) \ni \tau \mapsto \rightarrow f \tau \in \frakE for which the set
\{ \tau  - Nf \tau | \tau \geq 1\} is bounded. If \tau \mapsto \rightarrow f \tau belongs to SN (\frakE ), we write f \tau = O(\tau N ). If the
set S = \{ N | f \tau = O(\tau N )\} is of the form [a,\infty ), we define the order of f at (x0, \xi ) to be a and
denote it by Ox0,\xi 0(f). If S = ( - \infty ,\infty ), we define Ox0(f) =  - \infty .

Let f \in \scrD \prime (\BbbR n) be such that O(0,\xi )(f) \leq N . We define the Weinstein symbol of order N

\sigma N(x0,\xi )
(f)

of f at (x0, \xi ) \in T \ast \BbbR n as the image in SN (\scrD \prime (\BbbR n))/SN - 1(\scrD \prime (\BbbR n)) of the family f \tau \phi under the

natural map SN (\scrD \prime (\BbbR n)) \rightarrow SN (\scrD \prime (\BbbR n))/SN - 1(\scrD \prime (\BbbR n)).D
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This is a slight deviation from [31, Definition 1.3.6] which instead involves \phi and certain
equivalence classes, but as mentioned there, in computing \sigma N(x0,\xi )

(f) for a specific f , it suffices

to determine the behavior modulo SN - 1(\scrD \prime (\BbbR n)) of the family f \tau \phi for a particular \phi with
d\phi (x0) = \xi . In this paper, we will only use \phi (x) = (x - x0) \cdot \xi .

Also, we have the following definition from [31, Definition 1.3.12].

Definition 4.2. A distribution f is homogeneous of degree N at (x0, \xi ) if for a particular
\phi with d\phi (x0) = \xi , f \tau \phi = \tau N\gamma + O(\tau N - 1/2), where \gamma is a fixed element of \scrD \prime (\BbbR n). This is
equivalent to the definition in [31] and then the symbol of f can be identified with \gamma as described
there.

For the distributions we consider here, it will suffice to pair f \tau with an arbitrary test
function and determine the leading order term in \tau as \tau \rightarrow \infty .

As described in [31, section 1.6], the above definitions and concepts naturally extend to
vector valued distributions on a manifold using natural identifications

\scrD \prime (\BbbR n, V ) \approx \scrD \prime (\BbbR n)\otimes \BbbC V,

where V is a finite dimensional vector space over \BbbC .

4.2. Symbol of a PsiDO applied to a distribution. Here we state a few results which are
minor modifications of results in [31], whose proofs we provide in Appendix A. Recall that
\Psi m is the set of pseudodifferential operators of order m.

Lemma 4.3. Let P \in \Psi m be properly supported with a principal symbol representative
pm(x, \xi ). Let f \in \scrD \prime (\BbbR n) and (x0, \xi ) \in T \ast \BbbR n \setminus 0 with O(x0,\xi )(f) \leq N . Then O(Pf) \leq m+N
and

\sigma N+m
(x0,\xi )

(Pf) = pm(x0, \tau \xi )\sigma 
N
(x0,\xi )

(f).

In fact, given a test function u \in \scrD (\BbbR n), we have

Pu\tau (x) = pm(x0, - \tau \xi )u\tau (x) +O(\tau m - 1/2)

and

\langle (Pf)\tau , u\rangle = pm(x0, \tau \xi )\langle f \tau , u\rangle +O(\tau m+N - 1/2)

as \tau \rightarrow \infty .

We also need to know how a diffeomorphism transforms the symbol. First, using the proof
of [31, Proposition 1.4.1], we have the following.

Proposition 4.4. Let \theta : \BbbR n \rightarrow \BbbR n be a diffeomorphism such that \theta (x0) = y0. Then
Oy0,\phi (f) \leq N implies

(f \circ \theta )\tau \phi \circ \theta  - f \tau \phi \circ dx0\theta = O(\tau N - 1/2),

where dx0\theta : \BbbR n \rightarrow \BbbR n is the derivative of \theta at x0.

It will be useful to write out each term in the above proposition. Explicitly, we have
(4.1)
\tau  - n/2\langle (f \circ \theta )\tau \phi \circ \theta , u\rangle = \langle f \circ \theta , ei\tau \phi (\theta (x))u(

\surd 
\tau (x - x0))\rangle = \langle f, J\theta  - 1(y)ei\tau \phi (y)u(

\surd 
\tau (\theta  - 1(y) - x0))\rangle ,D
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1924 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

where Jh denotes the Jacobian of h. Then modulo O(\tau N - 1/2), this is equal to

\tau  - n/2\langle f \tau \phi \circ dx0\theta , u\rangle = \tau  - n/2\langle f \tau \phi , J\theta  - 1(y0)u((dx0\theta )
 - 1y)\rangle 

= \langle f, e - i\tau \phi (y)J\theta  - 1(y0)u(
\surd 
\tau (dx0\theta )

 - 1(y  - y0))\rangle .(4.2)

For the principal symbol, observe that

\phi \circ \theta (x0) = 0, dx0(\phi (\theta )) = (\theta \prime x(x0))
t\phi \prime (y0) = (\theta \prime x(x0))

t\eta 0 = \theta \ast \eta 0.

Thus, \phi \circ \theta is a phase function for (x0, \xi 0) where \xi 0 = \theta \ast \eta 0. Notice \theta induces a map on \scrD \prime (\BbbR n)
by h \mapsto \rightarrow h \circ dx0\theta which preserves bounded sets. It also induces a map on the phase functions
via [\phi ] \mapsto \rightarrow [\phi \circ \theta ] that induces a map on principal symbols.

Corollary 4.5. With the setup as above, we have

\sigma x0,\theta \ast \eta 0(f \circ \theta ) = \sigma y0,\eta 0(\theta )[\sigma y0,\eta 0(f)].

4.3. Principal symbol of an FIO applied to a distribution. Let us consider an FIO
A \in I\mu (Y \times X,\Lambda \chi ), which is the space of FIOs associated to a Lagrangian as defined in
[15, Chapter 25], where X and Y are two manifolds and the associated Lagrangian \Lambda \chi is a
canonical graph of a symplectomorphism \chi : T \ast X \rightarrow T \ast Y . In fact, the only case we need is
for X = \BbbR n and Y = \BbbR n, so let us assume this to simplify the notation. Our proofs apply to
operators acting on vector bundles as well, and with H\"ormander's notation [15, Chapter 25],
this includes operators in the FIO space on vector bundles denoted I\mu (Y \times X,\Lambda \chi ; Hom(E,F ))
for vector bundles E and F . We can write

\Lambda = \Lambda \chi = \{ (\chi (x, \xi )), (x, \xi )\} \subset T \ast Y \times T \ast X.

The order of A is \mu and can be written in the form

A =

\int 
ei(S(y,\xi ) - x\cdot \xi )a(y, \xi ) d\xi 

and a \in S\mu . There is the associated set

C\Phi = \{ (y, x, \xi ) : d\xi \Phi = 0\} 

and a diffeomorphism T\Phi : C\Phi \rightarrow \Lambda . Via a projection, we can view a as a symbol over C\phi and
hence \Lambda via the diffeomorphism T\Phi . We can write explicitly

\Lambda = \{ y, S\prime 
y, S

\prime 
\xi , \xi \} 

as the graph of the canonical transformation

\chi : (S\prime 
\xi , \xi ) \mapsto \rightarrow (y, S\prime 

y).

Following the notation and terminology in [1, section 2], for fixed \xi 0, we introduce the coor-
dinate transform

y \mapsto \rightarrow S\prime 
\xi (y, \xi 0) := T (y) = x(y),D
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which is a local diffeomorphism. Denote the Jacobian determinant JT (y) := | \partial T/\partial y| . In the
proof below, we will be using the adjoint At, but the adjoint is also associated to a canonical
graph and may be put in the form above, which we shall use.

We aim to prove the following proposition which lets us compute a simple form for the
Weinstein principal symbol of an FIO associated to a canonical graph applied to a distribution.

Proposition 4.6. Let (x0, \xi 0) = \chi (y0, \eta 0) and f \in \scrD \prime (Y ). Let A \in \scrI \mu (X \times Y ; \Lambda \chi ) so
that the distributional adjoint At \in I\mu (Y \times X; \Lambda \chi  - 1) has a representation of the form At =\int 
ei(S(y,\xi ) - x\cdot \xi )at(y, \xi ) d\xi where at has a polyhomogeneous expansion with principal term de-

noted at\mu , homogeneous of degree \mu in the \xi variable. Then y0 = T - 1(x0) and

\sigma x0,\xi 0(Af) = at\mu (y0, - \tau \xi 0)JT - 1(x0)\sigma x0,\xi 0(f \circ T - 1).

In this paper, we are interested in A \in \scrI \mu (X \times Y,\Lambda \chi ) with a representation

A =

\int 
ei(\phi (x,\eta ) - y\cdot \eta )a(x, \eta ) d\eta ,

where a = a(\mu )+\~a with \~a \in S\mu  - 1 and a(\mu ) homogeneous in \eta of degree \mu . Following H\"ormander
in [15, Chapter 25], denoting s : Y \times X \rightarrow X \times Y as a function that interchanges the two
factors, then s\ast atprin is the principal symbol of A\ast if aprin is the principal symbol of A and
atprin is the matrix transpose when the vector bundles have been trivialized (in our setting;

both vector bundles are \BbbC 3 so there is no need to specify a trivialization). As shown in [15,
Chapter 25], the principal symbol of A is well defined and determined by a 1/2-density over
\Lambda and a Maslov bundle factor that are both determined by \Lambda . Hence, at\mu computed in the
above proposition and s\ast atprin restricted to \Lambda can only differ by a factor, denoted J\Lambda , which is
completely determined by the Lagrangian \Lambda (since \Lambda is a canonical graph, there is a natural
trivialization of aprin described in [15, Chapter 25]). If we denote the polyhomogeneous
expansion as a \sim 

\sum 
j a(\mu  - j), then the preceding discussion implies

at\mu | \Lambda = J\Lambda s
\ast at(\mu )| \Lambda .

We then get the following important corollary using the definition of the Weinstein symbol.

Corollary 4.7. With the notation and assumptions in Proposition 4.6, and f a distribution
of order N , we have

(4.3) lim inf
\tau \rightarrow \infty 

\tau  - \mu  - N \langle Af, u\tau \rangle = at(\mu )(y0, \xi 0)J\Lambda (y0)\tau 
 - N lim inf

\tau \rightarrow \infty 
\langle f \circ T - 1, u\tau \rangle <\infty ,

where J\Lambda is a quantity determined by \Lambda .

5. Recovery of the parameters. In this section, we will list the preliminary results and
ingredients needed to prove Theorem 1.1 and then give the final proof in section 5.2. Since
this is an intricate procedure with various pieces, we provide a summary of the proof. Note
that, with a suitable choice of foliation, we can identify \Omega with the disjoint union

\Omega =

m\bigsqcup 
j=0

\Omega j , where \Gamma j \subseteq \Sigma qj = \kappa  - 1\{ qj\} ,
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and \Omega j = \kappa  - 1 ([qj , qj+1]) are defined via Definition 3.2. Here we have 0 = q0 < q1 < \cdot \cdot \cdot <
qm = qm+1 and | \Omega m| = 0.

Sketch of the proof of Theorem 1.1. We prove the result using a layer stripping argu-
ment. We split the proof into two main parts.

In the first part, we fix a q \geq 0 and assume that the elastic parameters are known on
\Omega \ast 
q := \Upsilon \setminus \Omega q. Using the microlocal parametrix in the previous section, we construct Cauchy

data h on \Omega \ast such that in time T > 0, the wave field Uh reaches \Omega q and we can specify
the wavefront set as well as the mode of the singularity (i.e., whether the singularity is on
P or S bicharacteristics) of the solution at \Sigma q. We then add a suitable control (which is
semiexplicit) to the Cauchy data, so that when propagated, it cancels the multiple scattering
of the wave field after time T > 0 so that we essentially generate a virtual elastic source at an
interior point in \Omega , with an initial wavefront set given by a chosen codirection and a desired
polarization.

With such specialized waves, we can recover q-interior travel times and q-interior lens
data on \Sigma +

q . Using the local boundary rigidity result of Stefanov, Uhlmann, and Vasy [25],

we determine the wave speeds cP/S on a neighborhood \scrO of \Sigma +
q in \Omega q. Here we use the fact

that \Omega has a strong convex foliation aligned with the interfaces. This much was already
proven in [6] and [28] so it remains to recover information on the density of mass. If \Sigma q

contains an interface, we measure the reflected amplitudes of such carefully constructed waves
to determine the reflection operatorMR on \Sigma  - 

q . Having the knowledge ofMR on the boundary,
we use the result of [4, Theorem 1.1] to recover \lambda , \mu , \rho and all their derivatives at \Sigma +

q . With
the specialized controls in the Cauchy data, we generate P -waves that are singular along a
P -ray inside \=\Omega q that connects two nearby points on \Sigma +

q . We can then use the Weinstein
symbols discussed in section 4 to recover the lower order amplitudes of such waves. These are
determined by a\pm ,k,P/S restricted to a corresponding Lagrangian that we described earlier.

In the second part, we consider an asymptotic expansion of the amplitude function a\pm ,k,P/S

on the P bicharacteristics in T \ast \Omega q, starting and ending at T \ast \Sigma q. We observe that along the
P bicharacteristics, the terms in the asymptotic expansion of the amplitude satisfy transport
equations with the initial data prescribed at \Sigma q. Here, the boundary data consists of the
solution and its Neumann derivative at the boundary \Sigma q of \Omega q.

By varying the boundary data, we will recover the local geodesic ray transform of a 2-
tensor A\rho given by the double derivatives of the density function \rho in \scrO \subset \Omega q. Using the
injectivity result [26] on the geodesic ray transform of 2-tensors, we recover the action of the
Saint-Venant operator on A\rho . In other words, we determine a fourth order elliptic PDE that \rho 
satisfies in \scrO \subset \Omega q. Using elliptic unique continuation results, we recover the density function
\rho in the neighborhood \scrO outside of the set \scrD , where the PDE is not elliptic. Having cP/S
and \rho , we obtain the parameters \lambda , \mu in \scrO . We proceed by iteration and finally recover the
parameters everywhere in \Omega . In the next subsection, we list the key ingredients and previous
results that will be essential to the main proof.

5.1. Summary of preliminary results.

5.1.1. Local travel time tomography. A key ingredient in the proof of uniqueness will
be the following theorem proved by Stefanov, Uhlmann, and Vasy in [25].
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1927

Theorem 5.1. Choose a fixed metric g0 on \Omega . Let n = dim(\Omega ) \geq 3; let c, \~c > 0 be smooth,
and suppose \partial \Omega is convex with respect to both g = c - 2g0 and \~g = \~c - 2g0 near a fixed x \in \partial \Omega .
If dg(x1, x2) = d\~g(x1, x2) for x1, x2 on \partial \Omega near x, then c = \~c in \Omega near x.

We write down a trivial corollary due to continuity of the distance function.

Corollary 5.2. Consider the same setup as in the above theorem. If dg(x1, x2) = d\~g(x1, x2)
for a dense set of points x1, x2 on some neighborhood of x in \partial \Omega , then c = \~c in \Omega near x.

We need this since due to the multiple scattering in our setting, we will only be able to
recover boundary travel times on a dense set of points and not a full neighborhood. We quote
a similar result for the lens relation. Let L denote the lens map.

Corollary 5.3 (see [25, Corollary]). Let \Omega , c, \~c be as above with c = \~c on \partial \Omega near x. Let
L = \~L near Sx\partial \Omega , which is the set of unit tangent vectors to \partial \Omega at x . Then c = \~c in \Omega near
x.

As before, the same corollary holds if we instead assume L = \~L in a set that is dense
inside some neighborhood of Sp\partial \Omega .

5.1.2. Recovery of wave speeds and density of mass across an interface from reflected
waves. In this section, we show that if all material parameters have already been recovered
from \scrF within a layer up to an interface \Gamma i, then the parameters as well as their normal
derivatives can be recovered infinitesimally across \Gamma i; that is, \partial J\nu \rho 

(+), \partial J\nu \lambda 
(+), \partial J\nu \mu 

(+) can be
recovered as well (see Corollary 5.8). We will do this by analyzing the amplitudes of waves
reflected at \Gamma i from above. Let us define the incoming and outgoing unit sphere bundle
\partial \pm S

\ast \Omega q := \{ (x, \xi ) \in \partial \pm T
\ast \Omega q; | \xi | = 1\} . We start with a key proposition.

Proposition 5.4. Let us fix (x, \xi ) \in \partial +S
\ast \Omega q. Let V be a distribution, such that WF (V ) =

\{ (x, s\xi ); s \in \BbbR \setminus \{ 0\} \} , supported outside \Omega q for some q > 0. There exist a large enough T > 0
and a Cauchy data U\infty \in C supported in \Omega \ast such that

(5.1) WF (\scrF T+sU\infty  - \scrF sV ) = \emptyset , for s \geq 0, in \Omega q.

Moreover, one can arrange that the singularity of U\infty flows along the P characteristics \gamma \pm P
outside \Sigma q, i.e., WF (U\infty ) \subset \gamma \pm P for time t close enough to T . Similarly one may take
WF (U\infty ) \subset \gamma \pm S for time t close enough to T .

Proof. We will give a brief sketch of the proof, since it is similar to [6, Proposition 5.3].
First we prove the result for (x, \xi ) \in \scrS \subset T \ast \Omega consists of (x, \xi ) such that all the bad bicharac-
teristics2 through (x, \xi ) are (+)-escapable. We consider a P/S purely transmitted bicharacter-
istic \gamma P/S through (x, \xi ) outside \Omega \tau such that \gamma P/S(T ) = (x, \xi ) and \gamma P/S(0) \in \partial \Theta . Consider a

Cauchy data U0 supported in \Theta \setminus \Omega such that WF (U0) = \{ (\gamma (0), s \.\gamma (0)); s \in \BbbR +\} . Using finite
speed of propagation and the fact that the singularity flows along the bicharacteristics, one
obtains WF (\scrF TU0  - V ) = \emptyset . As in [6, Appendix C], one can construct a tail denoted Ktail,
that together with U0 cancels the multiple scattering and U\infty := U0 + Ktail is the required
Cauchy data. That construction relies on MT to be elliptic away from the glancing set on

2See [6, Definition C.1].D
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both sides of an interface, and this is independent of \rho , so the same proof holds. Finally, using
a density argument (as in [6, Lemma 5.9]), we remove the restriction (x, \xi ) \in \scrS .

Remark 5.5. The usefulness of the above proposition is in the layer stripping argument,
where we recover the parameters outside \Omega \tau and probe the Cauchy data U\infty outside \Omega , which
generates singularities along the bicharacteristics in \Omega \tau . Furthermore, one can generate the
flow of singularity along the P and the S bicharacteristics separately.

Remark 5.6. The time T > 0 is determined by the time it takes for all the branches of
the scattered waves to travel from \Omega \ast to \Sigma q and back to \Theta \ast . Essentially, T can be estimated
by the S distance between \Omega \ast and x \in \Sigma q. For details see [6, Remark 5.4].

We now have an important lemma, taken from [6, Lemma 5.6], that allows us to recover
the reflection operator from reflected waves measured outside \Omega .

Lemma 5.7. Suppose that \Sigma q \subset \Gamma and cP/S = \~cP/S , \rho = \~\rho outside \Omega q. Assume \scrF = \~\scrF .
Then

MR \equiv \~MR on T \ast \Sigma  - 
q .

Proof. The proof is identical to that of [6, Lemma 5.6]. In that paper, the assumption
that \rho = 1 was only needed to have P = \~P outside \Omega q, which is also true in our case due to
the assumptions given.

We then have two important corollaries that follow from Theorem 1.5 in [4].

Corollary 5.8. Suppose that \Sigma q \subset \Gamma and cP/S = \~cP/S , \rho = \~\rho outside \Omega q. Assume \scrF = \~\scrF .

Then \partial j\nu c
(+)
P/S = \partial j\nu \~c

(+)
P/S and \partial j\nu \rho (+) = \partial j\nu \~\rho (+) on \Gamma for all j = 0, 1, 2, . . . .

Proof. By Lemma 5.7, we recover MR over \Gamma  - based on our assumptions. We then apply
[4, Theorem 1.5].

Corollary 5.9. Suppose that \Sigma q \subset \Gamma and cP/S = \~cP/S , \rho = \~\rho outside \Omega q. Assume \scrF = \~\scrF .

Then MT \equiv \~MT and T \equiv \~T at \Gamma .

5.1.3. Recovery of subsurface travel times and lens relations. Next, we show that one
can recover the subsurface lens relations when knowing the parameters outside the domain
\Omega q and the outside measurement operator.

Lemma 5.10. Let (x, \xi ) \in \partial T \ast \Omega q \cap S\ast 
+\Omega q \cap \scrS , and assume the extended convex foliation

condition. If \scrF = \~\scrF and \lambda = \~\lambda , \mu = \~\mu , \rho = \~\rho outside \Omega q, then cP/S and \~cP/S have identical
q-interior lens relations w.r.t. \Sigma q in a neighborhood of (x, \xi ) within T \ast 

\Sigma q
\Omega .

Proof. The proof is identical to that of [6, Lemma 5.6]. In that paper, the trivial density
assumption was only needed to have P = \~P outside \Omega q, which is also true in our case due to
the assumptions given. In fact, the lemma is true even without the density assumption by the
proof of [28, Theorem 10.2].

We can combine the above lemma with Theorem 5.1 to obtain the key corollary. First,
let dqP/S denote the P/S-distance function restricted to \Omega q \times \Omega q, so that dqP/S

\bigm| \bigm| 
\Sigma q\times \Sigma q

is the

boundary distance function of \Omega q.
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Corollary 5.11. With the assumptions in the above lemma, if dqP/S
\bigm| \bigm| 
\Sigma q\times \Sigma q

= \~dqP/S
\bigm| \bigm| 
\Sigma q\times \Sigma q

in

some neighborhood of x \in \Sigma q, then cP/S = \~cP/S in some neighborhood of x.

5.1.4. Unique continuation for elliptic operators. Consider the differential inequality

(5.2) | \Delta nu| \leq f(x, u,Du, . . . ,Dku),

where f is Lipschitz, k = [3n/2], and Dju is the matrix that contains all partial derivatives
of u of order j

We have a unique continuation result from [19, section 3].

Theorem 5.12 (Protter theorem). If u satisfies (5.2) in a neighborhood D of the origin and
u vanishes in any neighborhood of the origin (not necessarily D), then u vanishes identically
on D. In fact, the conclusion holds if

e2/| x| 
\alpha 
u\rightarrow 0 as | x| \rightarrow 0

for any positive \alpha .

In the main proof, we will eventually recover ``lower order"" amplitudes of elastic waves
and use them to show \rho  - \~\rho satisfies an elliptic, fourth order PDE and an inequality of the
form (5.2). We can then use the Protter theorem to locally determine \rho .

Following the sketch of the proof at the start of section 5, we divide the proof into two
parts. The first part concerns previous results on local travel time tomography that is used
to recover the subsurface lens relation at each \Sigma \tau from the knowledge of the parameters in
\Omega \ast 
\tau . We also analyze reflected amplitudes to recover the jumps in the material parameters

and their derivatives across \Sigma \tau if there is an interface there. We then recover the amplitudes
of P -waves along the bicharacteristic curves in a smooth neighbourhood of \Sigma \tau . The second
part deals with the analysis of the amplitudes along the bicharacteristic curves in a smooth
neighborhood of \Sigma \tau . Using the lower order terms along with the principal part of the symbol
p(t, x, \tau , \xi ), we obtain a transport equation for the amplitude, which in turn helps us to recover
the density.

5.2. Proof of Theorem 1.1 and absence of gauge freedom.

Proof of Theorem 1.1. The proof is by contradiction. Suppose cP \not = \~cP or cS \not = \~cS or
\rho \not = \~\rho , and let f = | cP  - \~cP | 2 + | cS  - \~cS | 2 + | \rho  - \~\rho | 2. Now consider S := \Omega \cap suppf , and take
q = minS \kappa : so cP = \~cP and cS = \~cS and \rho = \~\rho above \Omega q, but by compactness there is a point
x \in \Sigma q \cap S. The condition that \kappa  - 1(\~q) has measure zero rules out the trivial case q = \~q.

First part. Let us now consider a small neighborhood of x, denoted Bx, and we consider
the \Sigma q-boundary distance function dqP/S restricted to this neighborhood. Since the interfaces
are not dense, we may choose Bx small enough to intersect at most one interface. We will
consider P or S geodesics that stay completely inside Bx and connect boundary points of \Omega q.
We will then construct microlocal P or S solutions in a small neighborhood of these geodesics
as in [28, section 10].

The proof of [28, Theorem 10.2] ([6] has a slightly different proof) in conjunction with
Corollary 5.2 or Theorem 5.1 shows cP/S = \~cP/S in some neighborhood of x inside Bx which
we keep denoting as Bx. Now let (z1, \zeta 1) \in \partial T \ast \Omega q with z1 \in Bx such that the ray \gamma = \gamma P,z1,\zeta 1D
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1930 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

starting at (z1, \zeta 1) at time t = 0 remains inside Bx until it hits \Omega q again at some point
(z2, \zeta 2) = LP,q(z1, \zeta 1) at time t2, recalling that LP,q is the q-interior lens relation for P -rays.
Let \Lambda t be the Lagrangian associated to the P -bicharacteristic flow of time t, but restricted to
Bx. To describe the Lagrangian \Lambda t, denote \chi 

P
t : T \ast \BbbR n \rightarrow T \ast \BbbR n the P -bicharacteristic flow

by t units of time; that is, if \alpha (t) is a smooth P -bicharacteristic with \alpha (0) = (y, \eta ), then
\chi P
t (y, \eta ) = \alpha (t). We can then write \Lambda t = \{ (\chi P

t (y, \eta ), y, \eta ); (y, \eta ) \in T \ast Bx\} .
Let V \in \scrE \prime (\Omega ), the space of compactly supported distributions in \Omega , with WF(V ) =

\BbbR +(z1, \zeta 1). As shown in [28, Proof of Theorem 10.2] using Proposition 5.4, we may construct
an outgoing P wave u, \~u in \Omega q so that near z1, u(T ) \equiv V and \~u(T ) \equiv V at some time T . As
in [28], \gamma does not hit an interface for either operator. We now consider two cases, depending
on whether x is on an interface or not.

Smooth case: x /\in \Gamma . By the construction in [28] which uses Proposition 5.4, u and \~u are
microlocal P -waves inside B = [T, T + t2] \times Bx and within this set are given by the forward
propagator applied to V with wavefront set in \Sigma P ,

(5.3) u| B \equiv 
\int 
ei\phi 

+
P (t,x,\eta )a\cdot ,l+,k,P (t, x, \eta )

\^Vl(\eta ) d\eta ,

and likewise

(5.4) \~u| B \equiv 
\int 
ei

\~\phi +
P (t,x,\eta )\~a\cdot ,l+,k,P (t, x, \eta )

\^Vl(\eta ) d\eta .

Since \phi +P ,
\~\phi +P only depend on the wave speeds and we have recovered them inside Bx, these

phase functions are equal within Bx. We would like to conclude that

(a+,k,P )J  - (\~a+,k,P )J | \{ (z1,\zeta 1),(z2,\zeta 2)\} = 0

for each J = 0, - 1, - 2, . . . in the polyhomogeneous expansion of the symbols.
Next, as shown in [6], u \equiv \~u on \Omega c

q since P = \~P outside \Omega q and using propagation of
singularities. Thus,\int 

ei\phi 
+
P (t,x,\eta )(a\cdot ,l+,k,P (t, x, \eta ) - \~a\cdot ,l+,k,P (t, x, \eta ))

\^Vl(\eta ) d\eta \in C\infty 

over \Omega c
q. Next, restrict these wave fields to t = T +t2+\varepsilon and denote t\ast := t2+\varepsilon for some small

\varepsilon > 0 that will go to 0 in the limit. Let us denote the symbol b(x, \eta ) = a+,k,P (T + t\ast , x, \eta ) - 
\~a+,k,P (T + t\ast , x, \eta ) restricted to Bx in the spatial variable. The leading order terms in the
polyhomogeneous expansions of a and \~a only depend on the principal symbol of P, \~P and are
thus equal since we have already recovered the wave speeds [28]. Thus, b \sim 

\sum 
J= - 1, - 2,... bJ

where b - 1 = (a\cdot ,l+,k,P (t
\ast , x, \xi )) - 1  - (\~a\cdot ,l+,k,P (t

\ast , x, \xi )) - 1 \in S - 1
hom, where S - 1

hom is the space of
symbols of degree  - 1 that are homogeneous in the \xi coordinate (see also [15, Chapter 25]).
Our goal is to conclude b - 1 = 0 at (z2, \zeta 1). Restricted to \=\Omega c

\tau , we have

BV :=

\int 
ei\phi 

+
P (T+t\ast ,x,\xi )b(x, \xi ) \^V (\xi ) d\xi = f \in C\infty (Bx \cap \=\Omega c

q)

and B is an FIO associated to a canonical graph inside the class \scrI 0(Bx \times Bx,\Lambda t\ast ). Note that
\Lambda t\ast = \{ (\chi P

t\ast (y, \eta ), y, \eta ); (y, \eta ) \in T \ast Bx\} , and in particular, (\=z, \=\zeta ) = \chi P
t\ast (z1, \zeta 1). As shown in

Appendix A, \theta (y) := x \circ \chi P
t\ast (y, \zeta 1) is a local diffeomorphism from some neighborhood of z1 toD
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1931

a neighborhood of \=z that we denote by W . We can shrink neighborhoods so that W \subset \=\Omega c
\tau .

Let N denote the order of the distribution V (see Definition 4.1) and let u \in \scrC \infty 
c (W ). Denote

u\tau (x) = \tau n/2e - i\tau (x - \=z)\cdot \=\zeta u(
\surd 
\tau (x - \=z). Then Corollary 4.7 shows that

lim inf
\tau \rightarrow \infty 

\tau 1 - N \langle BV, u\tau \rangle = b\ast  - 1(\=z, \zeta 2)J\theta  - 1(z1) lim inf
\tau \rightarrow \infty 

\langle V \circ \theta  - 1, u\tau \rangle .

Also, lim\tau \rightarrow \infty \langle f, u\tau \rangle = 0 since f is smooth by [31, Corollary 2.2.2]. We have the freedom
to choose V so that this last limit is nonvanishing; we can even use the construction in [11,
Example 2.6] so that the Fourier transform of V belongs in a certain 0th order symbol class so
that N = 0. We conclude b - 1(\=z, \zeta 1) = 0. Repeating this argument for \varepsilon \rightarrow 0 lets us conclude
b - 1(z2, \zeta 1) = 0 since J\theta  - 1 is nonvanishing. We may repeat this argument by adjusting the
weight \tau k - N to show vanishing of the lower order terms of b as well but we do not need it.

This can be done for any such V and downward (z1, \zeta 1) near T \ast 
x\partial \Omega q so we conclude by

(4.6)

a\cdot ,l+,k,P (t2, z2, \zeta 1) = \~a\cdot ,l+,k,P (t2, z2, \zeta 1) modulo S - \infty .

Interface case: x \in \Gamma . This case differs from the previous case since we want measurements
of the amplitude on \Sigma + \supset \Gamma +, while our assumptions only allow measurements on \Gamma  - . We
are essentially treating \Gamma + (and not \Gamma  - ) as the boundary for \Omega q. Fortunately, the difference
is given by the transmission operator which we can recover via Corollary 5.9. Note that since
we recovered the speeds, \gamma = \~\gamma .

As shown in [6], our inductive assumptions, propogation of singularities, and the foliation
condition imply u \equiv \~u in \=\Omega c

q since P = \~P in that region. Near (T, z1), by construction we have

u| \Gamma + = MTu| \Gamma  - and \~u| \Gamma + = \~MT \~u| \Gamma  - . By Corollary 5.8 and since u| \Gamma  - \equiv \~u| \Gamma  - , we conclude
u| \Gamma + \equiv \~u| \Gamma + \equiv V near (T, z1).

By construction in Proposition 5.4, u and \~u are microlocal P -waves inside B = [T, T+t2]\times 
Bx as in the previous case and within this set are given by the forward propagator applied to
V with wavefront set in \Sigma P just as in (5.3) and (5.4) above. Let us provide a quick illustration
of the argument we that are about to make. Consider [6, Figure 3], where essentially an elastic
P wave is generated that is singular along the P -bicharacteristic through (x, \xi ) and LP,q(x, \xi ),
and \Omega \tau in the figure is \Omega q in our notation. This wave transmits from below \Omega \tau to above \Omega \tau 

in that picture as it passes LP,q(x, \xi ). By induction, we have recovered this P -wave above \Omega \tau ,
but we need to recover it just below \Omega \tau since we are viewing \Omega \tau as our unknown manifold in
order to apply local tensor tomography results. The difference between the wave just below
\Omega \tau and above \Omega \tau is determined by the transmission operator MT , which we can recover using
Corollary 5.9, which allows us to recover the P -wave just below \Omega \tau .

Near (T + t2, z2), we have again have u| \Gamma  - \equiv MTu\Gamma + and \~u| \Gamma  - \equiv \~MT \~u\Gamma + . Since u \equiv \~u
outside \=\Omega q and using Corollary 5.9, we conclude u| \Gamma + \equiv \~u| \Gamma + near (T + t2, z2) as well. Denote
\rho \Gamma + as the restriction to \Gamma from below near z2. As shown in [12, Chapter 5], if WF(u) over \Gamma +

contains no covectors tangential to \Gamma , then \rho \Gamma +u is also the image of an FIO in \scrI 0 (applied to
V ) associated to a canonical graph Lagrangian \Lambda \subset T \ast (\Gamma +\times \BbbR t)\times T \ast Bx. The Lagrangian can
be described using \chi P

t from before. We compute \Lambda = \{ t(y, \eta ), - | \eta | P , d\rho \Gamma +\chi 
P
t(y,\eta )(y, \eta ), (y, \eta )\} 

where t(y, \eta ) is the time the P -ray from (y, \eta ) hits \Gamma for the first time. It will be conve-
nient to just define \Phi (y, \eta ) = (t(y, \eta ), - | \eta | P , d\rho \Gamma +\chi 

P
t(y,\eta )). Let usintroduce boundary normalD
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1932 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

coordinates for \Gamma near z2 with local coordinates (x\prime , xn), where \Gamma is given by xn = 0. Using
(5.4) and (5.3), we then have near (t2, z2)

(5.5) \rho \Gamma +u \equiv 
\int 
ei\phi 

+
P (t,x\prime ,\eta )a\cdot ,l+,k,P (t, x

\prime , \eta ) \^Vl(\eta ) d\eta 

and likewise

(5.6) \rho \Gamma + \~u \equiv 
\int 
ei

\~\phi +
P (t,x\prime ,\eta )\~a\cdot ,l+,k,P (t, x

\prime , \eta ) \^Vl(\eta ) d\eta .

Analogous to the previous case, we define b(t, x\prime , \eta ) = a+,k,P (t, x
\prime , \eta ) - \~a+,k,P (t, x

\prime , \eta ) restricted
to a small neighborhood of (t2, z2) within \BbbR t \times \Gamma +. As in the previous case, b0 = 0 in the
polyhomogeneous expansion of b. Restricted to \=\Omega c

q, we have as before

BV :=

\int 
ei\phi 

+
P (t,x\prime ,\xi )b(t, x\prime , \xi ) \^V (\xi ) d\xi = f \in C\infty (\BbbR t \times \Gamma + \cap \BbbR t \times \=\Omega c

q),

where B is an FIO associated to the canonical graph \Phi inside the class \scrI 0(\BbbR t \times \Gamma + \times Bx,\Lambda ).
To apply the argument in the previous case with Proposition 4.6, all that is necessary is
that B is an FIO associated to a canonical graph so that (t, x\prime ) \circ \Phi (y, \eta ) is a local dif-
feomorphism, since we are away from the glancing set. Hence, using the test functions
u\tau (x) = \tau n/2e - i\tau [(x\prime  - z2)\cdot \zeta 2 - (t - t2)| \zeta 1| P ]u(

\surd 
\tau (t - t2),

\surd 
\tau (x\prime  - z2), we apply the argument in the

previous case to conclude b - 1(t2, z2, \zeta 1) = 0. Likewise, we can iterate to show the vanishing
of the lower order terms as well.

Hence, we are in the same situation as the smooth case above and the remaining argument
proceeds as above to conclude a\pm ,k,P = \~a\pm ,k,P on \Lambda (the principal amplitudes may be taken
as functions on \Lambda via a diffeomorphsim [15, Chapter 25]) modulo S - \infty .

Second part. Above, we have concluded that a\pm ,k,P = \~a\pm ,k,P modulo S - \infty when restricted
to the P -bicharacteristic flow Lagrangian. We calculate the amplitude a\pm ,k,P on the P bichar-
acteristic segment \gamma .

Recall the parametrization of the bicharacteristic curves as in (3.3). Let us evaluate the
compatibility condition (3.12) for J = 0, - 1. We use the notation that for two vectors, v and
w, denote v\circledS w := 1

2(v \otimes w + w \otimes v). From a straightforward calculation we obtain (see [3,
section 3])
(5.7)

\partial \tau ,\xi p(t, x, \tau , \xi ) =2\rho 
\bigl( 
 - \tau I,

\bigl[ 
c2S\xi 1I + (c2P  - c2S)(e1\circledS \xi )

\bigr] 
, . . . ,

\bigl[ 
c2S\xi 1I + (c2P  - c2S)(e3\circledS \xi )

\bigr] \bigr) 
,

\partial \xi j\xi kp(t, x, \tau , \xi ) =2\rho 
\bigl[ 
\delta jkc

2
SI + (c2P  - c2S)(e3\circledS ek)

\bigr] 
,

N \cdot \partial t,xN =
1

2
\partial t,x(N \cdot N) = 0,

where N was defined right below (3.10).

Let us recall from (3.11) that (a\cdot ,l\pm ,k,P )J = (h\cdot ,l\pm ,k,P )J + (bl\pm ,k,P )JN for J = 0, - 1, . . . . Note

that (h\cdot ,l\pm ,k,P )0 = 0 and let us denote (bl\pm ,k,P )J = bJ for J = 0, - 1. Using the fact that

(a\cdot ,l\pm ,k,P/S)1 = 0, the compatibility condition (3.12) for J = 0 reduces to
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1933

0 =N [BP (b)0]

=2i\rho 

\biggl[ 
 - \tau \partial t + c2P (\xi \cdot \nabla x) +

1

2
(c2P  - c2S)| \xi | (\nabla x \cdot N) + ic2P \xi \cdot \nabla x(log \rho c

2
P )

\biggr] 
(b)0

 - i\rho 

\biggl[ 
c2PN(\nabla \otimes \xi )N + c2P

d

ds
(log cP )| \xi |  - c2S(\nabla x \cdot \xi ) - (c2P  - c2S)N(\nabla x \otimes \xi )N

\biggr] 
(b)0.

The above equation, combined with (3.3), reduces to a transport equation

d

ds
(b)0 =  - 1

2

\biggl[ 
d

ds
log(\rho cP ) + (\nabla x \cdot N)

\biggr] 
(b)0.

For s > T0, we solve the transport equation above and get (see [3, equation 16])

(5.8) (b)0(s) = (b)0(0)

\sqrt{} 
(\rho cP )| s=0

(\rho cP )(s)
exp

\biggl( 
 - 1

2

\int s

0
(\nabla x \cdot N)(r) dr

\biggr) 
and (a)0 = N \otimes (b)0.

For J =  - 1, the compatibility condition (3.12) reads, recalling the definition of BP and
CP in (3.10),

N [BP (a) - 1 + CP (a)0] = 0.

Using a similar calculation as for J = 0 we get
(5.9)
d

ds
(a) - 1 +

1

2

\biggl[ 
d

ds
(log \rho cP ) + (\nabla x \cdot N)

\biggr] 
(a) - 1 = G =

1

2i\rho c2P | \xi | 

\Bigl[ 
NBP (h

\cdot ,l
\pm ,k,P ) - 1 +NCP (a)0

\Bigr] 
.

Note that one can determine

(h\cdot ,l\pm ,k,P ) - 1 =
 - 1

\rho (c2P  - c2S)| \xi | 2
BP (N \otimes (a)0)

from (3.9). Thus, we can solve the above transport equation for (a) - 1 and get

(5.10) g(a) - 1 = C +

\int 
\gamma 
gG,

where C is a constant and

g(s) =

\sqrt{} 
(\rho cP )(s)

(a)0(T0)
\sqrt{} 

(\rho cP )(T0)
exp

\biggl( \int s

0
\nabla x \cdot N(r) dr

\biggr) 
.

Now, note that U , MT , and \partial j\nu \lambda , \partial 
j
\nu \mu , \partial 

j
\nu \rho for j = 0, 1, . . . are known at \Sigma \pm 

\tau , thus we
know (a) - 1| s=T0 . Let there be two sets of parameters (\lambda , \mu , \rho ) and (\~\lambda , \~\mu , \~\rho ) in \Omega as assumed in
the statement of Theorem 1.1. Let (\~a) - 1 be the same quantity as (a)1 corresponding to the
parameters (\~\lambda , \~\mu , \~\rho ). Therefore, from the above analysis we get (a)1(0) = (\~a)1(0). Since weD
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1934 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

already have that the wave speeds cP/S are the same in a neighborhood of \Sigma \tau , the geodesics
are also the same near \Sigma \tau . Since the projection of \zeta in \Omega is a geodesic \gamma , from (5.10) we obtain

(5.11)

\int 
\gamma 
N \cdot 

\Biggl( 
A - \~A

cP

\Biggr) 
N ds = 0,

where A and \~A are exactly the same as the matrices A1, A2 derived in [3, equation 21]. Here
A, \~A are 2-tensors and using the local inversion result [26] we obtain the kernel of the geodesic
ray transform (5.11), given by the Saint-Venant operator (see [3]). The Saint-Venant operator
applied on the 2-tensor 1

cP
(A - \~A) results in a symmetric 4-tensor.

Using the exact same calculations of the symmetric 4-tensor as in [3, section 4] we finally
obtain the fourth order PDE

(5.12)
(c2P  - c2S)(c

2
P  - 4c2S)

c4P  - 5c2P c
2
S + 8c4S

\Delta 2 log

\biggl( 
\rho 

\~\rho 

\biggr) 
 - \Delta 

\biggl( 
\nabla x log(\rho \~\rho ) \cdot \nabla x log

\biggl( 
\rho 

\~\rho 

\biggr) \biggr) 
= 0

in a neighborhood of \Sigma q in \Omega q. Since we know the derivatives of the parameters on \Sigma +
q by

Corollary 5.8, we can smoothly extend them in a neighborhood of \Sigma q in \Omega \ast 
q . If we exclude the

set \scrD = cP = 2cS , then (5.12) is elliptic and we can use strong unique continuation to prove
(log \rho  - log \~\rho ) = 0 in the neighborhood of \Sigma q.

In particular, we have shown

\beta  - := log \rho  - log \~\rho = 0 in Bx \cap \Omega q.

By Corollary 5.8, \beta  - vanishes to infinite order at \partial \Omega q, and so we may extend all three
parameters smoothly outside \Omega q with \beta  - extended by 0. Let Bext be a neighborhood of x
such that Bext \cap \Omega q = B. With the extended parameters, \beta  - is extended as well, continues
to satisfy (5.12), and in particular, over Bext.

Now, if \digamma =
(c2P - c2S)(c

2
P - 4c2S)

c4P - 5c2P c2S+8c4S
is bounded on Bext, recalling that Djv denotes the j-tensor

of partial derivatives of v of order j, then (5.12) shows that

| \Delta 2(\beta  - )| \leq Cg(x,D\beta  - , D2\beta  - , D3\beta  - )

so if we replace \beta  - by \beta  - (x - x0) for and x0 in Bext\setminus \=\Omega q, then \beta 
 - indeed satisfies an inequality

of the form (5.2) as well as the hypothesis of Theorem 5.12. Hence, \beta  - = 0 on Bext.
Thus, we can recover \rho in a neighborhood of \Sigma q, excluding the set \scrD . Since we already

have recovered cP/S , we can recover all the parameters near \Sigma q. Thus, S = \emptyset , which proves
the theorem.

6. Conclusion. This paper implies that under certain geometric conditions, a piecewise
smooth coefficient of a hyperbolic partial differential operator that is not in its principal sym-
bol may be uniquely recovered. The essential ingredient is having a microlocal parametrix to
represent solutions via an FIO in order to recover travel times and ``lower order"" polarization
terms. This reduces the problem to a local tensor tomography problem. Even the scattering
control construction may be generalized to whenever the transmission operator is an ellipticD
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1935

operator, which depends on the original operator and the transmission conditions (see [6] for
the construction).

However, this does not automatically lead to a unique recovery since the tensor tomogra-
phy problem always has a gauge freedom. Thus, determining whether the gauge freedom may
be eliminated will have to be done on a case by case basis that will be unique to the partial
differential operator at hand.

Future work concerns both the reconstruction aspects of this inverse problem and the
missing stability estimates discussed in Remark 1.4.

Appendix A. Proofs of statements in section 4. In this section, we provide the proofs
of the statements made in section 4. First we prove Lemma 4.3 on the principal symbol of a
PsiDO applied to a distribution.

Proof of Lemma 4.3. Let P \ast be the formal distributional adjoint of P with symbol denoted
p\ast . Then

\langle (Pf)\tau \phi , u\rangle = \langle Pf, e - i\tau x\cdot \xi u(
\surd 
\tau x)\rangle \tau n/2

= \langle f, P \ast e - i\tau x\cdot \xi u(
\surd 
\tau x)\rangle \tau n/2,

P \ast e - i\tau x\cdot \xi u(
\surd 
\tau x) = cn

\int 
ei(x - y)\cdot \eta  - i\tau y\cdot \xi p\ast (x, \eta )u(y

\surd 
\tau )dyd\eta 

= cn\tau 
 - n/2

\int 
e
ix\cdot \eta  - i y\surd 

\tau 
\cdot (\eta +\tau \xi )

p\ast (x, \eta )u(y)dyd\eta 

= cn\tau 
 - n/2

\int 
eix\cdot \eta  - iy\cdot (\eta /

\surd 
\tau +

\surd 
\tau \xi )p\ast (x, \eta )u(y)dyd\eta ,

where we changed variables
\surd 
\tau y = y in the last line. Change variables

\~\eta = \eta /
\surd 
\tau +

\surd 
\tau \xi 

so that

\eta = \~\eta 
\surd 
\tau  - \tau \xi 

and d\eta = \tau n/2d\~\eta . Substituting gives

P \ast e - i\tau x\cdot \xi u(
\surd 
\tau x) = cn

\int 
eix\cdot (\~\eta 

\surd 
\tau  - \tau \xi ) - iy\cdot \~\eta p\ast (x,

\surd 
\tau \~\eta  - \tau \xi )u(y)dyd\~\eta 

= cne
 - i\tau x\cdot \xi 

\int 
ei(x

\surd 
\tau  - y)\cdot \~\eta p\ast (x,

\surd 
\tau \~\eta  - \tau \xi )u(y)dyd\~\eta 

:= e - i\tau x\cdot \xi v(
\surd 
\tau x),

where v\tau (x) = cn
\int 
ei(x - y)\cdot \~\eta p\ast ( x\surd 

\tau 
,
\surd 
\tau \~\eta  - \tau \xi )u(y)dyd\~\eta which is a PsiDO applied to u. Hence,

we have shown that

\langle (Pf)\tau \phi , u\rangle = \langle (f)\tau \phi , v\tau (x)\rangle ,

i.e., the family (f)\tau \phi applied to the ``test function"" v\tau (x) which also depends on \tau .D
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1936 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

Now suppose P is a classical PsiDO so p\ast is homogeneous of degree m. Let us do the first
order Taylor expansion of p\ast ( x\surd 

\tau 
,
\surd 
\tau \~\eta  - \tau \xi ) around x = 0 and \~\eta = 0:

(A.1) p\ast 
\biggl( 
x\surd 
\tau 
,
\surd 
\tau \~\eta  - \tau \xi 

\biggr) 
= p\ast (0, - \tau \xi ) + \tau  - 1/2x \cdot \partial xp\ast (0, - \tau \xi ) + \tau 1/2\~\eta \cdot \partial \eta p\ast (0, - \tau \xi ).

However, note that \partial \eta p
\ast \in \partial \eta p

\ast 
m + Sm - 2

hom = \tau m - 1\partial \eta p
\ast 
m(0, - \xi ) + Sm - 2

hom . Thus,

p\ast 
\biggl( 
x\surd 
\tau 
,
\surd 
\tau \~\eta  - \tau \xi 

\biggr) 
= p\ast (0, - \tau \xi ) +O(\tau m - 1/2),

so we obtain
v\tau (x) = p\ast (0, - \tau \xi )u(x) +O(\tau m - 1/2).

We have now shown

\langle (Pf)\tau \phi , u\rangle = \langle p\ast (0, - \tau \xi )(f)\tau \phi , u(x)\rangle +O(\tau N+m - 1/2),

which gives us the desired result on the principal symbol.
For the latter statement in the lemma, we have

Pe - i\tau (x - x0)\cdot \xi u(
\surd 
\tau (y  - x0)) = cn

\int 
ei(x - y)\cdot \eta  - i\tau (y - x0)\cdot \xi p(x, \eta )u(y

\surd 
\tau )dyd\eta 

= cn\tau 
 - n/2

\int 
ei((x - x0) - y/

\surd 
\tau )\cdot \eta  - i

\surd 
\tau y\cdot \xi p(x, \eta )u(y)dyd\eta 

= cn\tau 
 - n/2

\int 
e
i\~x\cdot \eta  - i y\surd 

\tau 
\cdot (\eta +\tau \xi )

p(x, \eta )u(y)dyd\eta 

= cn\tau 
 - n/2

\int 
ei\~x\cdot \eta  - iy\cdot (\eta /

\surd 
\tau +

\surd 
\tau \xi )p(x, \eta )u(y)dyd\eta ,

where we changed variables
\surd 
\tau (y  - x0) = y in the second line and we denote \~x = x  - x0.

Change variables
\~\eta = \eta /

\surd 
\tau +

\surd 
\tau \xi 

so
\eta = \~\eta 

\surd 
\tau  - \tau \xi ,

and d\eta = \tau n/2d\~\eta . Substituting gives

Pe - i\tau (x - x0)\cdot \xi u(
\surd 
\tau (y  - x0)) = cn

\int 
ei\~x\cdot (\~\eta 

\surd 
\tau  - \tau \xi ) - iy\cdot \~\eta p(x,

\surd 
\tau \~\eta  - \tau \xi )u(y)dyd\~\eta 

= cne
 - i\tau \~x\cdot \xi 

\int 
ei(\~x

\surd 
\tau  - y)\cdot \~\eta p(x,

\surd 
\tau \~\eta  - \tau \xi )u(y)dyd\~\eta 

:= e - i\tau \~x\cdot \xi v(
\surd 
\tau \~x),

where v\tau (x) = cn
\int 
ei(x - y)\cdot \~\eta p( x\surd 

\tau 
+ x0,

\surd 
\tau \~\eta  - \tau \xi )u(y)dyd\~\eta and can be viewed as a parameter

dependent PsiDO applied to u.D
ow
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Now suppose P is a classical PsiDO so p is homogeneous of degree m. Let us do the first
order Taylor expansion of p( x\surd 

\tau 
+ x0,

\surd 
\tau \~\eta  - \tau \xi ) around x = 0 and \~\eta = 0.

(A.2)

p

\biggl( 
x\surd 
\tau 
+ x0,

\surd 
\tau \~\eta  - \tau \xi 

\biggr) 
= p(x0, - \tau \xi )+ \tau  - 1/2x \cdot \partial xp(x0, - \tau \xi )+ \tau 1/2\~\eta \cdot \partial \eta p(x0, - \tau \xi )+O(\tau  - 1).

However, note that \partial \eta p = \partial \eta pm mod Sm - 2 = \tau m - 1\partial \eta pm(0, - \xi ) mod Sm - 2. Since u is com-
pactly supported, we also have

(A.3) x \cdot \partial xp(x0, - \tau \xi )u(
\surd 
\tau x) = O(\tau m - 1/2)

since | x| \lesssim \tau  - 1/2 on the support of u. The rigorous details follow the proof in [31, Theorem
2.1.2] with appropriate cutoff functions.

Thus,

p(
x\surd 
\tau 
+ x0,

\surd 
\tau \~\eta  - \tau \xi ) = p(x0, - \tau \xi ) +O(\tau m - 1/2),

so we obtain

v\tau (x) = p(x0, - \tau \xi )u(x) +O(\tau m - 1/2).

Replacing x by
\surd 
\tau \~x and using (A.3) gives us exactly Pu\tau = p(x0, - \tau \xi )u\tau +O(\tau m - 1/2).

We now prove Proposition 4.4 on the symbol of a pullback of a distribution by a diffeo-
morphism.

Proof of Proposition 4.4. This follows easily from the proof of [31, Proposition 1.4.1] once
we make several observations. First, we have by construction

\tau  - n/2
\Bigl( 
\langle (f \circ \theta )\tau \phi \circ \theta , u\rangle  - \langle f \tau \phi \circ dx0\theta , u\rangle 

\Bigr) 
= \tau  - n/2

\Bigl( 
\langle f \tau \phi , J\theta  - 1(y)u(

\surd 
\tau (\theta  - 1(y) - x0))\rangle  - \langle f, e - i\tau \phi (y)J\theta  - 1(y0)u(

\surd 
\tau (dx0\theta )

 - 1(y  - y0))\rangle 
\Bigr) 

= \tau  - n/2\langle f, e - i\tau \phi (y)
\Bigl[ 
J\theta  - 1(y)u(

\surd 
\tau (\theta  - 1(y) - x0)) - J\theta  - 1(y0)u(

\surd 
\tau (dx0\theta )

 - 1(y  - y0))
\Bigr] 
\rangle 

= \tau  - n/2\langle f, e - i\tau \phi (y)v\tau (
\surd 
\tau (y  - y0))\rangle ,

where

v\tau (y) = J\theta  - 1(y/
\surd 
\tau + y0)u(

\surd 
\tau (\theta  - 1(y/

\surd 
\tau + y0) - x0)) - J\theta  - 1(y0)u((dx0\theta )

 - 1y).

Denote

A := dy0\theta 
 - 1 = (dx0\theta )

 - 1.

Introducing the variable Y \in \BbbR n, and using Taylor series, we have

[\theta  - 1(Y + y0)]j = [\theta  - 1(y0)]j + [AY ]j +

n\sum 
k,l=1

bj,kl(Y )YkYl,

where bj,\cdot \cdot (Y ) is a smooth n\times n matrix function, for j = 1, . . . , n.D
ow
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1938 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

Thus,

(A.4) [
\surd 
\tau (\theta  - 1(y/

\surd 
\tau ) - x0)]k = [Ay]j + \tau  - 1/2

n\sum 
k,l=1

bj,kl(y/
\surd 
\tau )ykyl.

A Taylor expansion for u is

u(z + h) = u(z) + a(z, h) \cdot h,

where a(z, h) is a smooth n-vector function of z and h, and similarly

J\theta  - 1(y)(y/
\surd 
\tau + y0) = | A| + \tau  - 1/2C(y/

\surd 
\tau ) \cdot y,

where C(Y ) is a smooth n-vector function. Combining these equations with (A.4) we obtain

v\tau (y) = J\theta  - 1(y)

\bigl( 
y/

\surd 
\tau + y0

\bigr) 
u
\bigl( 
Ay + \tau  - 1/2

n\sum 
j,k,l=1

aj(y, bj,kl(y/
\surd 
\tau )ykyl

\bigr) 
 - | A| u(Ay)

= \tau  - 1/2

\left[  n\sum 
j,k,l=1

a
\Bigl( 
Ay,

\surd 
\tau (\theta  - 1(y/

\surd 
\tau ) - x0)

\Bigr) 
bj,kl

\Bigl( y
\tau 

\Bigr) 
ykyl

\right]  J\theta  - 1(y)(y/
\surd 
\tau + y0)

+ \tau  - 1/2u(Ay)C(y/
\surd 
\tau ) \cdot y.(A.5)

Hence, the above equation is analogous to [31, equation (1.4.9)] and the rest of the proof
follows closely to [31, Proof of Proposition 1.4.1].

We now prove Proposition 4.6 regarding the symbol of an FIO applied to a distribution.

Proof of Proposition 4.6. It will ease notation to use \~A in place of A in the statement of
the proposition. We start with a test function u \in \scrD (X) so

\langle ( \~Af)\tau x0,\xi 0 , u\rangle = \langle \~Af, e - i\tau (x - x0)\cdot \xi 0u(
\surd 
\tau (x - x0))\rangle \tau n/2(A.6)

= \langle f, \~Ate - i\tau (x - x0)\cdot \xi 0u(
\surd 
\tau (x - x0))\rangle \tau n/2.(A.7)

Set A = \~A which is also an FIO associated to a canonical graph. An FIO associated to a
canonical graph has the form

Au(y) =

\int 
eiS(y,\xi )a(y, \xi )\^u(\xi ) d\xi .

Denote u\tau = ei(x - x0)\cdot \xi 0u(
\surd 
\tau (x - x0)), and

Now, we view u as a wave packet centered at x0 around \xi 0. We do the Taylor expansion

S(y, \xi ) = S(y, \xi 0) + S\prime 
\xi (y, \xi 0) \cdot (\xi  - \xi 0) + q(y, \xi  - \xi 0),

where q is quadratic in \xi  - \xi 0. By homogeneity, S(y, \xi 0) - S\prime 
\xi (y, \xi 0) \cdot \xi 0 = 0. So

S(y, \xi ) = S\prime 
\xi (y, \xi 0) \cdot \xi + q(y, \xi  - \xi 0).D
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1939

Thus,

Au(y) =

\int 
eiS

\prime 
\xi (y,\xi 0)\cdot \xi eiq(y,\xi )a(y, \xi )\^u(\xi ) d\xi .

Next, \chi being a canonical graph implies that the map

y \mapsto \rightarrow S\prime 
\xi (y, \xi 0) = x(y, \xi 0) := T (y)

is a diffeomorphism near y0 = \pi 1\chi (x0, \xi 0), where \pi 1 is the projection to the base manifold.
Applying a pullback via the inverse of the above map gives

Au(y(x)) =

\int 
eix\cdot \xi eiq(y(x),\xi )a(y(x), \xi )\^u(\xi ) d\xi = B(x,D)u,

where B is a PsiDO with symbol b(x, \xi ) = eiq(y(x).\xi )a(y(x), \xi ). Technically, b is not a symbol
but it will be after introducing cutoff functions as in the proof of [31, Theorem 3.2.5]. Denote
u\tau = ei(x - x0)\cdot \xi 0u(

\surd 
\tau (x - x0)) and

Au\tau (y(x)) =

\int 
eix\cdot \xi eiq(y(x),\xi )a(y(x), \xi )\^u\tau (\tau \xi ) d\xi .

As in the proof of [31, Theorem 3.2.5], we divide the above integral into two pieces with a
cutoff function \scrK (\Psi ),\Psi = \xi  - \xi 0 which is 1 for | \Psi | \leq 1/2 and supported in the unit ball.
Thus, without loss of generality, we can replace b with \scrK (\tau 1/2\Psi )b, with the piece containing
1 - \scrK (\tau 1/2\Psi ) being O(\tau  - \infty ) via the proof of [31, Theorem 3.2.5] and it can be ignored. Thus,

Au\tau (y) = B(x, \tau D)u\tau | x=x(y),

where b(x, \xi ) = \scrK (\tau 1/2\Psi )eiq(y(x),\xi  - \xi 0)a(y(x), \xi ) is now a symbol and B(x,D) is a (non-
classical) PsiDO with principal symbol of order \mu denoted b\mu (y(x), \xi ) (see, for example, [10]).
We also denote a\mu (y, \xi ) as the first term in the asymptotic expansion of a(y, \xi ), which is a
classical symbol. This shows that Au\tau is merely an application of a PsiDO followed by a
diffeomorphism. Due to the cutoff \scrK , the proof of Lemma 4.3 goes through. We showed that
to leading order

B(x,D)u\tau = b\mu (x0, \tau \xi 0)u\tau (x) +O(\tau  - 1/2).

Thus, we get Au\tau = eiq(y0,\xi 0)a\mu (y0, \xi 0)u\tau (x(y)) +O(\tau  - 1/2).
Next observe that

u\tau (x(y)) = ei\tau (x(y) - x0)\cdot \xi 0u(
\surd 
\tau (x(y) - x0))\tau 

n/2

and note that the phase \phi (y) = (x(y) - x0) \cdot \xi 0 = (S\prime 
\xi (y, \xi 0) - x0) \cdot \xi 0 = S(y, \xi 0) - x0 \cdot \xi 0 satisfies

the conditions in [31] for the phase, so that the phase invariance results there apply. We have
\phi (y0) = 0 and \phi \prime (y0) = S\prime 

y(y0, \xi 0) = \eta 0, so [31, Proposition 1.2.1] shows we may replace \phi by
the phase (y  - y0) \cdot \eta 0 without changing the principal symbol.

Let \theta be defined such that \theta  - 1(y) = T (y). Thus, using Proposition 4.4 we haveD
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1940 BHATTACHARYYA, DE HOOP, KATSNELSON, AND UHLMANN

\langle g, u\tau (x(y)\rangle = \langle J - 1
\theta  - 1g, J\theta  - 1u\tau (x(y)\rangle (A.8)

= \langle (J\theta g \circ \theta )\tau \phi \circ \theta , u(x)\rangle = \langle (J\theta g)\tau \phi \circ dx0\theta , u(x)\rangle +O(\tau N - 1/2).(A.9)

We also compute

(A.10) \sigma \chi (y0,\eta 0)(J\theta g \circ \theta ) = \sigma y0,\eta 0(\theta )[\sigma y0,\eta 0(J\theta g)] = J\theta (y0)\sigma y0,\eta 0(\theta )[\sigma y0,\eta 0(g)]

using that multiplication by J\theta can be viewed as an application of a 0th order classical PsiDO.
Piecing everything together gives us

\sigma x0,\xi 0(
\~Ag) = a(y0, \tau \xi 0)JT - 1(y0)\sigma y0,\eta 0(T

 - 1)[\sigma y0,\eta 0(g)].

Appendix B. Elastic wave parametrix with scattering. In this section, we summarize
the microlocal parametrix construction for the system (2.1) with transmission conditions that
was used to prove Proposition 5.4 to recover the wave speeds, which was already done in [6].

B.1. Cauchy data and propagator. Recall the space C in (2.4), where we define the
Cauchy data. Let \Psi = (\psi 0, \psi 1) \in C be some Cauchy data. Observe that for \Psi \in C, there
exists a unique solution U = U\Psi \in C(\BbbR , H1(\BbbR 3)) of the initial value problem (2.1). We define
the propagator

F : C \rightarrow C(\BbbR , H1(\BbbR 3)) as F (\Psi ) := U(t, x) in \BbbR \times \BbbR 3.

The Cauchy propagation operator is defined as

(B.1) \scrF t : C \mapsto \rightarrow C as \scrF t\Psi := rt \circ F (\Psi ) = (U(t, \cdot ), \partial tU(t, \cdot )) ,

where U = U\Psi and rt is the restriction at time t.
Let us define \lambda j , \mu j , \rho j to be the smooth extensions of the parameters (\lambda , \mu , \rho )| \Omega j outside

\Omega j so that the solution operators E0 and E1 may be defined for each set of such parameters.
We define the Cauchy-to-solution operators J\bfC \rightarrow \bfS and J\bfC \rightarrow \bfS + as in [6, section 4.1]. Loosely
speaking, J\bfC \rightarrow \bfS maps the Cauchy data from C to the unique solution U\Psi \in C

\bigl( 
\BbbR , H1(\Omega )

\bigr) 
and J\bfC \rightarrow \bfS +U the same as J\bfC \rightarrow \bfS U but only propagates forward in time. We also borrow the
the following operators from [6]:

J\bfC \rightarrow \partial : maps Cauchy data from C to the boundary C(\BbbR , H1/2(\partial \Omega j)),

J\bfC \rightarrow \partial + : maps Cauchy data from C to the boundary C(\BbbR , H1/2(\partial \Omega j)),

J\partial \rightarrow \bfS : maps boundary data C(\BbbR , H1/2(\partial \Omega j+1)) to the solution C(\BbbR , H1(\Omega )),

J\partial \rightarrow \partial : maps boundary data C(\BbbR , H1/2(\partial \Omega j)) to a different boundary C(\BbbR , H1/2(\partial \Omega j+1)).

B.2. P/S polarization projections. Let us construct a P/S-mode projector \Pi P/S that
microlocally projects the elastic wave field u to the compressive (P ) and the sheer (S) wave
fields for a small time interval, as

\Pi P/Su :=
\sum 
\pm ,l,k

\int 
\BbbR 3

e
i\phi \pm 

P/S
(t,x,\xi )

a\cdot ,l\pm ,k,P/S(t, x, \xi )(
\^\phi k)l(\xi ) d\xi , where l = 1, 2, 3, k = 1, 2.

D
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IMAGING A PIECEWISE SMOOTH DENSITY OF MASS 1941

Observe that p(t, x, \tau , \xi ) has eigenvalues \rho 
\bigl( 
\tau 2  - c2P | \xi | 2

\bigr) 
and \rho 

\bigl( 
\tau 2  - c2S | \xi | 2

\bigr) 
with multi-

plicity 1 and 2, respectively (see (3.1)). The matrix p can be diagonalized and there exists a
unitary matrix V (t, x, \tau , \xi ) such that

V p(t, x, \tau , \xi )V  - 1 = \rho 

\left(  \tau 2  - c2P | \xi | 2 0 0
0 \tau 2  - c2S | \xi | 2 0
0 0 \tau 2  - c2S | \xi | 2

\right)  = D(t, x, \tau , \xi ).

Let us now consider the symbol

(B.2) \Pi P (t, x, \tau , \xi ) := V  - 1

\left[  1 0 0
0 0 0
0 0 0

\right]  V and \Pi S(t, x, \tau , \xi ) := V  - 1

\left[  0 0 0
0 1 0
0 0 1

\right]  V.
Observe that the symbol of \Pi P/S is homogeneous of order 0 in | \xi | and thus \Pi P/S represents a
0th order PsiDO.

B.3. Transmission conditions. Let uI be an incoming wave starting at \Omega \ast 
tj and traveling

toward \Gamma j = \Sigma tj for j = 0, 1, . . . ,m. At \Gamma j it hits the interface and breaks into two parts uR
the reflected wave and uT the transmitted wave. From now on, we will write the subscript
\bullet = I/R/T to denote the incoming, reflected, or transmitted quantities.

Let us define the Neumann operator at an interface \Gamma j for j = 0, 1, . . . ,m as

(B.3) \scrN \bullet u\bullet = (\lambda div\otimes I + 2\mu \^\nabla )u\bullet \cdot \nu \bullet | \Gamma ,

where \nu is an outward unit normal vector at \Gamma j . The elastic transmission conditions on the
interface \Gamma j for j = 0, 1, . . . ,m are given as

(B.4)
uI + uR =uT ,

\scrN IuI +\scrN RuR =\scrN TuT .

The system (B.4) can be microlocally inverted to obtain the reflection and the transmission
operators MR and MT , where MRuI | \Gamma j = uR and MTuI | \Gamma j = uT . Note that the operators
MR, MT are PsiDOs of order 0 on \BbbR \times \Gamma j and have been calculated explicitly in [6]. The
operatorsMR, MT change from interface to interface, but for the sake of notational simplicity
we do not mention the influence of j = 0, 1, . . . ,m on them.

B.4. Parametrix. Define the operator \iota : \Sigma t,\pm \rightarrow \Sigma t,\pm changes from one boundary to
its copy in \Sigma t,\pm . Consider the boundary operator M = MR + \iota MT . To understand the
propagation of the wave field through this broken medium let us consider

\widetilde F : = J\bfC \rightarrow \bfS + J\partial \rightarrow \bfS 

\infty \sum 
k=0

(J\partial \rightarrow \partial M)k J\bfC \rightarrow \bfS ,(B.5)

\~R2T = r2T \circ \~F ,(B.6)

where r2T is a restriction to t = 2T . Again omitting the proof, it can be shown that \~F \equiv F
and \~R2T \equiv R2T away from glancing rays. In the elastic case it means that \~R2Th0 \equiv R2Th0 forD
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initial Cauchy data h0 such that every broken bicharacteristic originating in WF(h0) is disjoint
from both the P and S glancing sets described in [28]. Recalling that M = MR +MT , we
may write \~R2T as a sum of graph FIO indexed by sequences of reflections and transmissions:

\~R2T =
\sum 

s\in \{ R,T\} k,\lambda \in \{ P,S\} k+1

\~Rs,\lambda , \~R() = r2TJ\bfC \rightarrow \bfS ,(B.7)

\~R(s1,...,sk;\lambda 0,...,\lambda k) = r2TJ\partial \rightarrow \bfS \Pi \lambda k
MskJ\partial \rightarrow \partial \cdot \cdot \cdot \Pi \lambda 2Ms2J\partial \rightarrow \partial \Pi \lambda 1Ms1J\bfC \rightarrow \partial \Pi \lambda 0 .(B.8)

The solution operator \~F likewise decomposes into analogous components \~Fa.
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